Electronic Structure of Atoms

Chemical properties of atoms (and molecules) are given by their electronic structure.

We need to know:

- electron energy
- spatial distribution of electrons

Knowledge about **electronic structure of atoms** was obtained by studies of radiation emitted by excited atoms (from ground state to excited state by adding energy – thermal, electrical - spark, arc)

Electromagnetic Radiation

$c = 2.998 \ 10^8 \text{ m s}^{-1}$ speed of light

James C. Maxwell (1831-1879)

Heinrich Hertz (1857 - 1894) 2

Wavelength, frequency, wavenumber, amplitude

 $v \lambda = c$ $c = 2.998 \ 10^8 \text{ m s}^{-1}$ $\ddot{u} = 1/\lambda \ [\text{cm}^{-1}]$

3

Electromagnetic Radiation

Wavelength, λ [m]

Character of light:

- Wave (interference) Huygens, Young
- Corpuscular (linear rays, reflection) Newton

Line Spectra of Elements

Emission spectrum

Quantized Energy

1900 Energy of radiation with wavelength λ could be absorbed or emitted only in discrete amount = **quantum**

Quantum of light = photonMax P $\Delta E = n h v = n h c / \lambda$ (1858Planck constanth = 6.626 10^{-34} J s

Max Planck (1858 - 1947) NP in Physics 1918

Black Body Radiation

Black Body = perfectly absorbs all incoming radiation, perfectly emits all wavelengths

Black Body Radiation

11

Photoelectric Effect

1887 Heinrich Hertz 1898 J. J. Thomson

Observations

 electrons are emitted from the metal surface upon irradiation by UV (alkali metals by visible light)

• minimum v, photons of lower energy cannot eject electrons

• kinetic energy of photoelectrons depends on v, increases with higher light energy, but not dependent on its intensity

Photoelectric Effect

Kinetic energy of photoelectron, $E_{\rm K}$ Kinetic energy of 551 nm) 539 nm) 09 eV (1.69 imes 10⁴ cm⁻¹, 593 nm) $81 \times 10^4 \text{ cm}^{-1}$ cm_1 9 80 Š 2 Increasing work function Frequency of incident radiation, v

photoelectrons

kinetic energy of photoelectrons depends on v, increases with higher light energy, but not dependent on its intensity

hv_0 = work function

13

Below v_0 no emission No matter how intense the light is!

Photoelectric Effect

Φ = photoelectron flux

hv_0 = work function

1905

Photoelectric Effect

Particle character of electromagnetic radiation Light = photons Photon energy E = h v Ejected electron energy $E_{kin} = \frac{1}{2} mv^2$

 $h v = E_i + \frac{1}{2} mv^2$

Albert Einstein (1879-1955) NP in Physics 1921

$$\mathsf{E}_{kin} = \mathsf{h} (v - v_0)$$

 v_0 = metal characteristic h = Planck constant $E_i = hv_0$ = work function

$h v = E_i + \frac{1}{2} mv^2$ Photoelectric Effect

Hydrogen Emission Spectrum

Line spectrum of light emitted by H atoms Lines have constant wavelengths

Hydrogen Emission Spectrum

Balmer series in visible range (1855) m^2 λ 2 543 2 (Ъ) $m \rightarrow n$ (c)

Experimental result from spectral mearurements (visible, infrared, ultraviolet regions)

Rydberg constant, $R_{\infty} = 109678 \text{ cm}^{-1}$ n, m = integers, n = 2, m = 3, 4, 5, 6,.... Balmer series in visible range (1st in 1855)

Rydberg equation holds only for H spectrum

19

Spectral Series

$$\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

 $\begin{array}{ll} n = 1, \ m = 2, \ 3, \dots & Lyman \\ n = 2, \ m = 3, \ 4, \dots & Balmer \\ n = 3, \ m = 4, \ 5, \dots & Paschen \\ n = 4, \ m = 5, \ 6, \dots & Bracket \\ n = 5, \ m = 6, \ 7, \dots & Pfund \end{array}$

