22.5.2012 Universidad de La Laguna 1 LASER ABLATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY – PRINCIPLES AND APPLICATIONS IN THE ANALYSIS OF ENVIRONMENTAL GEOLOGICAL, ARCHAEOLOGICAL AND TECHNOLOGICAL MATERIALS Viktor Kanický Laboratory of Atomic Spectrochemistry, Division of Analytical Chemistry, Department of Chemistry, Faculty of Science Masaryk University, Brno, Czech Republic las-bile MU2 kopie 22.5.2012 Universidad de La Laguna 2 •Principles and instrumentation of laser assisted plasma spectrometry •Applications –Imaging of 2D-distribution of elements 1.examples from literature; 2.research at the Department of Chemistry MU: i.technological materials; ii.geology; iii.archaeology; iv.environmental. –Provenance study in archaelogy • – – –Determination of average composition (bulk analysis) OUTLINE 22.5.2012 Universidad de La Laguna 3 What is laser assisted plasma spectrometry? •Interaction of pulsed (nanosecond, fs) laser focused beam with solids at high laser power density (~109 W/cm2) causes rapid release of material from the surface and near-surface layer – laser ablation •Laser ablation results from rapid heating of sub-surface volume ⇒ high pressure of vaporized sub–surface material brings about surface layer explosion. Besides, melting occurs. •Released matter consists of aerosol, vapour, atoms&ions. Laser ablation processes 22.5.2012 Universidad de La Laguna 4 •Besides, ambient gas is ionized and forms together with ionized sample microplasma •Laser radiation is partly absorbed in microplasma ⇒ energy transfer to atoms and ions occurs •Absorbing microplasma existing for μ-seconds shields sample surface – attenuation of laser beam power applied to a sample – efficiency decreases ⇒ contribution of thermal effects ⇒ undesired melting ⇒ fractionation of elements (boiling temperatures) •Microplasma existing for μ-seconds in contact with sample heats surface ⇒ undesired melting ⇒ fractionation of elements (boiling temperatures). Laser ablation processes 22.5.2012 Universidad de La Laguna 5 •Heating of gas induces shock wave (pressure, acoustic effect), microplasma expands and extinguishes •Cooling of microplasma causes condensation of vapours into fine aerosol droplets and solidification of liquid droplets into coarse particles ⇒ different composition ⇒ fractionation of elements •Some particles (coarse, liquid droplets) fall around crater „ejecta“ •Aerosol is possible to transport with carrier gas into ICP with detection either radiation (LA-ICP-OES) or ions (LA-ICP-MS) •Radiation of analytes in microplasma is measured (LIBS) Laser ablation processes 22.5.2012 Universidad de La Laguna 6 Laser ablation process: a) laser – sample interaction; b) plasma and sample creation; c) plasma cooling effect; d) rim deposition Laser ablation T. Čtvrtníčková: PhD Dissertation, Masaryk University, 2008 22.5.2012 Universidad de La Laguna 7 •Laser assisted plasma spectrometry –Laser Ablation Inductively Coupled Plasma Mass Spectrometry: LA-ICP-MS –Laser Ablation Inductively Coupled Plasma Optical Emission Spectrometry: LA-ICP-OES –Laser Induced Breakdown Spectrometry: LIBS 22.5.2012 Universidad de La Laguna 8 Laser beam Laser Ablation Deposited material Crater Solid sample Cracking of material Shock wave Heating, melting, vaporisation, explosion Absorption of radiation in plasma Vaporisation Atomisation Excitation Ionisation Atoms, ions, clusters, aerosol LM-OES, LIBS Aerosol ICP-OES ICP-MS Microplasma Emission hν LA-ICP-MS/OES 22.5.2012 Universidad de La Laguna 9 Laser – assisted plasma spectrometry: instrumentation •Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 