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Electronic Structure of Atoms

Chemical properties of atoms (and molecules) are 
given by their electronic structure.

We need to know:

• electron energy
• spatial distribution of electrons

Knowledge about electronic structure of atoms was 
obtained by studies of radiation emitted by excited
atoms (from ground state to excited state by adding 
energy – thermal, electrical - spark, arc)
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Electromagnetic Radiation

c = 2.998 108 m s−1   speed of light

James C. Maxwell
(1831-1879)

Heinrich Hertz
(1857 - 1894)
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Wavelength, frequency, wavenumber,
amplitude

ν λ = c
c = 2.998 108 m s−1

ΰ = 1/λ [cm−1]
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Electromagnetic Radiation
Wavelength, λ [m]

380 nm 780 nm
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Spectrum

Character of light:

• Wave (interference) Huygens, Young

• Corpuscular (linear rays, reflection) Newton
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Spectrum

Sun spectrum: He, Fe, Mg,...
Absorption spectrum

Emission spectrum

Continuous spectrum
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Line Spectra of Elements
Emission spectrum

Absorption spectrum
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Emission Line Spectra of Elements

Cu
Zn

Wavelength, nm

H
He
Li
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Quantized Energy

Planck constant h = 6.626 10−34 J s
ΔE = n h ν = n h c / λ

Max Planck
(1858 - 1947)
NP in Physics 1918

1900 Energy of radiation with wavelength λ could be
absorbed or emitted only in discrete amount = quantum

Quantum of light = photon

E1

E2

E1

E2

E2 -E1 = h ν

Ground state

Excited state

Energy
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Black Body Radiation
Black Body = perfectly absorbs all incoming radiation,
perfectly emits all wavelengths

Atoms = oscillators
Quantized Energy E = h ν

Max Planck derived

Energy emitted at wavelength λ
is only a function of temperature

UV catastrophe
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Black Body Radiation

Stefan-Boltzmann Law 
Energy emitted from a unit area 
per time

T
konst

=maxλ

Wien’s Law

4TP ×=σ
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Photoelectric Effect
photon

Cathode 
alkali metal

1887 Heinrich Hertz
1898 J. J. Thomson

Observations
• electrons are emitted from the metal 
surface upon irradiation by UV (alkali 
metals by visible light)

• minimum ν, photons of lower energy
cannot eject electrons

• kinetic energy of photoelectrons
depends on ν, increases with higher 
light energy, but not dependent on its
intensity
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Photoelectric Effect

Below ν0 no emission
No matter how intense the light is!

Kinetic energy of
photoelectrons

kinetic energy of
photoelectrons
depends on ν, 
increases with higher 
light energy, but not 
dependent on its
intensity

hν0 = work function
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Photoelectric Effect
Φ = photoelectron flux

KE = 
Kinetic
energy

hν0 = work function

I = UV light 
Intensity

minimum ν0

Incr. with ν

Does not depend on I

Incr. with IDoes not 
depend on ν
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Photoelectric Effect1905

Albert Einstein
(1879-1955)
NP in Physics 1921

Particle character of electromagnetic radiation
Light = photons
Photon energy E = h ν
Ejected electron energy Ekin = ½ mv2

h ν = Ei + ½ mv2

Ekin = h (ν – ν0)

ν0 = metal characteristic
h = Planck constant
Ei = hν0 = work function
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Photoelectric Effect

h ν0
h ν0

h ν

h ν

Ekin = h (ν – ν0)

h ν = Ei + ½ mv2

Ei = hν0
work function

Photon energy 
E = h ν

Ejected electron energy
Ekin = ½ mv2
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Hydrogen Emission Spectrum

Line spectrum of light emitted by H atoms 
Lines have constant wavelengths
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Hydrogen Emission Spectrum

m → n
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Balmer series in visible range (1855)
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Rydberg Equation

Experimental result from spectral mearurements
(visible, infrared, ultraviolet regions)

Rydberg constant, R∞ = 109678 cm−1

n, m = integers, 
n = 2, m = 3, 4, 5, 6,....  Balmer series in visible range (1st in 1855)

