Elements and Isotopes

A = Mass / nucleon number
A = number of protons + neutrons
A = Z + N
Z = Atomic / Proton number, nuclear charge

Frederick Soddy (1877-1956) NP in Chem. 1921

Element = set of atoms, same Z Nuclide = set of atoms, same A and Z Isotopes = set of nuclides of an element Isobars = nuclides, same A, different Z ($^{14}C-^{14}N$; $^{3}H-^{3}He$) Isotons = nuclides, same number of neutrons, N = A – Z Isomers = same nuclides, different content of energy

1

Isotopes

Isotopes set of nuclides of an element

2600 nuclides (stable and radioactive)340 nuclides found in Nature270 stable and 70 radioactive, other artificial

Monoisotopic elements: ⁹Be, ¹⁹F, ²³Na, ²⁷Al, ³¹P, ⁵⁹Co, ¹²⁷I, ¹⁹⁷Au

```
Polyisotopické elements :
<sup>1</sup>H, <sup>2</sup>H (D), <sup>3</sup>H (T)
<sup>10</sup>B, <sup>11</sup>B
```

Sn has the highest number of **stable** isotopes – 10

```
112, 114, 115, 116, 117, 118, 119, 120, 122, 124Sn
```

Stability of Nuclei

Stability with respect to radioactive decay is given by the number of protons and neutrons - Zone of stability

Light nuclides are stable for $Z \sim N$

Only ¹H and ³He have more p than n.

²H, ⁴He, ⁶Li, ¹⁰B, ¹²C, ¹⁴N, ¹⁶O, ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, ³⁶Ar and ⁴⁰Ca Have the same number of p and n

All other nuclides have **more** n than p > Z

Mattauch Rule: Of two isobars that differ by 1 in Z, one is radioactive.

⁴⁰Ar ⁴⁰Ca $\Delta Z = 2$ ⁴⁰Ar ⁴⁰K ⁴⁰Ca $\Delta Z = 1$ ⁴⁰K is radioactive.

Stability of Nuclei

Stability of Nuclei

In some elements, radioactive isotopes exist in Nature with a long half life ⁴⁰K, 0.012%, 1.3 10¹⁰ years

Elements with $Z \le 83$ (Bi) have at least 1 stable isotope Z = 43 (Tc), 61 (Pm) do not exist in Nature Artificial radioactive isotopes prepared by nuclear reactions

Nuclides with $Z \ge 84$ (Po) are all **unstable** with respect to radioactive decay = **radioactive elements**

Magic Numbers

Z	Ν	Number of stable isotopes
even	even	168
even	odd	57
odd	even	50
odd	odd	4

Aston's Rule: Elements with even Z have more isotopes, elements with odd Z have no more than 2 isotopes, one of then unstable, elements with odd number of nucleons (A) have only one stable isotope (¹⁹F, ²³Na, ²⁷Al, ³¹P).

Only ²H, ⁶Li, ¹⁰B, ¹⁴N, ⁴⁰K, ⁵⁰V, ¹³⁸La, ¹⁷⁶Lu have odd number of both p and n.

Magic Numbers

Magic Numbers = 2, 8, 20, 28, 50, 82 and 126

Elements with Z = magic number have a large number of stable isotopes; when an isotope is radioactive, it has a long half life

Sn Z = 50, 10 stable isotopes

Nuclides ⁴He, ¹⁶O, ⁴⁰Ca, ⁴⁸Ca and ²⁰⁸Pb have magic number of both p and n = very stable nuclides

Mass of Electron and Nucleons

Symbol	<i>m /</i> kg	<i>m I</i> u
e	9.11 10 ⁻³¹	0.0005486
р	1.673 10 ⁻²⁷	1.007276
n	1.675 10 ⁻²⁷	1.008665

amu = 1.6606 10⁻²⁷ kg

Mass Defect

Nucleus mass is always smaller than the sum of masses of nucleons

 $M_j < Z m_p + (A-Z) m_n$

Mass loss $\Delta m < 0$ [Δm in amu units]

Binding energy of nucleus $E_b = -\Delta m c^2$

 $E_{b} = -931.5 \Delta m [MeV]$

NP in Physics 1921

Binding Energies of Nuclei, E_b

Nuclide	E _b , MeV
² H	2.226
⁴He	28.296
¹⁴ N	104.659
¹⁶ O	127.619
⁴⁰ Ca	342.052
⁵⁸ Fe	509.945
²⁰⁶ Pb	1622.340
238	1822.693

Binding Energy per One Nucleon, E_b(n)