22.5.2012 Universidad de La Laguna 10 Ar (He) into ICP-MS Ar (He) into ablation cell 22.5.2012 Universidad de La Laguna 11 LA-ICP-MS/OES [R.E. Russo, X. Mao, H. Liu, J. Gonzalez, S.S. Mao, Review, Talanta 57 (2002) 425–451] 12 positioning x-y ICP discharge ~ ionization source for MS ~ emission source for OES Focusing 0-25 mm below the sample surface 0.7 l/min Ar (+ He), ICP-OES 0.8 l/min Ar + 1.5 l/min He, ICP-MS lens laser LA-ICP-MS/OES ablation cell sample Nd:YAG laser 1064 nm, 532 nm, 355 nm, 266 nm, 213 nm, 193 nm Pulse duration 4.4 ns Frequency 1-20 Hz ArF* laser 193 nm Pulse duration 20 ns Frequency 1-20 Hz 22.5.2012 Universidad de La Laguna 22.5.2012 Universidad de La Laguna 13 Ar laser camera mirror lens cell tubing displacement x-y-z sample zoom ICP Localized analysis: laser ablation system 22.5.2012 Universidad de La Laguna 14 LA-ICP-MS instrumentation LAS, Masaryk University, Brno DSCN9832 Nd:YAG laser UP-213 (New Wave Resaerch) ICP-MS Agilent 7500ce 213 nm frequency: 1-20 Hz pulse: 4.2 ns spot size 4-300 µm generator 27.12 MHz collision cell quadrupole mass filter electron multiplier supercell_photo_2 supercell_photo Laser – assisted plasma spectrometry: instrumentation •LA-ICP-(Q)MS at Masaryk University 22.5.2012 Universidad de La Laguna 15 up2133.jpg icp_ms.jpg Ablation system – UP213 (New Wave, USA) ICP-(Q)MS Agilent 7500 CE (Agilent, Japan) LIBS 22.5.2012 Universidad de La Laguna 16 22.5.2012 Universidad de La Laguna 17 T. Čtvrtníčková: PhD Dissertation, Masaryk University, 2008 LIBS 22.5.2012 Universidad de La Laguna 18 LIBS arrangement K. Novotný, Masaryk University 22.5.2012 Universidad de La Laguna 19 LIBS – optimum delay time Optimum delay time selection from signal and background intensity dependence on delay time, Al (I) 396.152 nm, background 397.5 nm; 266 nm laser (4th harmonics) T. Čtvrtníčková: PhD Dissertation, Masaryk University, 2008 22.5.2012 Universidad de La Laguna 20 T. Čtvrtníčková: PhD Dissertation, Masaryk University, 2008 MU_orthogonal_reheating orthogonal, re-heating mode Double-pulse LIBS K. Novotný: Masaryk University •monochromator Jobin - Yvon TRIAX, optical fiber, •CCD Jobin Yvon Horiba, •gated photomultiplier Hamamatsu 22.5.2012 Universidad de La Laguna 21 Double pulse LIBS The temporal history of LIBS Plasma – double pulse. The delay between the pulses (interpulse separation) is Δt, the delay to the opening of the window (delay time) td and window length (integration time) is tb 22.5.2012 Universidad de La Laguna 22 DP blok K. Novotný, Masaryk University Double–pulse orthogonal configuration in reheating mode Laser – assisted plasma spectrometry: instrumentation 22.5.2012 Universidad de La Laguna 23 Export3 MU_orthogonal_reheating blok Reheating • LIBS Double – pulse setup (DP), orthogonal configuration, reheating arrangement (Masaryk University) Laser – assisted plasma spectrometry: instrumentation •LIBS Double – pulse setup (DP), orthogonal configuration, reheating arrangement (Masaryk University) 22.5.2012 Universidad de La Laguna 24 1 – Ablation laser (New Wave, MACRO 266 nm), 2 – Reheating laser (Quantel Brilliant, 1064 nm), 3 – Sample holder and precision movements, 4 – Delay Generators (Stanford RS) 5 – Spectrometer and ICCD camera (Jobin Yvon, Triax). 4 2 3 1 5 22.5.2012 Universidad de La Laguna 25 Export3 22.5.2012 Universidad de La Laguna 26 Double pulse LIBS 266 nm Optical bundle 1064 nm A. Hrdlička, L. Prokeš, V. Konečná, K. Novotný, V. Kanický, V. Otruba K. Novotný, J. Novotný, J. Kaizer, R. Malina, M. Galiová, V.Otruba, V.K. Why and for what do we use laser – assisted plasma spectroscopy? 