Rydberg equation holds only for H spectrum
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Spectral Series
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n = 1, m = 2, 3,....  Lyman
n = 2, m = 3, 4,....  Balmer
n = 3, m = 4, 5,....  Paschen
n = 4, m = 5, 6,....  Bracket
n = 5, m = 6, 7,....  Pfund
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Bohr’s Model of Atom

Fcoul Fcf

r

v

Niels Bohr
(1885 - 1962)
NP in Physics 1922

Electrons move around nucleus
in circular orbits,
equilibrium of centrifugal and
Coulombic forces
FO = FC
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Bohr’s Model of Atom

E = Ekin + Epot = 1/2 m v2 − Z e2 / 4 π e0 r =  − Z e2 / 8 π e0 r

Electrons moves on allowed orbits with certain definite E and r 

On allowed orbits do not emit energy = stacionary states

Lowest energy state = the most stable = ground state
Higher states = excited states 

Quantized change of energy state   E2 − E1 = hν

Spectrum line
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Bohr’s Model of Atom

Bohr’s postulates: electron angular momentum is an integer 
multiple of Planck quantum (h/2π)

n = quantum number

plug in from m v2 = Z e2 / 4 π e0 r

for n = 1 and Z = 1

a0 = e0 h2 / π m e2

a0 = 0.529 Å Bohr radius of H atom

hnhnmvr ==
π2

Z
anr 02=

nh
Zev

0
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2ε
=

Orbit radius

Speed of electron
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Bohr’s Model of Atom
E = Ekin + Epot = 1/2 m v2 − Z e2 / 4 π e0 r

E0 (= m e4 / 8 e0
2 h2) = 2.18 10 −18 J

(1 eV = 1.6 10 −19 J)

E0 = 13.6 eV
Ionisation potential
of H atom

2

2

0 n
ZEEn −= Quantized energy

Energy of 
an electron at
level n

Energy of electron
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Bohr’s Model of Atom

The stronger is an
electron bound to 
nucleus, the lower is 
its energy 
(more negative)

E = 0 Energy of electron
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Ionisation Energy

Atomic number, Z

Energy for removing a bound electron
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Bohr’s Model of Atom

Energy difference between two levels

E2 − E1 = (− E0 Z2 / n2
2) − (− E0 Z2 / n1

2) 

ΔE = h ν = h c / λ
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Equation is identical to Rydberg’s !!!
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Spectral Series of H Atom
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n = 1, m = 2, 3,....  Lyman

n = 2, m = 3, 4,....  Balmer

n = 3, m = 4, 5,....  Paschen
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Limitations of Bohr’s Model

• Simple and easy to understand
• Explained lines in the H spectrum
• Explained quantization of energy in atoms
• Cannot be used for multielectron atom spectra
• Only for atoms of “hydrogen-type”

(nucleus = Zn+, only one electron)

Fundamentally flawed model

Overcome by quantum-mechanic model
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Wave-like Character of Light
diffraction, interference, refraction, polarisation

Christian Huygens

Augustin J. Fresnel

Thomas Young

James C. Maxwell

Heinrich Hertz
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Particle-like Character of Light

Black body radiation, photoelectric effect, line spectra, 
maximum wavelength of X-rays, Compton scattering

Albert Einstein

Max Planck

Wilhelm K. Roentgen

Henry Moseley

Niels Bohr

Arthur Compton
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Particle-like Character of Light
Electromagnetic radiation = wave
E = h ν

Electromagnetic radiation = particles – photons

Compton scattering 1922
Photon’s mass mf

E = h ν = h c / λ
E = mf c2 Arthur H. Compton

(1892 - 1962)
NP in Physics 1927

c
hmf λ

=
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Compton Scattering

Photons scattered on core electrons, 
no change in energy

wavelength

the scattering of monochromatic X-
rays from electrons in a carbon target, 
scattered x-rays with a longer 
wavelength than those incident upon 
the target, the shift of the wavelength 
increases scattering angle
N = number of photons

Photons scattered on outer 
electrons, energy 
transferred, wavelength 
increases
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Dual Character of Light
λ - incident x-ray photon 
wavelength 

