

#### amonium salts



quarternary amonium salts



triethylmethylamonium bromid



butylethylphenylmethylamonium chloride

anilinium perchlorate



# Reactivity

- basic and nucleophilic properties reactions with proton and elektrophiles
- 2. exceptional reaction with nitrous acid
- 3. hydrogen atoms at nitrogen are acidic
- 4. hydrogen bonds with nitrogen atom (weaker than at alcoholes)

characteristic vibration in infrared spectrum:

```
valence vibration N-H prim. amine – two bands (region 3300 – 3500 cm<sup>-1</sup>)
sek. amine - only one band
tert. amine - without any band
vibration C-N alifatic amines 1020 – 1220 cm<sup>-1</sup>
aromatic 1250 – 1350 cm<sup>-1</sup>
```





| BASICITY OF A                     | MINES           |                                           |
|-----------------------------------|-----------------|-------------------------------------------|
|                                   | рК <sub>b</sub> | $R_{-}NH_{a} + H_{a}O = RNH_{a}^{+} + OH$ |
| NH <sub>3</sub>                   | 4,75            |                                           |
| $CH_3 - NH_2$                     | 3,35            |                                           |
| $CH_3$ - $NH$ - $CH_3$            | 3,28            |                                           |
| (CH <sub>3</sub> ) <sub>3</sub> N | 4,25            | [ RNH <sub>3</sub> ]⁺ [ HO]⁻              |
|                                   |                 | $K_b = \frac{1}{[RNH_a]}$                 |
|                                   | 0.00            |                                           |
|                                   | 9,33            | nk – log k                                |
| NH <sub>2</sub>                   |                 | $pr_b = -log r_b$                         |
|                                   | 8,94            |                                           |
| $H_3C \sim NH_2$                  |                 |                                           |
|                                   | 8,83            |                                           |
| H₃CO                              |                 | ° ∧ NH <sub>2</sub>                       |
| NH <sub>2</sub>                   | 13,00           |                                           |
| O <sub>2</sub> N                  |                 |                                           |
|                                   | 13,15           |                                           |
|                                   | ,               |                                           |



- 1. basic and nucleophilic properties reactions with proton and elektrophiles
- 2. exceptional reaction with nitrous acid
- 3. hydrogen atoms at nitrogen are acidic
- 4. hydrogen bonds with nitrogen atom (weaker than at alcoholes)

$$CH_3-NH-CH_2CH_3 + HOOC-COOH \longrightarrow CH_3-NH_2-CH_2CH_3 OOC-COOH$$

 $H \cdot \underline{\tilde{Q}} - \overline{N} = \hat{O}_{j} + H \stackrel{\text{\tiny (II)}}{=} \longrightarrow H - \underline{\tilde{Q}} - \overline{N} = \hat{O}_{j} \stackrel{-\underline{H}_{Q}}{\longrightarrow} \overline{N} = \hat{O}_{j}$ 3 N + HNO2  $R - \overline{N} - R$ N = 0R-N-R + HNOZ  $\rightarrow R - \overline{N} = \overline{N}^{\oplus}$ R- NK + HNO, - $Cu_{3}Cu_{2}-Cu_{2}-Nu_{2}^{2}+HNO_{2}+HCP \longrightarrow \left[Cu_{3}-cu_{2}-cu_{2}-\overline{N}=\overline{N}^{\oplus}Ce^{\oplus}\right]$  $\longrightarrow \left[Cu_{3}-cu_{2}-cu_{2}^{\oplus}-cu_{2}^{\oplus}\right] \xrightarrow{\theta_{1}ON}_{ION} \qquad Cu_{3}-cu_{2}-cu_{2}-ON$  $Cu_{3}-cu_{2}-cu_{2}^{\oplus}-cu_{2}^{\oplus}\right] \xrightarrow{\theta_{1}ON}_{ION} \qquad Cu_{3}-cu_{2}-cu_{2}-ON$ -N2

 $\rightarrow \boxed{\overrightarrow{N}} - \overrightarrow{N} = \overrightarrow{\partial_{j}}$ -N=N N= ŷ stabilu do 10°C na 10°C ke N = N norhlaida may pose s astiroraufin a roropulació reale Θ 6) NaOH -HĐ + H N=N 2. hydroyarobuzen anotenzeu  $N \simeq N$ 





# Aminosloučeniny





Amines as nucleophiles

#### "isonitril test"



a proof of amino group in biological material



**ENAMINES** 



**application in synthesis:** they are used as propriate reagents with electrophiles

β-carbon has nucleophilic character (but not the nitrogen atom)



# PREPARATION

1. Alkylation of ammonia by the reaction of ammonia with alkyl halogenides is formed a mixture of primary, secondary and tertiary amino derivatives, which must be resolved:



# 2. Gabriel method



4. Reduction of nitro compounds (mainly aromatic)



reduction agents:

Zn, Sn, SnCl<sub>2</sub>, TiCl<sub>3</sub>, CrCl<sub>2</sub>, Pd/ H<sub>2</sub>

#### **5. Reduction of oximes**



# 6. Reduction of nitriles and amides



## 7. Hofmann's amides decomposition