22.5.2012 Universidad de La Laguna 27 22.5.2012 Universidad de La Laguna 28 Laser-assisted analysis of solids •Features of laser ablation based techniques ØElimination of decomposition for solution analysis ØElimination of water, O, N, S, Cl from acids; resulting species cause spectral interferences in ICP-MS ØUniversal: electric conductors, non(semi)conductors ØNon-destructive: material removing from the area 10 µm2 to 1mm2 to the depth cca 0.01-0.1µm/laser pulse Ø2D-3D „speciation”: preserves information on spatial distribution of elements 22.5.2012 Universidad de La Laguna 29 Priorities of laser-assisted plasma spectroscopy 1)Analysis of surfaces and coatings: xy - local analysis, microanalysis, areal mapping (mineralogical sections, inhomogeneities in steel) 2)Depth profiling of multi-layer advanced materials or natural structured objects (xyz resolution) 3)Bulk analysis: ØCompact samples (steel, alloys, glass, ceramics) ØPowdered samples: vpressed pellets with or without a binder, vcast pellets with e.g. epoxy resin, polyurethane … , vmelted with fusing agents for XRF Þ cast pearls 22.5.2012 Universidad de La Laguna 30 •Laser wavelength. •Pulse energy. •Focus position relative to surface. •Laser repetition rate. •Crater diameter/depth (aspect ratio). Influencing parameters 22.5.2012 Universidad de La Laguna 31 Critical parameters of LA •Depth profiling, mapping, local analysis: –Laser beam profile, spot size, aspect ratio, •Bulk analysis: – Powders: pellet preparation, cohesion and homogeneity, easy calibration – Compacts: no preparation, homogeneity, lack of calibration samples •Wavelength (UV´IR) vs fractionation •Pulse duration (fs´ns) vs fractionation Features important for particular tasks 22.5.2012 Universidad de La Laguna 32 Effect of laser wavelength üInfrared laser: Nd:YAG 1064 nm üStrongly absorbing microplasma, long interaction Þ thermal effects Þ selective volatilisation, fractionation üUltraviolet laser: ArF* 193 nm, Nd:YAG 266 nm, 213 nm or 193 nm. üShort interaction, minimum thermal effects, minimum fractionation. Fractionation 1) different particle size; 2) size-dependent composition 22.5.2012 Universidad de La Laguna 33 üFractionation I: during ablation (in situ fractionation) thermal effects Þ selective volatilisation, smaller particles enriched with more volatile elements as they are formed by condensation of vapours; coalescence of small particles, bigger particles by explosion of material. üFractionation II: during particle transport bigger particles are preferentially lost; üFractionation III: in the ICP discharge smaller particles are completely evaporated contrary to bigger ones Applications 22.5.2012 Universidad de La Laguna 34 Imaging of 2D distributions of elements 22.5.2012 Universidad de La Laguna 35 22.5.2012 Universidad de La Laguna 36 Why elemental mapping by laser - assisted plasma spectrometry ? •Laser - assisted plasma spectrometry: •does not need vacuum environment in a sample compartment, and therefore allows: –faster sample exchange/manipulation in a sample cell –analysis of porous or wet samples; •does not need any surface treatment prior to analysis; •involves greater thickness of probed layer and yields more representative composition in some cases •provides efficient detection of light elements (Li, Be, B…). There already exist advanced methods for mapping (SEM, EMPA, SIMS, PIXE, …), however, Limitations of laser–assisted plasma spectrometry •Spatial variability of composition to be mapped is associated obviously with variability of sample physical properties in space Þ variability of ablation rate and therefore amount of ablated material Þ matrix effect; •Consequently, calibration is not mostly feasible even using reliable homogeneous standard samples or CRM; •Rather qualitative results are obtained instead of quantitative, especially in case of complex structured samples of biological origin (biominerals, bones, plant or animal tissues) •Spatial resolution is poorer in comparison to particle beam based techniques (X – XX µm for laser techniques vs. nanometers for particle beams. 