Nuclide	E _b (n), MeV	E _v , MeV	
² H	1.113	2.226	$F_{i}(n) = F_{i} / A$
⁴ He	7.074	28.296	
¹⁴ N	7.476	104.659	
¹⁶ O	7.976	127.619	Energy for
¹⁹ F	7.779	147.801	removing of o
⁴⁰ Ca	8.551	342.052	nucleon
⁵⁵ Mn	8.765	482.070	
⁵⁸ Fe	8.792	509.945	
⁶² Ni	8.795	545.259	
²⁰⁶ Pb	7.875	1622.340	
238	7.658	1822.693	

of one

Binding Energy per Nucleon, E_b(n)

Binding Energy per Nucleon

14

Elements in the Universe

Binding Energies of Nucleus and Chemical Bond

Binding Energy per Nucleon for ⁵⁸Fe 8.792 MeV

Bond Energy for C-H 411 kJ mol⁻¹ = 4.25 eV

Nuclear binding energies are 10⁶ times bigger than chemical bond energies.

 $1 \text{ eV} (\text{molecule})^{-1} = 96.485 \text{ kJ} \text{ mol}^{-1}$

Discovery of Radioactivity

Uranium, Thorium

Antoine Henri Becquerel (1852-1908)

Discovery of radioactivity 1896 NP in Physics 1903

Radium, Polonium Marie Curie (1867-1934) Pierre Curie (1859-1906)

NP in Physics 1903 M. C. NP in Chemistry 1911

Radioactivity

If a nucleus possesses too little/much of neutrons \rightarrow

Radioactivity = transformation of some nuclei to other nuclei with emission of small particles and energy (exo)

Radioactivity = spontaneous process, products have a lower energy content and are more stable than the original nuclei

Geiger counter

Geiger Counter

Hans Geiger (1882-1945)

Measurement of Radioactivity

Radioactivity

1 Bq (becquerel) = 1 decay per 1 s (40 K in human body 4 kBq) 1 Ci (curie) = 3.7 10 10 Bq

Radiaton Dose

1 Gy (gray) = absorption of 1 J in 1 kg of tissue 1 Gy = 100 rad

Effective Dose

1 Sv (sievert) = 1 Gy \times Q factor 1 Sv = 100 rem

3 Sv = LD 50/30dose from cosmic radiation and natural background radiation in ČR = 2 mSv/year 20

Nuclear Reactions

Rutherford – deflection of radioactive rays in electric and magnetic fields

Alpha = positive charge Beta = negative charge Gama = neutral

Formation of a new nuclide

Shift rules – changes in Z and N

Heavy nuclei

Alpha particle speed = 10% c

Low penetration, several cm in air, stopped by a sheet of paper

Very harmful to cells in case of inhalation

$$^{222}_{86}Rn \rightarrow ^{218}_{84}Po + ^{4}_{2}He$$

Alpha Radiation

A shift of two elements to the left in periodic table

Alpha Radiation

Radium-226

Curium-240

Uranium-232

Gold-185

$$\begin{array}{ccc} A & & A-4 \\ & N_1 & \longrightarrow & Z-2 \end{array} \\ Z & & & Z-2 \end{array}$$

Thorium-230

Americium-241 (smoke detectors) Polonium-210

Nuclei with excess of neutrons, lack of protons

Beta particles are electrons (but not from e cloud !!!)

Decay of neutrons

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e$$

e speed = 90% c

Penetration of several m in air Stopped by 1cm of Al foil

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$$

Beta Radiation

A shift of one element to the right in periodic table

Beta Radiation Krypton-87 Zinc-71 Silicon-32 A Cobalt-60 N_1 Ζ Magnesium-27 Sodium-24 Iron-59 Phosphor-32

A

Z +1

 N_2

Gamma Radiation

Nuclei with excess of energy

Electromagnetic radiations with very short wavelength High energy, MeV

Speed of light

Deep penetration, 500 m in air

 $^{m99}Tc \rightarrow ^{99}Tc + \gamma$

Tracers

Gyorgy Hevesy 1913 NP 1943

 $^{m99}Tc \rightarrow ^{99}Tc + \gamma$

Nuclei with excess of protons, lack of neutrons

$$^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{1}e$$

$${}^{11}_{6}C \rightarrow {}^{11}_{5}B + {}^{0}_{+1}e$$

 N_2

7 - 1

30

Positron (antiparticle) recombines in 10 $^{-10}$ s Very small penetration Anihilation $_1e + _{-1}e \rightarrow \gamma$

A shift of one element to the left in periodic table

Positron Emission

Rubidium-81

Germanium-66

Praseodymium-140

Neon-18

Oxygen-15

Nitrogen-13

Copper-59

$$\begin{array}{ccc} A & & A \\ A & N_1 & \longrightarrow & A \\ Z & & Z - 1 & N_2 \end{array}$$

