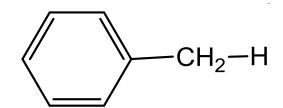

SATURATED HYDROCARBONS – ALKANES AND CYCLOALKANES

BONDS

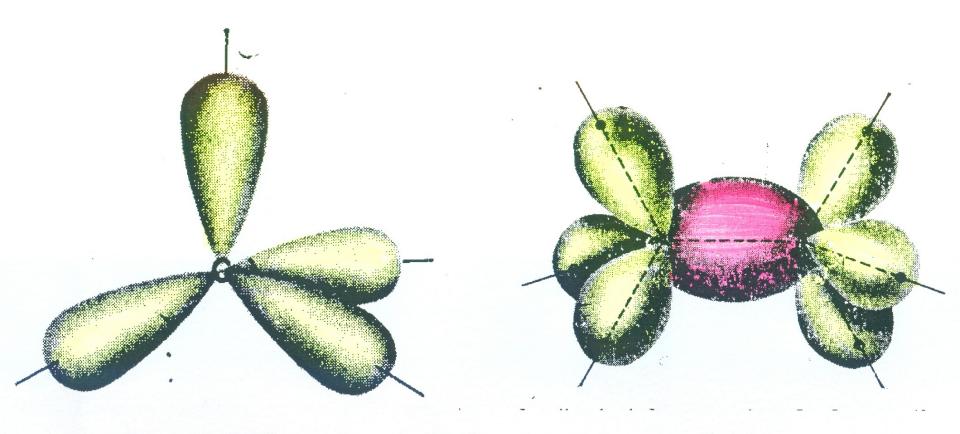
C – C 0,154 nm 345 kJ/mol


C - H 0,109 nm 427 kJ/mol

only small difference in electronegativity energy of this bond depends upon the position C atom in the structure