Electrons move around nucleus in circular orbits, equilibrium of centrifugal and Coulombic forces $F_0 = F_c$ mv^2 Niels Bohr (1885 - 1962) NP in Physics 1922

$$\frac{mv^2}{r} = \frac{Ze^2}{4\pi\varepsilon_0 r^2}$$

21

$E = E_{kin} + E_{pot} = \frac{1}{2} m v^2 - Z e^2 / 4 \pi e_0 r = -Z e^2 / 8 \pi e_0 r$

Electrons moves on allowed orbits with certain definite E and r

On allowed orbits do not emit energy = stacionary states

Lowest energy state = the most stable = ground state Higher states = excited states

Quantized change of energy state $E_2 - E_1 = hv$

Spectrum line

Bohr's postulates: electron angular momentum is an integer multiple of Planck quantum (h/ 2π)

n = quantum number Orbit radius

$$mvr = n\frac{h}{2\pi} = n\hbar$$

$$r = n^2 \frac{a_0}{Z}$$

Speed of electron

plug in from $mv^2 = Z e^2 / 4 \pi e_0 r$ for n = 1 and Z = 1 $a_0 = e_0 h^2 / \pi m e^2$ $a_0 = 0.529 \text{ Å}$ Bohr radius of H atom

 $E = E_{kin} + E_{pot} = \frac{1}{2} m v^2 - Z e^2 / 4 \pi e_0 r^2$

Energy of an electron at level n

$$E_n = -E_0 \frac{Z^2}{n^2}$$

Quantized energy

 $E_0 (= m e^4 / 8 e_0^2 h^2) = 2.18 \ 10^{-18} J$

 $(1 \text{ eV} = 1.6 \ 10^{-19} \text{ J})$

 $E_0 = 13.6 \text{ eV}$ Ionisation potential of H atom

E = 0

The stronger is an electron bound to nucleus, the lower is its energy (more negative)

Ionisation Energy

Energy for removing a bound electron

Energy of an electron at level n

$$E_{n} = -E_{0} \frac{Z^{2}}{n^{2}} = -\frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}} \frac{Z^{2}}{n^{2}}$$

Energy difference between two levels

$$E_{2} - E_{1} = (-E_{0} Z^{2} / n_{2}^{2}) - (-E_{0} Z^{2} / n_{1}^{2})$$

$$\Delta E = h v = h c / \lambda$$

$$\frac{1}{\lambda} = \frac{me^4}{8\varepsilon_0^2 h^3 c} \left(\frac{1}{n^2} - \frac{1}{m^2}\right)$$

Equation is identical to Rydberg's !!!

Spectral Series of H Atom

28

Limitations of Bohr's Model

- Simple and easy to understand
- Explained lines in the H spectrum
- Explained quantization of energy in atoms
- Cannot be used for multielectron atom spectra
- Only for atoms of "hydrogen-type" (nucleus = Zⁿ⁺, only one electron)

Fundamentally flawed model

Overcome by quantum-mechanic model

Wave-like Character of Light

diffraction, interference, refraction, polarisation

Christian Huygens

Augustin J. Fresnel

Thomas Young

James C. Maxwell

Heinrich Hertz

slit

Particle-like Character of Light

Black body radiation, photoelectric effect, line spectra, maximum wavelength of X-rays, Compton scattering

Albert Einstein

Max Planck

Wilhelm K. Roentgen

Henry Moseley

Niels Bohr

Arthur Compton

Particle-like Character of Light Electromagnetic radiation = wave E = h v

Electromagnetic radiation = **particles** – photons

Compton scattering 1922 Photon's mass m_f

 $E = h_v = h c / \lambda$ $E = m_f c^2$

$$m_f = \frac{h}{\lambda c}$$

Arthur H. Compton (1892 - 1962) NP in Physics 1927

Compton Scattering

the scattering of monochromatic Xrays from electrons in a carbon target, scattered x-rays with a longer wavelength than those incident upon the target, the shift of the wavelength increases scattering angle N = number of photons