22.5.2012 Universidad de La Laguna 37 •Techniques –Grid of isolated craters – discrete points obtained at intermittent ablation: • ablation chamber dead volume and consequent signal tailing is not critical at LA-ICP-MS •time consuming process –Raster of paralell line scans – continuous ablation: •requires fast rise and decay of signal in time – small volume of ablation cell and tubing •requires fast and simultaneous data acquisiton – TOF-MS or simultaneous sector analyzers •faster analysis 22.5.2012 Universidad de La Laguna 38 Mapping of surfaces •Techniques 22.5.2012 Universidad de La Laguna 39 Mapping of surfaces 15 spots in line Ablation crater Matrix of discrete points: non- overlapping ablation spots neighbouring craters Mapping of surfaces •Spatial resolution –Influence of laser beam energy profile 22.5.2012 Universidad de La Laguna 40 Nomodel10C04_27302_image001 A. Hrdlička, Ph.D. Thesis 2006 Mapping of surfaces •Spatial resolution –Definition (lateral or depth resolution) 22.5.2012 Universidad de La Laguna 41 A. Hrdlička, Ph.D. Thesis 2006 1_1_abrozlis_8310_image001 Mapping of surfaces •Examples from liteature: –Compact homogenized sample 22.5.2012 Universidad de La Laguna 42 tab1 •repetition rate 10Hz, •beam diameter 100 and 240 µm, •scan speed 60 µm/s, • integration time 100 ms, •element and wavelength, (nm) Ca 183.801, Mg 285.21, Zn 206.200, P 177.495, S 180.731. www.analyticalsciences.group.shef.ac.uk/ Copyright © 2010, The University of Sheffield LA-ICP-OES mapping of pharmaceutical tablets Distribution of drugs and matrix Mapping of surfaces •Examples from liteature: –Distribution of contrast agent (MRI) in tumor tissue 22.5.2012 Universidad de La Laguna 43 tumor •histology section and structure of novel Gd contrast agent (bottom), • Laser line-raster data (1-3) shows Gd signal strength. MRI research group at Hammersmith Hospital (Prof. J. Bell); http://www.imperial.nhs.uk/hammersmith/index.htm LA-ICP-MS 157Gd image distribution from thin-section of treated tumour - distribution in vascular and necrotic areas ratbrain Mapping of surfaces •Examples from literature: –LA-ICP-MS images of quantitative distribution of Zn, Cu, Fe, K, Mn, Mg, C, P and S in a rat brain section 22.5.2012 Universidad de La Laguna 44 For Zn, Cu and Fe the maximum of the concentration scale bar is indicated, the minimum being zero. J. Sab. Becker et al., Metallomics, 2010, 2, 104-111. Quantitation is based on calibration with standards prepared from homogenized rat brain tissue with added standard solutions of elements 22.5.2012 Universidad de La Laguna 45 Applications Experimental results Masaryk University 22.5.2012 Universidad de La Laguna 46 •Analysis of technological materials for nuclear power plants –Study of corrosion of structural materials for cooling circuits of nuclear reactors by cooling media - molten fluoride salts Technological samples 22.5.2012 Universidad de La Laguna 47 CORROSION OF COOLING CIRCUIT STRUCTURAL MATERIALS OF NUCLEAR REACTORS BY COOLING MEDIA - MOLTEN FLUORIDE SALTS jaderna-elektrarna-temelin jaderna-elektrarna-dukovany Nuclear power station Temelín Czech Republic Nuclear power station Dukovany