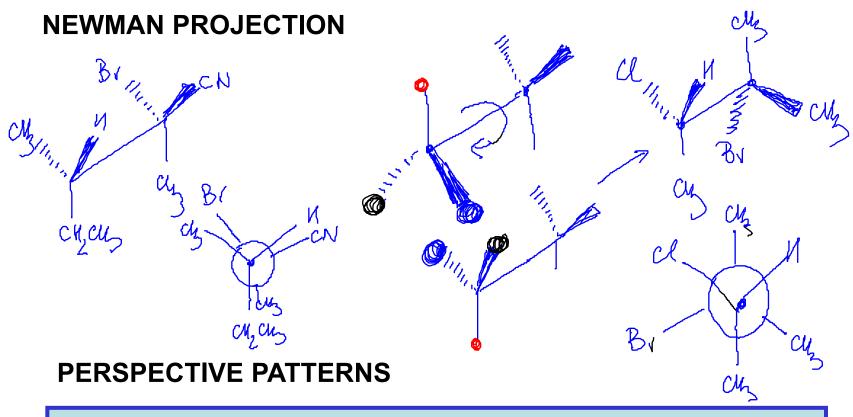
chain isomers

SATURATED HYDROCARBONS – ALKANES AND CYCLOALKANES


Tabulka 1.2. Dependence of bond energy upon the structure

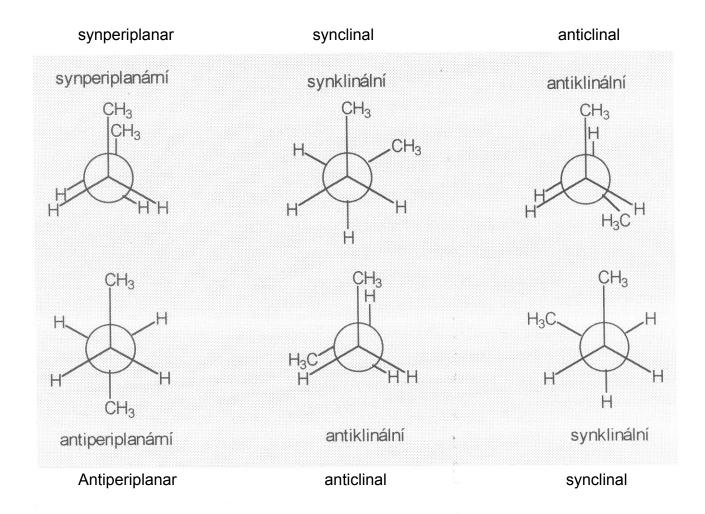
$$CH_2-H$$
 $H_2C=CH-CH_3$

Physical Constants of the Butane, Pentane, and Hexane Isomers

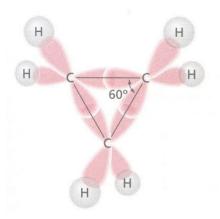

MOLECULAR FORMULA	STRUCTURAL FORMULA	mp °C	bp °C	DENSITY	INDEX OF REFRACTION n _D 20°C
C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	-138.3	-0.5	0.60124	1.3543
C ₄ H ₁₀	CH ₃ CHCH ₃ CH ₃	-159	-12	0.6034	_
C_5H_{12}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	-129.72	36	0.6262_4^{20}	1.3579
C ₅ H ₁₂	CH₃CHCH₂CH₃ CH₃	— 160	27.9	0.61974	1.3537
C_5H_{12}	CH_3 CH_3 CH_3 CH_3	-20	9.45	0.61350420	1.3476
C ₆ H ₁₄	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-95	68	0.65937_4^{20}	1.3748
C ₆ H ₁₄	CH ₃ CHCH ₂ CH ₂ CH ₃ CH ₃	-153.67	60.3	0.653240	1.3714
C ₆ H ₁₄	CH ₃ CH ₂ CHCH ₂ CH ₃ CH ₃	-118	63.265	0.664320	1.3765
C ₆ H ₁₄	CH ₃ CH—CHCH ₃ CH ₃ CH ₃	— 128.8	58	0.6616_4^{20}	1.3750
C ₆ H ₁₄	CH ₃ CH ₃ —C—CH ₂ CH ₃ CH ₃	 98	49.7	0.649220	1.3688

CONFORMATIONAL ISOMERISM - CONFORMERS

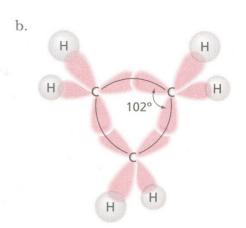
NEWMAN PROJECTION



CONFORMATIONS OF BUTANE


butan_energ.wrl

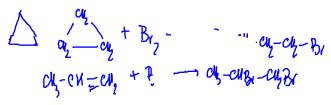
NEWMAN PROJECTION

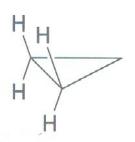


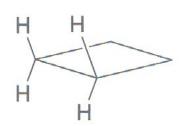
CYCLOALKANES AND THEIR STRUCTURE

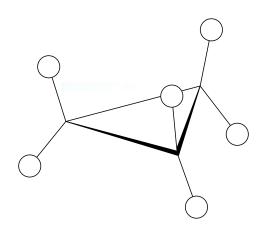
Number of atoms in ring	Energy released when compounds burned related to CH ₂ kJ/mol	Number of atoms in ring	Energy released when compound burned related to CH ₂ kJ/mol
3	697	8	664,1
4	686	9	664,9
5	664	10	664,1
6	659	11	664,5
7	662	12	659

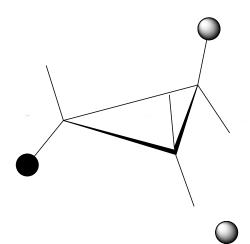
Linear σ bonds would constrain the C–C–C angles to 60°.

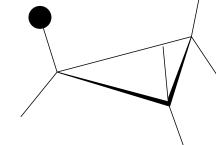



With bent σ bonds there is less strain, and each \angle C-C-C is 102°.