Electron Capture

An electron from atom's electron cloud is captured by nucleus, e transforms p to n, e from outer shell drops to the hole and emits gamma

$$^{1}_{1}p+^{0}_{-1}e\rightarrow^{1}_{0}n$$

Nuclei with Z > 83 cannot stabilize by beta emission, positron emission, or electron capture

A N₁
X N₁
X A shift of one element to the left
$$Z = 1$$

 $X = 1$
 X

32

$$^{1}_{1}p+^{0}_{-1}e\rightarrow^{1}_{0}n$$

$$\begin{array}{ccc} A & & A \\ & N_1 & \longrightarrow & & N_2 \\ Z & & & Z-1 \end{array}$$

Nuclear Disintegration Series

 Thorium 232 Th - 208 Pb
 A = 4n

 Neptunium (artificial) 241 Pu - 209 Bi
 A = 4n+1

 Uranium 238 U - 206 Pb
 A = 4n+2

Actinuranium ²³⁵U - ²⁰⁷Pb

<u>A = 4n+3</u>

35

Spontaneous Fission

A heavy nucleus disintegrates to 2-3 fragments and one or more neutrons

Nuclear Fusion and Fission

Nuclear Fission

Nuclear Fusion

Nuclear Fusion and Fission

Nuclear Synthesis in the Universe

Big Bang $^{1}n \rightarrow ^{1}H + e^{-1}$

Sun (temperature = 2×10^6 K inside, energy form PP or CN cycle)

PP cycle

```
<sup>1</sup>H + <sup>1</sup>H \rightarrow <sup>2</sup>H + e<sup>+</sup> + v + 0.42 MeV

<sup>1</sup>H + <sup>2</sup>H \rightarrow <sup>3</sup>He + \gamma + 5.49 MeV

<sup>3</sup>He + <sup>3</sup>He \rightarrow <sup>4</sup>He + 2 <sup>1</sup>H + 12.86 MeV

<sup>3</sup>He + <sup>1</sup>H \rightarrow <sup>4</sup>He + e<sup>+</sup>

<u>e<sup>+</sup></u> + e<sup>-</sup> \rightarrow \gamma + 1.02 MeV
```

PP cycle

CN cycle

Nuclear Synthesis in the Universe

Sun \rightarrow red giant \rightarrow white dwarf ³He + ⁴He \rightarrow ⁷Be + γ + 1.59 MeV ⁴He + ⁴He \rightarrow ⁸Be ⁷Be + p \rightarrow ⁸B + γ + 13 MeV ⁸B \rightarrow ⁸Be + γ + e⁺ + 10.78 MeV

 $^{8}\text{Be} + {}^{4}\text{He} \rightarrow {}^{12}\text{C}$

 $^{12}C + ^{4}He \rightarrow ^{16}O$

Nuclear Synthesis in the Universe

Heavy stars ¹²C \rightarrow Ne, Mg ¹⁶O \rightarrow Si, S Si \rightarrow ⁵⁸Fe

Fe nuclei are the most stable, what next?

Supernova explosion high neutron fluxes

 $Fe + n \rightarrow Au \rightarrow Pb \rightarrow U$

Thermonuclear Reactions ${}^{2}H + {}^{2}H \rightarrow {}^{3}He + n + 3.3 \text{ MeV}$ ${}^{2}H + {}^{2}H \rightarrow {}^{3}H + p + 4.0 \text{ MeV}$ ${}^{3}H + {}^{2}H \rightarrow {}^{4}He + n + 17.6 \text{ MeV}$

ITER Cadarache, France National Ignition Facility, USA

Transmutations

1919, Rutherford, 1st artifical synthesis of an element

$${}_{2}^{4}He + {}_{7}^{14}N \rightarrow {}_{1}^{1}H + {}_{8}^{17}O$$

Transmutations

Wilson Cloud Chamber

Charles Wilson (1869-1959) NP in Physics 1923

Gas (air, He, Ar,...) and vapors of water or ethanol in a chamber, piston for volume change

Expansion, cooling, supersaturated vapor, particles ionize gas atoms, condensation – trail 46

Cyclotron

1929

Accelerator of positive ions (H⁺, D⁺, ...) Pass thru potential step, alternating pos/neg charging of Dees, Circular movement in magnetic field, energies up to 100 MeV

