Electronic Structure of Atoms

Chemical properties of atoms (and molecules) are given by their electronic structure.

We need to know:

- electron **energy**
- spatial **distribution** of electrons

Knowledge about **electronic structure of atoms** was obtained by studies of radiation emitted by excited atoms (from ground state to excited state by adding energy – thermal, electrical - spark, arc)

Electromagnetic Radiation

c = 2.998 10 $^{\rm 8}$ m s $^{-1}~$ speed of light

James C. Maxwell (1831-1879)

2Heinrich Hertz (1857 - 1894)

Wavelength, frequency, wavenumber, amplitude

 $v \lambda = c$ **c = 2.998 108 m s** − **1 ΰ = 1/** λ **[cm** − **1]**

3

Electromagnetic Radiation

Wavelength, ^λ **[m]**

Character of light:

- Wave (interference) Huygens, Young
- Corpuscular (linear rays, reflection) Newton

Line Spectra of Elements

Emission spectrum

Quantized Energy

1900 Energy of radiation with wavelength λ could be absorbed or emitted only in discrete amount ⁼**quantum**

9

Planck constant h = 6.626 10−³⁴ J s Δ**E = n h** ν **= n h c /** λMax Planck(1858 - 1947) NP in Physics 1918 Quantum of light = **photon**

Black Body Radiation

Black Body = perfectly absorbs all incoming radiation, perfectly emits all wavelengths

Black Body Radiation

11

1887 Heinrich Hertz1898 J. J. Thomson

Observations

• electrons are emitted from the metal surface upon irradiation by UV (alkali metals by visible light)

 \bullet minimum \lor , photons of lower energy cannot eject electrons

• kinetic energy of photoelectrons depends on ^ν, increases with higher light energy, but not dependent on its intensity

Kinetic energy of photoelectrons

Kinetic energy of photoelectron, E_K

Frequency of incident radiation, v

kinetic energy of photoelectrons depends on ν, increases with higher light energy, but not dependent on its intensity

h ${\rm v}_0$ = work function

Below ${\rm v}_{\rm 0}$ no emission No matter how intense the light is!

Φ = photoelectron flux

h ${\rm v}_0$ = work function

Particle character of electromagnetic radiation Light = photons Photon energy $E = h v$ Ejected electron energy E_{kin} = ½ mv²

h ν = E_i + ½ mv²

Albert Einstein(1879-1955) NP in Physics 1921

$$
E_{kin} = h (v - v_0)
$$

 E_i = h v_0 = work functjon v_0 = metal characteristic h = Planck constant

Photoelectric Effect $\rm h$ $\rm v$ = $\rm E_i$ + ½ mv²

16

Hydrogen Emission Spectrum

Lines have constant wavelengths

Hydrogen Emission Spectrum

Experimental result from spectral mearurements (visible, infrared, ultraviolet regions)

Rydberg constant, R $_{\scriptscriptstyle \infty}$ = 109678 cm^{−1} $n, m =$ integers, $n = 2, m = 3, 4, 5, 6, \ldots$ Balmer series in visible range (1st in 1855)

Rydberg equation holds only for H spectrum

19

Spectral Series

$$
\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)
$$

 $n = 1, m = 2, 3, \dots$ Lyman $n = 2, m = 3, 4, \dots$ Balmer $n = 3, m = 4, 5, \dots$ Paschen $n = 4, m = 5, 6, \dots$ Bracket $n = 5, m = 6, 7, \dots$ Pfund

Electrons move around nucleus in circular orbits, equilibrium of centrifugal and Coulombic forces $F_{\rm O}$ = $F_{\rm C}$ *mv*

Niels Bohr (1885 - 1962) NP in Physics 1922

$$
\frac{mv^2}{r} = \frac{Ze^2}{4\pi \varepsilon_0 r^2}
$$

E = $\mathsf{E_{\sf kin}}$ + $\mathsf{E_{\sf pot}}$ = $\mathrm{~^{\textbf{1}}\textbf{/}_{\textbf{2}}}$ m v² – Z e ² / 4 π e_o r = - Z e ² / 8 π ${\rm e}_{\rm 0}$ r