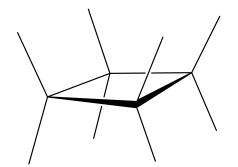

Baeyer stress - connected with bond angles

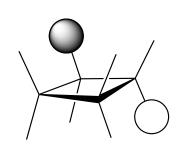

Pitzer stress - connected with nonbonding
interactions

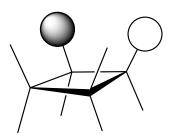




In cyclic compounds we are faced to geometric isomery

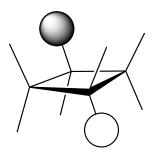


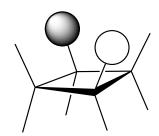



disubstituted compounds

trans - isomer

cis - isomer

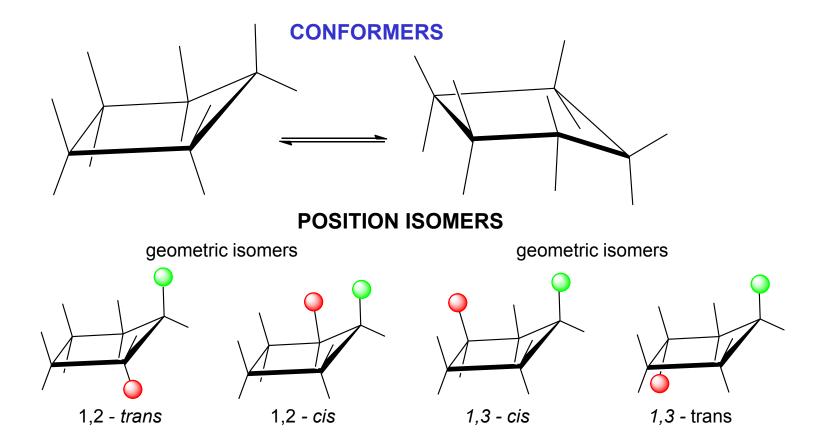




1,2 - isomers

trans-

cis-

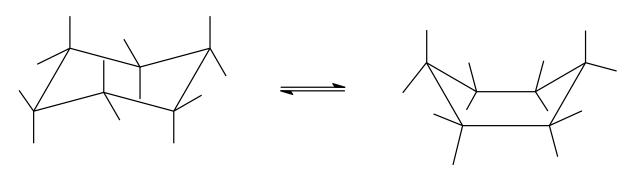

1,3 - isomers

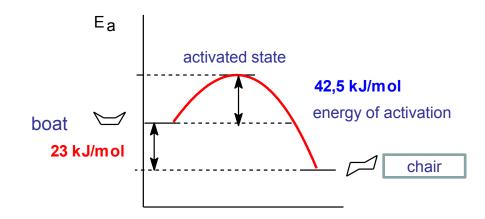
trans-

cis-

Number of isomers is growing:

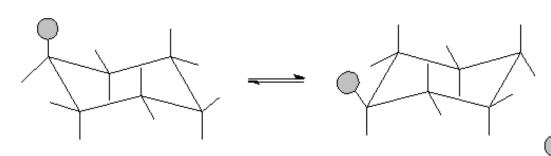
- position isomery
- geometric isomery

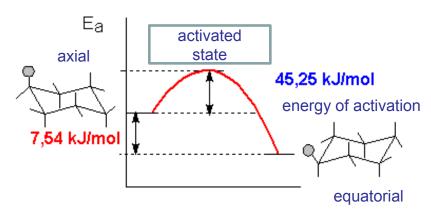

In molecule of cyclopentane the strain in the molecule is released and a new possibility of rotation round bonds arose and this way transfer of one conformer to another - (envelope conformation)


CYCLOHEXANE RING

Six-membered ring is enabling even higher motion around C-C bonds

and formation of two basic conformers - chair and bo





CYKLOHEXANE RING

Axial and equatorial bonds

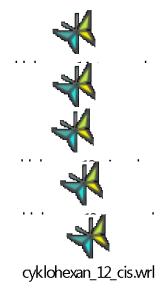
cyklohexan_ae.wrl

$$K = \frac{[e]}{[a]} \implies [e] + [a] = 100$$

$$\Delta G = -RT \ln K$$
 $\ln K = -\frac{\Delta G}{RT}$
 $\ln K = \frac{-7,54}{-8,31.10^{-3}.298}$

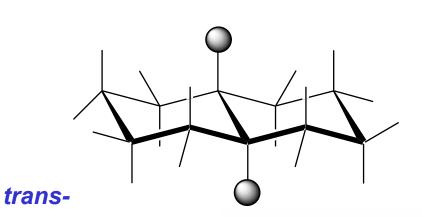
In K = 3,04
$$K = 20,91 = \frac{[e]}{[a]}$$

