Organometallic compounds

Nomenclature

methylsodium CH_3 -Na $CH_3CH_2CH_2CH_2$ -Li

butyllithium

the polarisation depends upon the character of the metal

$$H_3C-H_2C-Pb-CH_2CH_3$$

 $H_3C-H_2C-Pb-CH_2CH_3$
 H_2CH_3

$$H_3C\text{--}Cd\text{--}CH_2CH_3$$

ethylmethylcadmium

tetraethylplumbium

CH₂CH₃

 $CH_3\ Mg\ Br$

methylmagnesiumbromid

phenyllithium

reactivity of the compound depends upon the quality of the metal – its position in periodic systeme

Reactivity:

- **1. Basicity** extrem basicity
- 2. Nucleophility

Theory of HSAB:

Arhenius, Bronstead

To show basicity a presence of acid is needed,

it is necessary interaction of two partners

mostly we are considering reactions in water

but

also a lot of reactions proceeds in nonaqueous medium, but also there one partner may be an acid and the other a base

$$CH_3NO_2 \longrightarrow H^{\oplus} + |CH_2NO_2$$

 $CH_3COOH \longrightarrow H^{\oplus} + CH_3COO^{\ominus}$

$$CH_3CH_2 - NH_2 \longrightarrow H^{\oplus} + CH_3CH_2 - \underline{N}H^{\oplus}$$

$$NH_4^{(\pm)}$$
 \longrightarrow $H^{(\pm)}$ + NH_3

→ H[⊕]

+ conjugated base

Organometallic compounds

Reactivity:

- **1. Basicity** extrem basicity
- 2. Nucleophility

RELATIVITY ACID vs. BASE

$$C+JCCCOH + N(C+JC+J)_3 = C+JCCCO^3 + H^N(C+JC+J)_2$$

$$C+JCCCOH + H_SCA = C+JCCCO+J_2 + {}^{\ominus}HSCA$$

	R–C≡CH	0Hj0H	ΗĐ	O -
pKa	25	16	15,7	10

reactivity of organometal depends upon its position in periodic system

Reactivity:

- 1. Basicity extrem basicity
- 2. Nucleophility

strong nucleophile

in case in the molecule is not acidic atom, then reacts as nucleophile

reactivity of organometal depends upon its position in periodic system

Organometallic compounds

Methodes of preparation:

1. Reaction alkyl halogenides with metals

 $R-CH_2-X + 2M \longrightarrow R-CH_2-M + MX$

 $CH_3CH_2CH_2CH_2-Br + 2Li \longrightarrow CH_3CH_2CH_2CH_2-Li + LiBr$

sometimes combined systemes

Reformatsky

2 Br—CH₂COOEt + Zn \rightarrow Zn(CH₂COOEt)₂

Grignard reagent

this is imposible to use for organometals with Na and K

 $\begin{array}{rcl} \mathsf{CH}_{3}\mathsf{CH}_{2}-\mathsf{Br} + \mathsf{Na} & \longrightarrow & \mathsf{CH}_{3}\mathsf{CH}_{2}-\mathsf{CH}_{2}\mathsf{CH}_{3} + \mathsf{Na}\mathsf{Br} & \mathsf{WURTZ} \\ & \underbrace{\mathsf{Mechanism:}}_{\mathsf{CH}_{3}\mathsf{CH}_{2}-\mathsf{Br}} + \mathsf{Na} & \longrightarrow & \left[\mathsf{CH}_{3}\overset{-}{\mathsf{CH}}\overset{\oplus}{\mathsf{Na}}\right] \\ & \underbrace{\delta_{+}}_{\mathsf{CH}_{3}\mathsf{CH}_{2}-\mathsf{Br}}^{\delta_{+}} + \left[\underbrace{\mathsf{CH}_{3}\overset{-}{\mathsf{CH}}}_{\mathsf{CH}_{2}}^{\Theta_{-}} & \underbrace{\bullet}_{\mathsf{Na}}\right] & \longrightarrow & \mathsf{CH}_{3}\mathsf{CH}_{2}-\mathsf{CH}_{2}\mathsf{CH}_{3} + \mathsf{Na}\mathsf{Br} \end{array}$

2. exchange reaction between organometal and salt of other metal

 $R-M + M^1-X \longrightarrow R-M^1 + M-X$

M is more elektropozitive than metal M¹, X is halogen

 $CH_3CH_2CH_2CH_2-Li + CuI \longrightarrow CH_3CH_2CH_2CH_2Cu + LiI$

3. application of acidic hydrogen atoms in a molecule

