Chemical Bond

Reason for bonding between atoms = a **lower total energy** of bound atoms than the sum of energies of sepatated atoms

Mechanism of bond formation $=$ sharing, transfer, and redistribution of **valence electrons**

• Model of **localized** electron **pairs** (Lewis, VB, VSEPR, hybridization)

• Model of **delocalized** electrons (MO)

Chemical Bond IonicCovalent Metallic

A lonic bonding

B Covalent bonding

C Metallic bonding

Types of Chemical Bond

Covalent = sharing of electrons (e pairs, 1e H_2^{\dagger}) by several atoms (2, 3, 4....), three-center-two-electron bonds

Metallic = sharing of electrons among many atoms, band theory

Ionic = transfer of electrons, formation of ions, Coulombic attractive forces between oppositely charged ions

Van der Waals = Coulombic attractive forces between temporary charges (dipoles)

Topological = mechanical joining of molecules (rotaxenes, catenanes, carcerands)

Pauling's Electronegativities

4

Van Arkel Triangle

5

Smooth transition between ionic and covalent extremes

 $\Delta \chi = (\chi_{\rm A} - \chi_{\rm B})$

Bond Ionicity i = 1 – exp [–0.21($\chi_{\sf A}$ – $\chi_{\sf B}$)²]

LiCl > NaCl > KCl > RbCl > CsCl Ionic and Covalent Bond

Covalency incr.

NaI > NaBr > NaCl > NaF

Covalency incr.

AlN > MgO > NaF

Ionicity incr.

Ionic and Covalent Bond

8

Ionic and Covalent Bond

 $\mathsf{K}^{\vphantom{*}}_3\mathsf{C}^{\vphantom{*}}_{60}$

Covalent

Ionic

K $^+$ and $(\rm C_{60})^{3-}$

Topological Bond rotaxenes, catenanes, carcerands

Ionic Bond N a(s) + ½ Cl₂(g) → NaCl(s) \qquad ∆Hº_f = −410.9 kJ mol^{−1}

exothermic reaction heat

Octet formation for both Na⁺ and Cl[−]

- There is no NaCl molecule
- NaCl is a formula unit
- Infinite lattice of ordered cations and anions

Lattice Energy, L

Lattice Energy = energy released upon formation of one mole of solid from ions in the gas phase

Coulombic attractive forceb/w 2 ions

$$
F = \frac{1}{4\pi\varepsilon_0} \frac{Z_+ Z_- e^2}{r^2}
$$

Z = ion charges r = distance

Lattice Energy L [kJ mol−1] Coulombic attractive and repulsive forces in 1 mole of ions

$$
L = N_A M \frac{Z_+ Z_- e^2}{4\pi \varepsilon_0 r}
$$

(NaCl, CsCl, CaF $_{2}$, ZnS,....) $_{\textcolor{red}{12}}$ M = Madelung constant Accounts for lattice geometry

Lattice Energies of Alkali Metal Halides

r k ^{*Z*}+*Z r* $L = N_A M \frac{Z_+ Z_- e}{4}$ *M* $N_{A}M \stackrel{m}{\longrightarrow} \approx k \stackrel{m}{\longrightarrow}$ $\boldsymbol{0}$ 2 $4\pi\varepsilon$

13

Lattice Energy and Physical Properties

16 **Born–Haber Cycle** $Na(s) \rightarrow Na(g)$ $\Delta H_{sub} = 107.3 \text{ kJ} \text{ mol}^{-1}$ $\frac{1}{2}$ Cl₂(g) → Cl(g) $\frac{1}{2}$ D(Cl-Cl) = 122 kJ mol⁻¹ $Na(g) \rightarrow Na^{+}(g) + e^{-}$ IE(Na) = 496 kJ mol⁻¹ $Cl(g) + e^- \rightarrow Cl^-(g)$ EA(CI) = -349 kJ mol⁻¹ $Na^{+}(g) + Cl^{-}(g) \rightarrow NaCl(s)$ L(NaCl) = -778 kJ mol⁻¹ Na (s) + ½ Cl $_2$ (g) \rightarrow NaCl(s) $\qquad \Delta {\sf H}_{\sf form}$ = –401.7 kJ mol^{−1}