Czech Republic 22.5.2012 Universidad de La Laguna 48 Molten fluoride salts Development of new types of reactors: •Transmutor – reactor exploiting a substantial part of the long-term nuclear wastes for transfer into useful power; cooling medium – molten fluoride mixture (LiF-NaF) attacks a surface of piping and heat exchanger parts => corrosion processes study of sample surface by means of LA-ICP-MS •3 structural materials for piping and heat exchangers parts are examined: üpure Ni, üNi-based alloy, üpure Fe with Ni-coating 22.5.2012 Universidad de La Laguna 49 LA-ICP-MS mapping with quantitation – corrosion layers on alloys •Candidate structural materials were exposed to effect of mixture of molten fluoride salts (composition in mol.%) : •60 LiF - 40 NaF or 42 LiF - 29 NaF – 29 ZrF4 •for 112, 350 and 1000 hours •at temperatures 680, 720 and 740 °C. T. Vaculovic, P. Sulovsky, J. Machat, V. Otruba, O. Matal, T. Simo, Ch. Latkoczy, D. Günther and V. Kanicky, The EPMA, LA-ICP-MS and ICP-OES study of corrosion of structural materials for a nuclear reactor cooling circuit by molten fluoride salts treatment, J. Anal. Atom. Spectrom. 24, 649-654 (2009). 22.5.2012 Universidad de La Laguna 50 Molten fluoride salts 2.Pressure and vacuum system 3.Oven for heating of ampoules 4.Measuring & control system 1 3 2 1.Ampoules with samples of structural material and salt 4 22.5.2012 Universidad de La Laguna 51 Molten fluoride salts Sample is placed into ampoule which is filled with molten fluoride salts for the duration of 112 and 351 hours, respectively Fig1 C 22.5.2012 Universidad de La Laguna 52 Corrosion experiment O. Matal, T. Šimo, L. Nesvadba, V. Dvořák, V. Kanický, P. Sulovský, J. Machát, Interaction of pipeline materials with molten fluoride salts. Zeitschrift für Naturforschung: Teil a, 62a, 12, 769-774 (2007). Ar Oven Ampoule made of tested material 1-ampoule wall 2-molten fluorides 3-test specimen 4-specimen suspension Specimen moved up-and-down periodically 22.5.2012 Universidad de La Laguna 53 Sample preparation molten fluoride salt level cut of the specimen Test specimen exposed in ampoule Section of specimen embedded in Araldite Section with corroded surface Electron probe microanalysis of sections and surfaces of ampules •SX100 microprobe (CAMECA, France) • •Polished sections and relief specimens (inner wall of the ampule, test body surface) were imaged: ØMorphology- Images in secondary electrons – SE ØMaterial contrast-Images in backscattered electrons – BSE •In order to reveal the compositional changes at the alloy/fluoride melt interface, polished sections of ampule walls and solidified melts were investigated by EPMA, the limits of determination being about 2 – 3x10-2 %: ØLinear concentration profiles- X-ray analysis Ø2D elemental concentration maps- X-ray analysis 22.5.2012 54 Universidad de La Laguna Damage of ampule wall by NaF/LiF melt 1.Ampule wall section 100 h exposure 2.Ampule wall section 300 h exposure 3.Ampule wall section 1000 h exposure 1.4571 STAINLESS STEEL Images BSE 2 50 μm 1 50 μm 3 50 μm 22.5.2012 55 Universidad de La Laguna Depth of erosion of ampule wall Exposure time (hours) Red – Inconel A 686 Blue – Stainless steel 1.4571 22.5.2012 56 Universidad de La Laguna X-ray maps of Inconel by EPMA X-ray map of Ni – Inconel 686, exposed to 60% LiF – 40% NaF melt for 117 hours X-ray map of Cr – Inconel 686, exposed to 60% LiF – 40% NaF melt for 117 hours Ni 50 μm Cr 50 μm High High Low Low 22.5.2012 57 Universidad de La Laguna High X-ray maps of Inconel by EPMA X-ray map of Mo – Inconel 686, exposed to 60% LiF – 40% NaF melt for 117 hours X-ray