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Hydrogen Atom

The simplest system: p + e

Schroedinger equation can be 
solved exactly

Spherical symmetry

Potential energy between p + e
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Polar Coordinates

Ψ(x,y,z) → Ψ(r,θ, φ) x = ?
y = ?
z = r cos q

Take advantage of spherical symmetry



3

Radial and Angular Part

Ψn, l, m (r,θ, φ) = N × Rn, l (r) × χl, m(θ, φ)

Separation of variables
Rn, l (r) = radial part of the wave function, depends only on 
distance from a nucleus - r

χl, m(θ, φ) = angular (angles) part of the wave function, 
depends only on direction - θ, φ

N = normalisation constant
In order to be ∫| Ψ |2 dV = +1  
Normalisation condition - electron is definitely somewhere 
with probability = 1
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Quantum Numbers

Principal quantum number n, (1 to ∞)

Angular momentum quantum number l, (0 to n −1)
l = 0 (s), 1 (p), 2 (d), 3 (f), 4 (g), 5 (h), ........

Magnetic quantum number ml, (+ l, .....0, ..... −l)
For each l there is (2l + 1) values of ml 

Magnetic spin quantum number ms (±½)

Rn, l (r) depends on quantum numbers n and l
χl, m(θ, φ) depends on quantum numbers l and ml
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Wave Functions of H atom

• solution of Schrödinger 
equation

• complex function of coordinates 
x, y, z or better r, φ, θ

• no physical meaning

• positive and negative values

• | Ψ |2 probability density of 
finding electron e
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Radial Part of the Wave Function of H Atom

1 (p)

1 (p)

0 (s)

l

±1

0

0

ml

2 (Z/2a0) 3/2 (1 − Zr/2a0) exp(− Zr/2a0)2 (L)

2/√3 (Z/2a0) 3/2 (Zr/2a0) exp(− Zr/2a0)2 (L)

2 (Z/a0) 3/2 exp(− Zr/a0)1 (K)

Rn, l (r)n
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Electron Energy in H-type Atoms

μ = reduced mass of nucleus-electron
e = elementary charge,  ε0 = permitivity of vacuum
Z – the higher a nucleus charge the stronger is an
electron bound, the lower energy has, one-electron ions
(He+, Li2+,....)
n – the higher a principal number the less stable e is

Corresponds to Bohr’s eq.!!
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Electron Energy in H-type Atoms

E1 = −13.6 eV

(13.6 eV = 1 Ry)

Energy depend ONLY on n
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Principal Quantum Number n

Gives the levels energy
Higher n has higher energy -
less stable
n same as in the Bohr’s model

Attains values 1 to ∞

For each n there is n2 of 
degenerate levels

Σ (2l + 1) = n2

l = 0

l = n − 1
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Orbital Angular Momentum

L = Orbital angular momentum (vector)

L = m × v × r = p × r

( )1+= llL h

Describes movements of 
electrons in orbitals

L
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Angular Momentum Quantum Number l

l orbital

0 s
1 p
2 d
3 f

4 g
5 h
6 i
7 j
8 k

L = Orbital angular momentum
L = m × v × r

Type of orbital, (0 to n −1)

these orbitals are not filled by electrons
in atoms in ground state

( )1+= llL h
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Magnetic Quantum Number ml

l orbital ml

0 s 0

1 p 1, 0, −1

2 d 2, 1, 0, −1, −2

3 f 3, 2, 1, 0, −1, −2, −3

4 g

5 h

6 i

π2
hmmL llz == h

these orbitals are not 
filled by electrons in
atoms in ground state
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Quantization of Orbital Angular Momentum

( )1+= llL h

π2
hmmL llz == h
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1sn = 1

543210l =
hgfdps

2p2sn = 2

n = 6

n = 5

n = 4

n = 3

6s

5s

4s

3s

6h6g6f6d6p

5g5f5d5p

4f4d4p

3d3p

For each n there is n2 of degenerate levels
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Magnetic Spin Quantum Number ms

Stern-Gerlach experiment

S = h/2π [s (s +1)]½
s = ½
SZ = ms h/2π

S = spin 
momentum

vacuum

Inhomogeneous magnetic field

Furnace with Ag
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Magnetic Spin Quantum Number ms

S = h/2π [s (s +1)]½
s = ½

SZ = ms h/2π
ms = ±½
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Ψ = Wave Functions 

Ψ = solution of Schrödinger
equation

| Ψ |2 = probability density of e

| Ψ |2 dV = probability density 
of finding electron e in volume
dV = distribution of electron
density

1
s
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Probability Density
Polar coordinates 
Rn, l (r) radial function
dV = 4πr2 dr (spherical layer of thickness dr)

Radial distribution function
P = 4πr2 | Ψ |2 dr = 4πr2 R2

n, l (r) dr

P = probability density 
of finding electron e 
in volume
of spherical layer 
of thickness dr
In a distance r
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Wave Functions

Probability
density

Radial
distribution
function

Orbital

Sign change

Zero values
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Orbitals
Position of electrons cannot be established – Heisenberg’s
principle – only probability

Radial function – probability of finding e in a direction away 
from nucleus (to r  = ∞) and number of nodes = zero values 
of radial distribution function