Ernest O. Lawrence (1901-1958) NP in Physics 1939

Electromagnet Dee Alternating Current Source Electromagnet

Hollow electrodes Dees

Nuclear Fission

1932 John D. Cockcroft (1897-1967) and Ernest T. S. Walton (1903-1995)

Cascade accelerator, protons 800 keV

The 1st splitting of a stable nucleus by an accelerated particle

$${}^{1}_{1}H + {}^{7}_{3}Li \rightarrow {}^{4}_{2}He + {}^{4}_{2}He$$

1951 joint NP in Physics

neutron = particle with zero charge, spin $\frac{1}{2}$ James Chadwick m = 1.67470 10⁻²⁷ kg NP in Physics 1935

Transmutations

Cyclotron

$${}^{4}_{2}He + {}^{238}_{92}U \rightarrow {}^{239}_{94}Pu + 3{}^{1}_{0}n$$

Bombardment with neutrons

$${}^{59}_{27}Co + {}^1_0n \rightarrow {}^{60}_{27}Co$$

1933 Artificial Radioactivity

Frederic and Irene Joliot-Curie (1900-1958) (1897-1956)

$${}^{4}_{2}He + {}^{27}_{13}Al \rightarrow {}^{30}_{15}P + {}^{1}_{0}n$$

$$^{30}_{15}P \rightarrow ^{30}_{14}Si + ^{0}_{+1}e$$

Chain Reaction

Nuclear Reactor

1942 Chicago

1st Fission reaction of ²³⁵U

Enrico Fermi (1901-1954) NP in Physics 1938

Controlled Fission Reaction of ²³⁵U

Moderator = slowing of neutrons – graphite Cd absorbs neutrons – captures n

Transuranium Elements

Untill 1940 heaviest natural element Z = 92 (U) $Z \ge 93$ (Np) transuranium, only artificial

1940 the 1st artificial = $^{239}_{93}$ Np

Bombardment with neutrons ${}^{238}\text{U} + n \rightarrow {}^{239}\text{U} \rightarrow {}^{239}\text{Np} + e$

²³⁹94</sub>Pu

Adress of Glenn Seaborg Sg, Lr, Bk, Cf, Am Joint NP in Chemistry 1951

Glenn T. Seaborg (1912- 1999)

Edwin M. McMillan (1907- 1991) 57

Synthesis of Transuranium Elements

Bombardment with positive ions ⁴He, ¹²C, ¹⁵N, ¹⁸O, ... Synthesized transuranium elems to Z = 118

$$^{208}_{82}\text{Pb} + {}^{62}_{28}\text{Ni} \rightarrow {}^{269}_{110}\text{Ds} + {}^{1}\text{n}$$
 $t_{\frac{1}{2}} = 270 \text{ ms}$
 $^{208}_{82}\text{Pb} + {}^{64}_{28}\text{Ni} \rightarrow {}^{271}_{110}\text{Ds} + {}^{1}\text{n}$
 $^{209}_{99}\text{Bi} + {}^{54}_{94}\text{Cr} \rightarrow {}^{262}_{499}\text{Bh} + {}^{1}\text{n}$

IUð

రచ

Joint Institut of Nuclear Research, Dubna, Russia GSI (Gesellschaft fur Schwerionenforschung), Germany LBL (Lawrence Berkeley Lab), USA

Synthesis of Transuranium Elements

Bombardment with positive ions ⁴He, ¹²C, ¹⁵N, ¹⁸O, ... ⁷⁰Zn

Synthesized transuranium elems to Z = 118

 $^{249}_{97}Bk + ^{48}_{20}Ca \rightarrow ^{293}_{117}X + 3 ^{1}n$

The last named element

 $^{208}_{82}$ Pb + $^{70}_{30}$ Zn $\rightarrow ^{278}_{112}$ Cn $\rightarrow ^{277}_{112}$ Cn + 1 n GSI (Gesellschaft fur Schwerionenforschung), Germany

Kinetics of Radioactive Decay

-dN/dt = k NdN/N = -k dtIntegrate t = 0 $N = N_0$ $\ln(N/N_0) = -k t$ $N/N_0 = \exp(-k t)$ $N = N_0 \exp(-k t)$

60

Half-life, t_{1/2}

Half-life, t_{1/2}

62

Carbon Dating ¹⁴C

¹⁴C continually produced in high atmosphere

 $^{14}_{7}N + ^{1}_{0}n \text{ (cosmic radiation)} \rightarrow ^{14}_{6}C + p^{+}$

Decays by beta emission with half-life of 5730 y

Willard Libby (1908-1980) NP in Chemistry 1960

 ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$

In atmosphere and living plants (CO₂, photosynthesis), established equilibrium concentration of ¹⁴C. After death of organism, concentration of ¹⁴C decreases. ¹⁴C/ ¹²C established by mass spectrometry