Electrons moves on allowed orbits with certain definite E and r

On allowed orbits do not emit energy = stacionary states

Lowest energy state = the most stable = ground state Higher states = excited states

Quantized change of energy state $\;\;\mathsf{E}_{2}-\mathsf{E}_{1}$ = h $\;$

Spectrum line

Bohr's postulates: electron angular momentum is an integer multiple of $\,$ Planck quantum (h/2 $\pi)$

n = quantum number Orbit radius

$$
mvr = n\frac{h}{2\pi} = n\hbar
$$

$$
r = n^2 \frac{a_0}{Z}
$$

Speed of electron

plug in from $\,$ m v² = Z e ² / 4 π ${\rm e}_{\rm 0}$ r for $n = 1$ and $Z = 1$ a_o = e_o h 2 / π m $\rm e$ 2 a_0 = 0.529 Å $\;$ Bohr radius of H atom

 E = $\mathsf{E_{\sf kin}}$ + $\mathsf{E_{\sf pot}}$ = $^{1\prime}{}_{\rm 2}$ m v² – Z e ² / 4 π ${\rm e}_{\rm 0}$ r

Energy of an electron at level n

$$
E_n = -E_0 \frac{Z^2}{n^2}
$$

Quantized energy

 E_{0} (= m e⁴ / 8 e_{0} ² h²) = 2.18 10 ^{−18} J

(1 eV = 1.6 10 ^{–19} J)

 E_0 = 13.6 eV Ionisation potential of H atom

 $E = 0$

The stronger is an electron bound to nucleus, the lower is its energy (more negative)

Ionisation Energy

Energy for removing a bound electron

Atomic number, Z

Energy of an electron at level n

$$
E_n = -E_0 \frac{Z^2}{n^2} = -\frac{me^4}{8\varepsilon_0^2 h^2} \frac{Z^2}{n^2}
$$

Energy difference between two levels $E_2 - E_1 = ($ E_0 Z $2/ n₂$ ²) − (− E_o Z 2 / n_{1}^{2}) $\Delta \mathsf{E}$ = h v = h c / λ

$$
\frac{1}{\lambda} = \frac{me^4}{8\varepsilon_0^2 h^3 c} \left(\frac{1}{n^2} - \frac{1}{m^2}\right)
$$

Equation is identical to Rydberg's !!!

Spectral Series of H Atom

Limitations of Bohr's Model

- Simple and easy to understand
- Explained lines in the H spectrum
- Explained quantization of energy in atoms
- Cannot be used for multielectron atom spectra
- Only for atoms of "hydrogen-type" (nucleus = $Zⁿ⁺$, only one electron)

Fundamentally flawed model

Overcome by quantum-mechanic model

Wave-like Character of Light

diffraction, interference, refraction, polarisation

Christian Huygens

Augustin J. Fresnel

Thomas Young

James C. Maxwell

Heinrich Hertz

Particle-like Character of Light

Black body radiation, photoelectric effect, line spectra, maximum wavelength of X-rays, Compton scattering

Albert Einstein

Max Planck

Wilhelm K. Roentgen

Henry Moseley

Niels Bohr

Arthur Compton

Particle-like Character of Light Electromagnetic radiation = **wave** $\mathsf E=\mathsf h\,\mathsf v$

Electromagnetic radiation = **particles** – photons

Compton scattering 1922 Photon's mass m_f

 $\mathsf E=\mathsf h\ \mathsf v=\mathsf h\ \mathsf c\,/\,\lambda$ $\mathsf{E} = \mathsf{m}_{\mathsf{f}} \, \mathsf{c}$ 2

$$
m_f = \frac{h}{\lambda c}
$$

 Arthur H. Compton (1892 - 1962) NP in Physics 1927

Compton Scattering

the scattering of monochromatic Xrays from electrons in a carbon target, scattered x-rays with a longer wavelength than those incident upon the target, the shift of the wavelength increases scattering angle N = number of photons