λ’ - scattered x-ray photon 
wavelength, longer than incident
one

the shift of the wavelength 
increases scattering angle θ

( )θλλ cos1' 2 −=−
cm

h

e
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Wave-like Character of Electrons

Louis de Broglie
(1892 - 1987)
NP in Physics 1929

1923 de Broglie

Electron has a wavelength

Planck                +         Einstein
E = h ν = h  v / λ E = m v2

particle

v = speed of electron
mv = p = momentum of electron

wave

Wavelength λ

mv
h

=λ
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Scattering of Electrons on Ni Crystal

1927

C. J. Davisson
(1881-1958)
L. Germer

G. P. Thomson
(1892-1975)

NP in Physics 1937

E = e V = ½ m v2

Experimental evidence of wave 
character of electrons. Particles 
would scatter evenly in all directions.
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Bragg Equation

X-rays

Electrons

de Broglie
wavelength
of electron λ
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Electron as a Standing Wave

Electron = wave
de Broglie

Standing wave on a circle
of radius r

n λ = 2 π r

Combined equations

This is Bohr’s postulate !

mv
h

=λ

mvrhn =
π2
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Heisenberg Uncertainity Principle
1927
The more precisely the position (x) is determined, 
the less precisely the momentum (p = m v) is known 
in this instant, and vice versa. 

h = 6.626 10−34 J s

Electron in H atom in ground state
v = 2.18 106 m s−1

error 1%, Δv = 104 m s−1

Δx = 0.7 10−7 m = 70 nm

a0 = 0.053 nm
Not possible to find precisely the position of an 
electron in an atom

Werner Heisenberg
(1901 - 1976)
NP in Physics 1932

2
h

≥ΔΔ px
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Heisenberg Uncertainity Principle
The product of the uncertainty in an energy 
measurement (ΔE) and the uncertainty in the time 
interval of the measurement (Δt) equals h/2π or more.

h = 6.626 10−34 J s

2
h

≥ΔΔ tE
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Heisenberg Uncertainity Principle

Energy of electrons is know very precisely from 
emission spectra
Position of an electron cannot be measured precisely
Circular orbits with defined radii = nonsense

State of an electron has to be described by quantum
mechanics

a0 = 0.053 nm – the most probable radius of electron
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Ĥ Ψ = E Ψ

Schrödinger Equation

Erwin Schrödinger
(1887 - 1961)
NP in Physics 1933

1926 Schrödinger equation = postulate

∂2 Ψ ∂2 Ψ ∂2 Ψ 8π2m

∂ x2           ∂ y2           ∂ z2 h2
+ ++ (E −V) Ψ = 0

Ĥ = Hamilton operator of total energy (E), 
Kinetic and potential (V) energy
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Schrödinger Equation

Ĥ Ψ = E Ψ
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Schrödinger Equation

Second-order partial differential equation

Exact solution ONLY for H and one-electron systems (He+, Li2+,....)

Approximate solutions for many-electron atoms (He,...) and molecules

The solution of differential equation are pairs (E, Ψ ):

• proper wave functions (Eigenfunctions) Ψ

orbitals | Ψ |2 – space distribution of e

• proper values of electron energy in orbitals (Eigenvalues) E

To one value of E could belong several wave functions (degenerate)

Ĥ Ψ = E Ψ
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Wavefunctions

Ψ(x,y,z) – solution of a stationary Schrödinger eq.

Only certain states of electron are allowed - Ψ(x,y,z)

Ψ is a complex function of coordinates x, y, z, has no 
physical meaning, positive and negative values 

| Ψ |2 – probability density of electron position

Ψ depends on integers – quantum numbers
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Born Interpretation of Wavefunction

Ψ(x,y,z) solution of a stationary Schrödinger eq., 
(Ψ no physical meaning)

| Ψ |2 dV probability of finding electron in volume dV
at position r

(dV= dx dy dz)

Max Born
(1882 - 1970)
NP in Physics 1954

dV
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“I think I can safely say that nobody understands Quantum Mechanics”