map of W – Inconel 686, exposed to 60% LiF – 40% NaF melt for 117 hours Mo 50 μm W 50 μm High Low Low 22.5.2012 58 Universidad de La Laguna SE images of Inconel sample surface Another part of the surface of Inconel 686 test body exposed to 60% LiF – 40% NaF melt for 1000 hours - area without Cr2O3 crust. Crystalline crust of chromium trioxide (bright grey platelets) on the surface of Inconel A686 exposed to 60% LiF – 40% NaF melt for 1000 hours 100 μm 100 μm 22.5.2012 59 Universidad de La Laguna Results EPMA •The Inconel 686, exposed to 60% LiF – 40 % NaF melt (1000 h, dynamic test) shows significant compositional changes at the interface with melt. The depth to which these changes affected the composition of the tested material, however, does not exceed 20 – 25 μm. •The corrosion of Inconel by LiF/NaF is characterized by two processes: –diffusion and dissolution of the alloy, –oxidation of released Cr by traces of O2 in the Ar filling the space above the melt level. •Fe content is homogeneously increased in the subsurface 20 – 25 μm thick layer by max. 10% •Cr is depleted in this layer, while Ni and Mo are distinctly enriched in it. 22.5.2012 60 Universidad de La Laguna 22.5.2012 Universidad de La Laguna 61 Laser ablation conditions : laser beam fluency: 25.5 J cm-2 laser beam spot diameter: 12 mm repetition rate: 20 Hz ablation mode: hole drilling distance between spots: 12 mm Laser beam dwell time: 5 s 100 μm Ablation mapping ICP-MS Agilent 7500 ce 22.5.2012 Universidad de La Laguna 62 time [s] Signal measurement One line of ablation spots Background correction 22.5.2012 Universidad de La Laguna 63 Isotope signals total sum normalization – abundance corrected intensity I(Mn)abund = I(55Mn)corr/abundance(55Mn) I(Li)abund, I(Na)abund, I(Ni)abund, I(Cr)abund, ... => ∑Iabund content Mn = [I(Mn)abund/∑Iabund ]*100 (%) Fluoride ion counts were calculated from stoichiometry of fluoride salts and Na, Li, Zr counts Quantitation 22.5.2012 Universidad de La Laguna 64 distance [μm] Zr content [%] Ni (98 %) exposed to molten LiF-NaF-ZrF4 at 680 °C for 1000 hrs 100 μm Zr map of „Nickel“ sample corroded surface Corrosion layer 22.5.2012 Universidad de La Laguna 65 Li map of „Nickel“ sample corroded surface distance [μm] Li content [%] Ni (98 %) exposed to molten LiF-NaF-ZrF4 at 680 °C for 1000 hrs 100 μm Corrosion layer 22.5.2012 Universidad de La Laguna 66 distance [μm] Mn content [%] Ni (98 %) exposed to molten LiF-NaF-ZrF4 at 680 °C for 1000 hrs 100 μm Mn map of „Nickel“ sample corroded surface 22.5.2012 Universidad de La Laguna 67 Conclusion I •Penetration of molten salts into specimen material was proved (signals Zr, Li, Na). •Corrosion depth was determined from elemental maps (Zr, Li, Na)… 30 μm. •Quantitation of elemental mapping is possible by normalization to total sum of signals for „easy“ matrix (alloys,metals, ceramics). 22.5.2012 Universidad de La Laguna 68 Geology •2D-mapping of granite by LIBS and LA-ICP-MS 22.5.2012 Universidad de La Laguna 69 3A.TIF 3C.TIF K. Novotný, J. Kaiser, M. Galiová, et al.: Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study, Spectrochimica Acta Part B 63 (2008) 1139–1144. Exploratory study - granite Untitled-1.tif Untitled-2.tif 42Ca, 27Al, 56Fe, 55Mn 1 cm 200 µm LA-ICP-MS hole drilling mode, 110 µm laser spot diameter, 20 laser pulses per sample point, distance between individual laser spots was 200 µm LIBS 120 µm laser spot diameter, 2 laser pulses per sample point 1 cm 22.5.2012 Universidad de La Laguna 70 Fig.4.tif zula.jpg LIBS LA-ICP-MS mapy+foto.tif Ca Fe 1 cm K. Novotný, J. Kaiser, M. Galiová, et