Photons scattered on core electrons, no change in energy

Dual Character of Light

 λ - incident x-ray photon $\overline{}$ wavelength

λ' - scattered x-ray photon wavelength, longer than incident one

the shift of the wavelength increases scattering angle θ

 $\lambda - \lambda$ $\lambda = \frac{n}{\sqrt{2}} \left(1 - \cos \theta \right)$ $\boldsymbol{\theta}$ −− $-\lambda=$ −− *m c h e*

Wave-like Character of Electrons

Scattering of Electrons on Ni Crystal

1927

C. J. Davisson(1881-1958) L. Germer

G. P. Thomson

(1892-1975)

would scatter evenly in all directi \csc_3 ns. Experimental evidence of wave character of electrons. Particles

NP in Physics 1937

$\mathsf{E}=\mathsf{e}\;\mathsf{V}=\mathcal{V}_2$ m v 2

Electron as a Standing Wave

h

 $\lambda=$

Electron = wave de Broglie

Standing wave on a circle of radius r

 $n\ \lambda$ = 2 π r

Combined equations

$$
n\frac{h}{2\pi} = mvr
$$

This is Bohr's postulate !

Heisenberg Uncertainity Principle ¹⁹²⁷

The more precisely the position (x) is determined, the less precisely the momentum $(p = m v)$ is known in this instant, and vice versa.

2 $\Delta x \Delta p \geq \frac{\hbar}{2}$

$$
h = 6.626 10^{-34} J s
$$

Electron in H atom in ground state v = 2.18 10⁶ m s^{−1} error 1%, Δv = 10 4 m s −1

Δx = 0.7 10− 7 m = 70 nm

a₀ = 0.053 nm Not possible to find precisely the position of an electron in an atom

Werner Heisenberg (1901 - 1976) NP in Physics 1932

Heisenberg Uncertainity Principle

The product of the uncertainty in an energy measurement ($\Delta \mathsf{E})$ and the uncertainty in the time $\overline{}$ interval of the measurement (Δ t) equals h/2 π or more.

h = 6.626 10 −34 J s

Heisenberg Uncertainity Principle

Energy of electrons is know very precisely from emission spectra Position of an electron cannot be measured precisely Circular orbits with defined radii = nonsense

State of an electron has to be described by quantum mechanics

 a_0 = 0.053 nm – the most probable radius of electron

Schrödinger Equation

1926 Schrödinger equation = postulate

Ĥ Ψ **= E** Ψ

Erwin Schrödinger (1887 - 1961) NP in Physics 1933

∂² Ψ ∂² Ψ ∂² Ψ **8**π**2m** ∂x^2 ∂y^2 ∂z^2 h² + + $(E - V)$ $\Psi = 0$

 \hat{H} = Hamilton operator of total energy (E), Kinetic and potential (V) energy

Schrödinger Equation

Schrödinger Equation ĤΨ **= E** Ψ

Second-order partial differential equation Exact solution ONLY for H and one-electron systems (He $^{\text{+}},$ Li $^{\text{2+}},....$) Approximate solutions for many-electron **atoms** (He,...) and **molecules**

The solution of differential equation are pairs (**E**, Ψ):

• proper **wave functions** (Eigenfunctions) Ψ

orbitals | Ψ |² – space distribution of ^e

• proper values of electron **energy** in orbitals (Eigenvalues) **E**

To one value of E could belong several wave functions (degenerate)

Wavefunctions

Ψ**(x,y,z)** – solution of a stationary Schrödinger eq.

Only certain states of electron are allowed - Ψ**(x,y,z)** Ψ is a complex function of coordinates x, y, z, has no physical meaning, positive and negative values

| ^Ψ |2 – **probability density** of electron position

Ψ depends on integers – quantum numbers

Born Interpretation of Wavefunction

Ψ**(x,y,z)** solution of a stationary Schrödinger eq., (Ψ no physical meaning) | Ψ | 2 dV **probability** of finding electron in volume dV at position **r**

NP in Physics $_{\rm 6}$ 1954 Max Born (1882 - 1970)

"I think I can safely say that nobody understands Quantum Mechanics"