Dissociation energies os some bonds [kJ/mol]									
C-H	413	C-C	346	C=C	610	C≡C	837		
	309	C-Br	284	C=N C-I	887 213	N-N	163		
0-0 I-I	166 151	0=0 H-0	498 463	S-S H-N	226 391	´F-F H-S	153 347		
H-Br	366	H-I	299 727	0-C1	217	O-Br	201		
N=N H-F	418 570	C=O N≡N H−Cl	941 431	C=5 Br-Br	535 193	Cl-Cl	444 243		

Dissociation energies of C-H bonds in connection with the structure of hydrocarbon skeleton [kJ/mol]

		· .	•		
СН3-Н	427	СН ₃ СН-н	393	C ₆ H ₅ -H	427
C ₂ H ₅ -H	405	CH ₃		С ₆ Н ₅ -СН ₂ -Н	326
n-C ₃ H ₇ -H	405	(CH ₃) ₃ C-H	381	CH2=CH-H	435
		<u> </u>			

Average	e bond len	<mark>gth in orga</mark> n	lic molecu	iles [nm]
0,154 0,111 0,147 0,181 0,178	C=C C-O C=N C=S C-Br	0,134 0,141 0,128 0,156 0,194	C≡C C=0 C≡N C-F C-I	0,120 0,120 0,116 0,138 0,214
	Average 0,154 0,111 0,147 0,181 0,178	Average bond length 0,154 C=C 0,111 C=O 0,147 C=N 0,181 C=S 0,178 C-Br	Average bond length in organ 0,154 C=C 0,134 0,111 C=O 0,141 0,147 C=N 0,128 0,181 C=S 0,156 0,178 C-Br 0,194	Average bond length in organic molect 0,154 C=C 0,134 C=C 0,111 C=O 0,141 C=O 0,147 C=N 0,128 C=N 0,181 C=S 0,156 C-F 0,178 C-Br 0,194 C-I