Angular function = shape of orbitals (number of nodal 
planes) 
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s - Orbitals

Rn, l (r) = Radial function, depends on r only

χl, m(θ, φ) = angular function, is a constant for s-
orbitals (l = 0)  = SPHERICAL SHAPE
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Atomic Orbital 1s

Rn, l (r)
n = 1, l = 0

Wave Function 1s
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Radial Distribution Function

Rn, l (r) = Radial function of H atom

4πr2 R2
n, l (r) = Radial distribution function

rmax = the most probable radius
for 1s    

rmax =  a0 Bohr’s radius

4πr2 R2
n, l (r)
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Nodes

Number of nodes = n − l −1

• Wavefunction changes sign
• Radial distribution function has zero value
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Effect of Z Radial Function s

With increasing nucleus charge the 
maximum of radial distribution function
approaches closer to the nucleus
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4πr2 (Rnl)2
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Angular Wave Function

Angular wave function gives the shape of orbitals

The same for all values of n
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p - Orbitals

x

y

z

pz

py
px

n = 2, l = 1, m = 1,0,−1



31

n = 2, l = 1, m = 0 n = 3, l = 1, m = 0

2p - orbitals 3p - orbitals
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2p - orbitals 3p - orbitals

Wave Function = Radial × Angular
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Angular Wave Function of d-Orbitals
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d - Orbitals

dZ2
dX2-Y2

dXY
dXZ

dYZ
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d - Orbitals
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f - Orbitals
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Nodes

Spherical nodes = n − l −1
for s, p, d, f,.... 
Radial wave function

Nodal planes
Angular wave function: 
Orbital no.
s 0
p 1
d 2
f 3
. .
. .

Only s-orbitals
have non-zero 
value of wave
function at the 
nucleus
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Energy of H-Atom Orbitals

Energetically degenerate levels

n

2

2

22
0

4

8 n
Z

h
eNE A

n ε
μ

−=

Energy depends only on n
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Energy Levels in Many-Electron Atoms

No degeneration

Energies depend on n and l
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Energy Levels in Many-Electron Atoms

More stable orbital
has a lower energy

Madelung’s Rule
(up to Ca)

1. Lower for (n + l)
2. When n + l same
lower n

3p   4s

4p   3d 
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Many-Electron Atoms
Penetration and Screeneing

2s and 2p penetrate 1s
2s penetrate more than 2p

E(2s) < E(2p)

but maxima r(2s) > r(2p)

1s

2p 2s
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Relative Energies of s, p, d Orbitals

E(3s) < E(3p) < E(3d)

r(3s) > r(3p) > r(3d)
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Slater’s Orbitals
Orbitals for many-electron atoms - approximate

• orbitals (wave functions) of hydrogen type
• angular part: same as for H
• radial part: 

R (r) = N r n*−1 exp(− Z* r/n*)

Z* = A charge acting on an electron 
= Nucleus charge (Z+) – charge of other electrons 
n* = effective quant. number (for K, L, M = n)

Ei = − N (Z*i /ni) N = 1313 kJ mol −1
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Efective Nucleus Charge

Z* = Z − σ
σ = screening constant, sum for all electrons

(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p)(5d)(5f)...

Slater’s rules

e on the right does not screen, no contribution to σ
Within a group screens 0.35 (1s only 0.30)
n − 1 (s,p) screens 0.85 
n − 2 and lower screens 1.00
If an electron is in d or f, all on the left screens 1.00
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Efective Nucleus Charge
Z* = Efective Nucleus Charge
Z* = Z − σ
A charge acting on an electron
= Nucleus charge (Z+) – charge of other electrons

K (1s)2(2s,2p)8(3s,3p)8(3d)1

σ(3d) = 0 x (0.35) + 8 x 1.00 + 10 x 1.00 = 18 
Z* = 19 − 18 = 1

K (1s)2(2s,2p)8(3s,3p)8 (4s)1

σ(4s) = 0 x (0.35) + 8 x 0.85 + 10 x 1.00 = 16.8 
Z* = 19 − 16.8 = 2.2
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Efective Nucleus Charge

Efective charge
Z* He (1s)2

σ(1s) = 1 x (0.30) = 0.30 
Z* = 2 − 0.30 = 1.70
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Efective charge
Z*

1s electrons are not screened

Other 
electrons 
are 
screened
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Radius of maximum
electron density

r(2s) > r(2p) 

r(3s) ~ r(3p)
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Energies of 2s and 2p Orbitals

Closer for light elements



51

Electron Configurations of Ground State 
Atoms

Aufbau Principle:
Electron levels are filled by electrons
in the order of increasing energy, to 
maintain the lowest atom energy

Pauli Principle:
Two electrons cannot have all 4 
quantum numbers the same

Hund’s Rule:
In degenerate orbitals, the state with
maximum unpaired electrons is the 
most stable
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Electron Configurations of C
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Electron Configurations of Valence Shell

(Ne)
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Orbital
energy 

Placing electrons in
orbitals can change 
order of energy 
levels

Starting at Sc, 
3d orbitals have
lower energy than 4s
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4s
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Electron Configurations of Valence Shell

(Ar)
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Ionisation Energies