= CH3

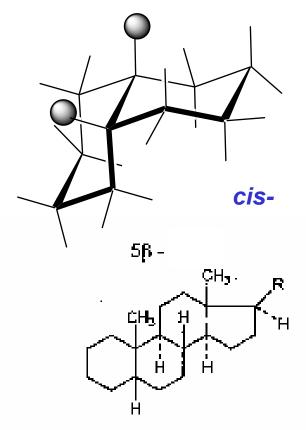

CYKLOHEXANE RING

Six-membered ring is enabling even higher motion around C-C bonds and formation of two basic conformers - **chair and boat**

Axial and equatorial bonds



Existence of two geometric isomers – *cis-* a *trans-*



Polycyclic fused compounds

the rings may be fused cis- or trans-

Steroids basic skeleton

ลหน้างรสสก pregnan cholan cholestan

Bonds C-C and C-H are nonpolar small reactivity in reactions with polar reagents

TYPICAL REACTION ARE RADICAL REACTIONS

REACTIONS ARE INITIATED BY:

radicals

UV light

heat

Source of radicals are peroxides, which are decomposed by a heat

$$R - O - O - R \longrightarrow 2 R - O \bullet$$

$$\begin{array}{c} O \\ Ph - C - O - O - C - Ph \end{array} \xrightarrow{80 - 100^{\circ} \text{ C}} 2 \text{ Ph} - C - O \bullet \longrightarrow 2 \text{ Ph} \bullet + 2 \text{ CO}_{2} \\ \text{Et} - O - O - \text{Et} \xrightarrow{80^{\circ} \text{ C}} 2 \text{ Et} - O \bullet \\ R - N = N - R \xrightarrow{\Delta T} 2 \text{ R} \bullet + N_{2} \end{array}$$

$$\begin{array}{c} CH_{3} \\ R = -C - C \equiv N \\ CH_{3} \\ R = -C - C \equiv N \\ CH_{3} \\ R = -C - C \equiv N \end{array}$$
azo-bis(isobutyronitril)

TYPICAL REACTION – HALOGENATION

$$CH_4 + 4 CI_2 \longrightarrow CCI_4 + 4 HCI$$

$$F_2 > Cl_2 > Br_2 >>> l_2$$

The realisibility of reaction depends upon the heat of reaction

Iniciation

$$CI$$
— CI $\xrightarrow{h^{V}}$ 2 CI •

Propagation

Termination

chain reaction

In the reaction mixture has disappeared one of the components

Side reactions

$$CH_3CI + CI \bullet \longrightarrow CH_2CI + HCI$$

 $CH_2CI + CI_2 \longrightarrow CH_2CI_2 + CI$

Energy bilance of the reaction

Energy of splitting or newly formed bonds

$$R-CH_2-H + CI-CI \longrightarrow R-CH_2-CI + HCI$$
 405 242 -347 - 431
 $R-CH_2-H + I-I \longrightarrow R-CH_2-I + HI$
 405 151 -213 - 299
 $R-CH_2-H + F-F \longrightarrow R-CH_2-F + HF$
 405 153 -444 - 570

$$\Delta H = -131 \text{ kJ/mol}$$

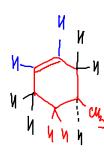
$$\Delta H = + 44 \text{ kJ/mol}$$

$$\Delta H = -456 \text{ kJ/mol}$$

strongly exothermic reaction

Bond energy of C - C = 346 kJ/mol

SELECTIVITY OF REACTIONS


energy of different way bonded hydogen atoms is different

SELECTIVITY OF REACTIONS

is depending upon stability of formed radicals

Energy of dissotiation of different bonds R-H (Stability of radicals)

	kcal/mol		kcal/mol		kcal/mol
•	110	$\begin{array}{c} CH_3 \\ I \\ CH_3 - C - CH_3 \\ \bullet \ CH_2 \end{array}$	100	CH ₃ CH ₃ −C−H	95
CH ₂ ===CH •	> 108	CH ₃ CH ₂	98	CH ₃ CH ₃ −C—CH ₃	92
• CF ₃	106	CH ₃ CH ₃ CH ₃	98	CH ₂ ==CH-CH ₂	89
• CH ₃	104	• CCl ₃	96	HC=O	87
>•	101		95	•CH ₂	85