Covalent Bond

Covalent Bond in H₂

Covalent Bond

Atoms share electron pairs to attain electronic octet in their valence shell

Gilbert N. Lewis (1875-1946)

Octet Rule

Lewis Structures

Lewis Structures - Octets

Lewis Resonance Structures

Positions of nuclei are unchanged, move electron pairs

Bonding situation is described by superposition of all resonance structures

Lewis Resonance Structures

Oxidation Number = all e moved to more electronegative atom Formal oxidation number for balancing redox equations Not a real charge on an atomu

Formal Charge = difference between number of valence electrons on a free atom and valence electrons assigned to an atom in a molecule: free e pairs count full, bonding pairs halved between atoms

Atoms strive to attain minimal formal charge, zero at the best

Negative formal charge is placed on **the most electronegative** atom

Sum of formal charges in a molecule (ion) equals **total charge** on a given molecule

Formal charges too big

Negative charge resides on a less electronegative atom

THE BEST FORMULA

Molecules with Unpaired Electrons

$$
\begin{array}{c|c}\n\cdot & \cdots \\
\hline\nN = 0 & \cdots \\
\hline\n\cdots & \cdots\n\end{array}
$$

Dimerisation NO $_2^{\cdot}$ 2 NO $_{2}$ (g) \approx N $_{2}$ O $_{4}$ (g) K $_{\rm c}$ = 210

..

O

2

Paramagnetic molecule = Unpaired electrons = Lewis structures insufficiently describe real situation \rightarrow delocalized e

30

VSEPR Model

VSEPR = valence shell electron repulsion

Empirical set of rules to predict shapes of coordination sphere of atoms and thus the molecular shape (also ions and molecular fragments) for main group elements and transition metals with electron configuration d^0 or d^{10} .

VSEPR Model

Molecule $=$ central atom $+$ ligands $+$ free electron pairs

Ligands = atoms or groups

Ligands have usually higher electronegativity than the central atom (except H or metals)

Valence electrons are arranged in pairs:

• Bonding electron pairs

• Free electron pairs (nonbonding)

Central Atom vs. Ligand

$\mathsf{CH}_{3}\mathsf{COO}^{-}$ H $\rm C$ —— $\rm C$ OHOH

VSEPR Model

Basic shape of coordination sphere of an atom is given by the number of occupied **domains** = number of bonds (disregarding multiplicity) + number of free electron pairs

VSEPR Model

Each electron pair occupies part of space around the central atom and excludes (repels) other electrons = Pauli exclusion principle

Electron pairs arrange themselves around the central atom **so that they are as far as possible from each other** to minimize repulsion

Free electron pairs occupy **larger** space around the central atom than **bonding** electron pairs

FREE > BONDING

Tetrahedral Molecule of Methane CH 4

Place 4 points on a sphere, so that their distances are maximum \rightarrow tetrahedron

VSEPR Model

Free electron pairs and bonding electron pairs arrange around the central atom to minimize total energy by minimizing repulsion :

Central atom + 6 ligands containedral

equilateral triangle tetrahedron trigonal bipyramidal or square pyramidal Central atom + 7 ligands bipyramidal

VSEPR Model

Final molecular shape ⁼ **positions of nuclei** (disregard the free electron pairs)

The volume of space around the central atom occupied by electron pairs decreases:

triple > double > single bond

Repulsion among electron pairs decreases:

free - free > free - bonding > bonding - bonding

Deformation of Bond Angles

VSEPR model predicts deformation of bond angles from ideal values – but not an actual value

40

AX_{2} Bond Angle = 180°

AX $_3$: Bond Angle = 120° AEX $_2$: Bond Angle $<$ 120° $\,$

Tetrahedral Bond Angle

 $AX₄$

Tetrahedral Bond Angle = 109.5°

43

Deformation of Bond Angles

Trigonal Bipyramid

TBP has 2 different types of v ertices = 2 chemically different types of substituents or positions

2 axial

3 equatorial

Free electron pairs and multiple bonds occupy always equatorial positions

Trigonal Bipyramidal

Molecular shape is given by positions of nuclei

Trigonal Bipyramidal (TBP) and Square Pyramidal (SP)

Octahedron

 AX_{6}

Bond angles in octahedron = 90°

49

Octahedron

Square pyramidal Square planar