•

IA 1,008 1 1 H 22	s,		I CA	HE dia AA ch	armaceul agnostica imica	tica		PER	ODIC	CKÁ S	sous	TAV	A PR	VKŮ		ſ	8 VII.A 4,00 ² 2 He
NOCHK Hydraesium	II.A											All A	IV A	V.A	p_VIA	VILA	HEUUW Helium
еян ; з Li	9,01 4 Be												19:00] g F	20.18 1 10 Ne			
UIHUV Lthan	BERYLJUN Berylson		značka (symbol) – 28. Fe 2 protanové číslo – 1,3 – sickronegalivita – sickronegali – sickronegalivita – sick									FLUOR Rodon	NECH Noon				
22,30 1 11 Na	24 31 12 Mg				261620	čoský n ─── latinaký	ázov nézev		¢.			26.60	28.09 14 Si	30,07 15 P	12.16 5 15 S 21	35,45 17 Cl	39,05 18 <mark>Aľ</mark>
SOCIA Nation	HOŘČIK Vagnesium	IIIB	IV.B	٧.B	VLB	VIL8	NIIIS	VIII.8	VII.B	1.8	11.9	HUMK Assessed	chttale Saleum	FORFOR Phosphare	Sila Sabhar	C-LDR Cliant	ARDON Argen
38,10 19 K	40.50 20 Ca	41.35 21 SC 2	47.91 5 22 Ti 2	50,94 23 V 1,5	52 00 1 24 Cr 3	54,54 25 Mn	26 Fe	838 37 Co	58,70 15 25 Ni 5 1,2	29 Cu	50 Zn 1,7	69.72 31 Ga	72,59 32 Ge	24,52 33 AS	73.95 94 Se 86	79 90 35 Br	83,80
CRASL'K Kalon	VÅPNIK Galoisen	SKANDUV Standum	TIDAN Tilanian	VallaG Vanature	CHROV Circelos	MANGAN Nagaran			NHA. Niceolom	WED CLOIDM	2 MEK Briows	CALLIN Galax	CERTAINING Germanian	ARISEN Asseriari	SELEN Selapura	9ROV Homan	KR1PTOH Krystan
85,47 \$7 Rb	47.12 38 Sr	HR,D1 3 39 Y 10 1,1	n Zr	92.9"	95.94 42 MO	971 43 TC	101.07 44 Ru	102.91 45 Rh	46 Pd	or Ag	e Cd	en fit	118.09 g 60 Sn	121.75 51 Sb	127.60 52 Te	125.90 T 10 10 10 10 10 10 10	101.00 54 Xe
RUBICIUM Radiofium	STRONCIUM Stonium	YTTENIM Ytteni	oneonae Second	NIOR Sistem	MOLYDOLN Molybownan	ISCHMERTON Technology	RUTHERDM Ruberum	HICOMA Biogram	Patricium Patricium				CIN Sternute	AMHOON Sibert	TELOUR Televise) KID Ischre	XEMON Xerah
152,P1 55[CS]	187 88 56 Ba	* 138,91 3 57 L8 3 1 1	ntin a	160.96 2 75 Ta	183,35 74 W ²	101.21 1 75 Re 1	190.20 75 OS	192.22 2 77 IF 15	195.09 78 Pt	196.97 79 Au	200,91 00Hgg	201.37 8 81 TI 8 1,4 8	an Pb	208.96 63 Bi	(200) 34 Po	(211) 85 At 8	(222) as Rn ?
CESUM Centure	BARYUM Bulan	LANTI-AN Lantianan		TANTAL Tortware	WOLFRAD Ristana in	RHENUN History	CGU BU Centure	FBNLM Hidur	PUXTINA Plainum	ALATO Autom	RTUT Hysrangson	THALLUM Davision	OLOVD Partours	BISNUT Baradhar	POLON.UV Pelanum	ASTAT Aslatura	RADON Ration
IFE STATE	226.08 sa Ra B a.82 RADUN Rodun	* 227,03 * 89 AC 13 * ACTNLM Activity	201) 104 Ku Marcaroven Rostandur	105 Ha	106	107	Prvky	zásadotvorn síné slat	ié amfoter ié	ni kyseline slabě	atvorná in silně	ertni umo	Skup	enství prvki) (při 90 ⁹ C):	He – płym Hgi– kapal Fe – pevné	é nó
	183	* LANTH	ANOIDY	140,12 58 Ce	140,91 59 Pt 1	144,24 60 Nd 1	(145) en Pm	150.40 62 Sm	151,96 63 EU	157.25 64 Gd	65 TD	102.50 66 Dy 27	191.90 67 Ho 31	167.26 } 63 Er %	166,83 69 Tm ² 1,1	178.04 70 Yb 7	174.97 71 Lu 8 13
				CER Cerum	PRASECOVU Praseodymium	MECONIA Nestymun	FROMET-RESP Promotioner	SAMARIUM Samarum	EUROPIUN Europion	GACOLINIUM Gadolinium	TERSILN Telaium	DYSPRCEUM Dyspracum	HOLMUN Haniun	Enterno	T-UUUM Trailor	YTER BUD Ysecour	LUTECIUM Lastion
		* AKTI	NOIDY	232,04 90 Th # 1,0	201.04 2 91 Pa 20 1.1 8	an U	937,65 2 93 Np 3 12	249 94 Pu M	245) 95 Am ² 12	1247) 96 Cma 12	12471 2 97 Bk 0 12	(251) 98 Cf 25 1,2	2541 99 ES 3 12	100 Fm	101 Md 21	1209) 2 102 NO 2 12	(253) 3 103 LF 5 12 3 00000000
				Thoran	Prabalinan	-TENELOP	Andurica	Matanium	Areacare	Cunary	Burtuli. T	Caleman	Ensterners	Farzan	Nexdelayer	Naberara	Lanodan

Electronegativity of chosen elements by Pauling

H 2.20			<u> </u>	<u> </u>		 	
_,	Li 0,98	Be 1,57	В 2,04	C 2,55	N 3,04	0 3,44	F 4,00
	Na 0,93	Mg 1,31	Al 1,51	Si 1,90	P 2,19	S 2,58	C1 3,16
					As 2,18	<mark>Se</mark> 2,55	Br 2,96
							I 2,66

.