Photons scattered on core electrons, no change in energy

Dual Character of Light

 λ - incident x-ray photon wavelength

 λ^{\prime} - scattered x-ray photon wavelength, longer than incident one

the shift of the wavelength increases scattering angle θ

 $\lambda' - \lambda = \frac{h}{m_e c^2}$ $1 - \cos \theta$

Wave-like Character of Electrons

Scattering of Electrons on Ni Crystal

1927

C. J. Davisson (1881-1958) L. Germer

G. P. Thomson

(1892 - 1975)

Experimental evidence of wave character of electrons. Particles would scatter evenly in all directions.

NP in Physics 1937

$E = e V = \frac{1}{2} m v^2$

Electron as a Standing Wave

h

 $\lambda =$

Electron = wave de Broglie

Standing wave on a circle of radius r

 $n \lambda = 2 \pi r$

Combined equations

$$n\frac{h}{2\pi} = mvr$$

This is Bohr's postulate !

1927 Heisenberg Uncertainity Principle

The more precisely the position (x) is determined, the less precisely the momentum (p = m v) is known in this instant, and vice versa.

 $\Delta x \Delta p \ge \frac{\hbar}{2}$

Electron in H atom in ground state $v = 2.18 \ 10^6 \text{ m s}^{-1}$ error 1%, $\Delta v = 10^4 \text{ m s}^{-1}$

 $\Delta x = 0.7 \ 10^{-7} \ m = 70 \ nm$

 $a_0 = 0.053 \text{ nm}$ Not possible to find precisely the position of an electron in an atom

Werner Heisenberg (1901 - 1976) NP in Physics 1932

Heisenberg Uncertainity Principle

The product of the uncertainty in an energy measurement (ΔE) and the uncertainty in the time interval of the measurement (Δt) equals h/2 π or more.

 $h = 6.626 \ 10^{-34} \ J \ s$

Heisenberg Uncertainity Principle

Energy of electrons is know very precisely from emission spectra Position of an electron cannot be measured precisely Circular orbits with defined radii = nonsense

State of an electron has to be described by quantum mechanics

 $a_0 = 0.053$ nm – the most probable radius of electron

Schrödinger Equation

1926 Schrödinger equation = postulate

 $\hat{H} \Psi = E \Psi$

Erwin Schrödinger (1887 - 1961) NP in Physics 1933

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V) \Psi = 0$

 \hat{H} = Hamilton operator of total energy (E), Kinetic and potential (V) energy

Schrödinger Equation

Schrödinger Equation $\hat{H} \Psi = E \Psi$

Second-order partial differential equation Exact solution ONLY for H and one-electron systems (He⁺, Li²⁺,....) Approximate solutions for many-electron **atoms** (He,...) and **molecules**

The solution of differential equation are pairs (\mathbf{E}, Ψ):

• proper wave functions (Eigenfunctions) Ψ

orbitals $|\Psi|^2$ – space distribution of e

proper values of electron energy in orbitals (Eigenvalues) E

To one value of E could belong several wave functions (degenerate)

Wavefunctions

 $\Psi(x,y,z)$ – solution of a stationary Schrödinger eq.

Only certain states of electron are allowed - $\Psi(x,y,z)$ Ψ is a complex function of coordinates x, y, z, has no physical meaning, positive and negative values

 $|\Psi|^2$ – probability density of electron position

 Ψ depends on integers – quantum numbers

Born Interpretation of Wavefunction

 $\Psi(\mathbf{x},\mathbf{y},\mathbf{z})$ solution of a stationary Schrödinger eq., (Ψ no physical meaning) $|\Psi|^2 \, dV$ probability of finding electron in volume dV at position r

Max Born (1882 - 1970) NP in Physics₆1954

"I think I can safely say that nobody understands Quantum Mechanics"