

R ->c = 01 5- aldelydy json reartioning po rstup	
(jõi 5- mullojilu ciõi 5- elektronora morara je mal	delydu
$k = \frac{1}{2} k R$	regenerorat
$R-C''_{H} + Nu \longrightarrow R-C-Nu \longrightarrow R-C-Nu$	anet juna mas. traste
R - cu = cu - R	}c=Z−
$H_{c} = \tilde{O}_{1} + H_{2}\tilde{O}_{1} \longrightarrow H_{c} OH Hydraf formaldelydu H_{c} = \tilde{O}_{1} + H_{2}\tilde{O}_{1} \longrightarrow H_{c} OH Hydraf formaldelydu 99%$	
$cy-c=0 + H_0 \longrightarrow cy-c=0$ hydraf acetaldelydu h	

obdobně budou reagovat thioly a sulfan

Nucleophilic additions proceed with strong nucleophiles without problems, nucleophile is before the reaction mostly generated from its conjugated acid

After acidification of the reaction mixture in reaction with aldehydes are produced second. alcohols with ketones tert. alcohols with formaldehyde prim. alcohol

Bulky alkyles in Grignard reagent may surprise by different reactivity: in a case they have β -hydrogen, then aldehyde or ketone is reduced to corresponding alcohol

In case they have in β -position no hydrogen atom, then Grignard reagent reacts as a strong base and is transferring carbonyl compound to enolate

REFORMATSKY REACTION

In this reaction less reactive organometallic compound reacts with the keto group only without any attack of the present ester forming β -hydroxyester.

Product in an acidic medium can loose water and affords α , β -nonsaturated ester.

$$H_3C$$
 β α
C C CH_2 -COOCH₂CH₃
 H_3C

Carbonyl derivatives - reduction

reduction with aluminium hydride proceeds via the same cyclic intermediate, we saw in reaction with Grignard reagents

 $NaBH_4$ — is reducing only carbonyl (without touching esters functions, NO₂, CN), reactions can be carry out also in a polar solvents like water and alcohols.

 $LiAlH_4$ – is reducing also other functions, but reacts violently with water; reactions are carried out in ether.

$$\begin{array}{c} H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \end{array} \xrightarrow{O} C \\ H_{3}C \\ H_{3}C \end{array} \xrightarrow{O} C \\ H_{3}C \\ H_{3}$$

Aldolisation and aldol condensation- catalysed by a base

–I a –M efect of oxygen in carbonyl is activating α –hydrogen atoms , which are acidic

During aldolisation the hydrocarbon chain is prolonged

Aldolisation and aldol condensation- catalysed by a base

Aldolisation and aldol condensation- catalysed by a base

Mixed aldolisation – enol is prepared from compound with α -acidic hydrogen atom and that then adds to carbonyl group of othercarbonyl molecule without α -hydrogen atom.

Aldolisation and aldol condensation- catalysed by a acid

Aldol condensation may be developed even by acid catalysis

Reaction of aldehydes and ketones with N-nucleophiles

Reaction of aldehydes and ketones with N-nucleophiles

When acid is used, we must pay attention to concentration of acid: with growing pH of the reaction medium is activated carbonyl group, but in the same time is lowered concentration of non protonated amine for the reaction

Similarly are adding other nitrogen compounds:

semikarbazon of benzaldehyde

Reaction of carbonyl compounds without α-hydrogen atoms

by a treatment of a base they cannot undergo aldolization or aldol condensation

beside benzaldehyde also alifatic compounds with substituted α -carbon and other aromates can enter such a reaction:

Reactions of carbonyl compounds

aldolisation but adds to cabonyle to give ester

Reduction of carbonyl compounds

Reduction of aldehydes and ketones to saturated alkanes

1. **Clemensen reduction** in acidic medium (reaction suitable for systems without groups sensitive to acidic medium)

Reaction is carried out in medium of hydrochloric acid, source of hydrogen amalgamed zinc

$$\begin{array}{ccc} CI & O \\ H_{3}C-CH-CH-CH_{2}-C-CH_{3} \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} Zn \ / \ Hg_{x} \\ HCI \end{array}} \begin{array}{c} CI \\ H_{3}C-CH-CH-CH_{2}-CH_{2}-CH_{3} \\ HCI \end{array}$$

in alkali medium substitution of halogen could take place

2. Kižner – Wolff reduction in a alkali medium

Reaction is suitable for systems without groups sensitive to alkali medium

Reaction is carried out at high temperature in a high boiling solvent as diglykol, triglykol in the presence of concentrated sodium hydroxide.

double bond