. .

Elements electronegativity						
C	2,55					
H	2,20					
O	3,44					
N	3,04					
CI	3,16					
Br	2,96					
I	2,66					
S	2,58					

DIPOLE MOMENT

µ= e . d e atom charge [C] d distance [m]

Dipole moment is a vector – with value and direction

	μ		μ
H - C	1,33	C - N	0,73
H - N	4,36	C – O	2,46
H - O	5,03	C = O	7,65
		$C \equiv N$	11,65

ԴՔՍ

=6,1.10³⁰

11,7.1030

[C.m]

Most of reactions is realized in a solvent , that by the solvation can influence the charge distribution in the molecule

In the older literature you can find expression of dipole moment in units D

 $1D = 3,33564 \cdot 10^{-30} C \cdot m$

Dipole moment - vector

Dipole moments of some molecules										
Compound	Dipole mo 10 ³⁰ C m	oment D	Compound	und Dipole moment 10 ³⁰ C m D						
NaCl	30,02	9,0	NH_3	4,90	1,47					
Ő			CH_4	0	0					
$H_3C - N$	11,54	3,46	CCl_4	0	0					
0-			$\mathrm{CH}_3\mathrm{CH}_3$	0	0					
nitromethan			•							
$ m CH_3 Cl$	6,24	1,87		0	0					
H_2O	6,17	1,85								
$\rm CH_3OH$	5,67	1,70	benzen							
$H_2C = N^+ = N^-$ diazomethan	5,00	1,50	BF_3	0	0					

Carbon atom in sp³ state

Bond C-C by overlap of sp³ orbitals

Formation of π bond between carbon atoms in sp² hybrid state

Molecules with conjugation - mesomeric (conjugation effect) + M, - M

MESOMERIC (CONJUGATION) EFFECT

Mesomeric effect you can meet at multiple bonds (π – bonds)

Rules for working with resonance structures

Particular resonance structures are not real structures, they are imaginary only. The real structure consists from different structures they are trying to depict the real structure ; real structure is an resonance hybrid. Compounds like nitromethane, benzene or acetate anion have only one structure, which is not oscilating among the resonace structures. But way of their presentation at a paper may differ.

Resonance structures are differing by position of π - and non-bonding electrons only. When going from one resonance structure to another neither position nor hybridization of any of the atoms is changed. Thus, nitromethane has nitrogen atom in sp² hybridization and oxygen atoms keep in both resonance structures their position. They differ by position of π -electrons in N=O bond and by position of free electron pairs at oxygen atom. The electrons transfer when coming from one resonance structure to another is depicted by arrows. An arrow is always only showing transfer of electrons; no transfer of atoms. The point of arrow remembers that electron pairs are only formaly transfered from an atom or a bond towards to an atom or a bond in the point of arrow.

When evaluate electron distribution in molecule , we are faced often to **simultaneous inductive and mesomeric effekt.**

When the action is directed in the same direction, there is no problem.

In the case the effects have different direction, **mesomeric effect is the prevailing** - (effect at multiple bonds), because π electrones are more mobile – easier polarisable

When evaluate electron distribution in molecule, we are faced to **simultaneous inductive and mesomeric effekt**.

When the action is directed in the same direction, there is no problem.

In the case the effects have different direction, **mesomeric effect is the prevailing** -(effect at multiple bonds), because π electrones are more mobile – easier polarisable

!!Attention!!

The same group can behave different way at aliphatic and aromatic ring!!

 $CH_3 - CH_2 - N - CH_3$