al.: Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study, Spectrochimica Acta Part B 63 (2008) 1139–1144. maps 70 photo Archaeology 22.5.2012 Universidad de La Laguna 71 22.5.2012 Universidad de La Laguna 72 Study of prehistoric bear tooth for acquiring knowledge about diet 22.5.2012 Universidad de La Laguna 73 •Ratio 87Sr/86Sr depends on the geological substrate and Sr enters to the food chain via rock decay. The sequence is as follows: rocks ® water ® plants ® herbivores. •Strontium and calcium metabolism are similar and strontium can substitute calcium in hydroxyapatite matrix. •The fluctuation of Sr/Ca ratio enables to reconstruct the migration of an animal or human due to environment change of ratio. Both elements have nutrition character and they are used for the determination of diet. Known facts •Content of Sr [mg/kg] in teeth and bones (Ca10(PO4)6(OH)2) in the order •carnivores → omnivore → herbivores → marine foodstuff is • 100-300 → 150-400 → 400-500 → >500 Known facts •Similar properties can be observed from Sr/Ba ratio. This fluctuation is more sensitive in comparison with Sr/Ca due to the presence of barium. However, higher content of Ba on the surface can indicate contamination. •Opposite behavior was observed for zinc in comparison with Sr content. Content of Zn increases as follows: –herbivores ® omnivore ® carnivores – 90-150 mg /kg1 ® 120-220 mg/kg1 ® 175-250 mg/kg. •Higher concentration of the element is typical for meat, nuts or mollusks. On the other side, it can be caused by inflammation. • 22.5.2012 Universidad de La Laguna 74 Bear tooth 126.jpg 75 bear_01.tif 935795-001a.jpg fotka.tif Koren_LIBS.tif •The investigated tooth (canine-C1) of fossil brown bear (Ursus arctos) was excavated at Dolní Věstonice II-Western Slope, South Moravia, Czech Republic. * •The locality is dated to 26 640 ± 110 BP (uncalibrated 14C data) and belongs to Gravettien. crown section root section 22.5.2012 Universidad de La Laguna Bear tooth medved.jpg 76 935795-001a.jpg •Abrasion of tooth´s oclusal area and increments of cementum of tooth´s root were studied in order to determine the age and seasonality. • •This bear died at the age of 14 years and it is possible to appoint the term of death from unfinished summer increment and absence of winter increment in between summer and autumn season (August to October). 22.5.2012 Universidad de La Laguna mikrotvrdost_koren.TIF 77 barevna skala.tif pomerMg_koren.tif 2 mm •The estimation of the sample hardness via Mg II/Mg I intensity ratios is shown. •The estimated hardness characteristic was proved by microhardness measurements. •The Vickers test pattern was placed nearby the LIBS ablation craters for Mg detection. pomerMg_koren_rada.TIF Hardness of the sample (canine tooth root) 22.5.2012 Universidad de La Laguna 78 Sr_Ba_koren_DP.tif Sr_Ca_koren_DP.tif barevna skala.tif DP LIBS Sr/Ba Sr/Ca Koren_LIBS.tif The dark areas on the sample are well correlated with the lower Sr/Ba Sr/Ca ratio in the map. They are rather related to the narrow winter strips. Ethology of the studied fossil brown bear 22.5.2012 Universidad de La Laguna SP and DP LIBS and LA-ICP-MS Sr_Ca_koren_SP.tif Sr_Ba_SP.tif 79 barevna skala.tif Sr/Ba SP LIBS Sr/Ca Koren_LIBS.tif The seasonal fluctuations of the Sr/Ca and Sr/Ba detected by laser-ablation based techniques (SP and DP LIBS and LA-ICP-MS) evidenced the migration of this bear between his hibernaculum’s location and the place where the fossils were found. Ethology of the studied fossil brown bear 22.5.2012 Universidad de La Laguna SP and DP LIBS and LA-ICP-MS C:\Documents and Settings\Administrator\Plocha\DP\zub_medved\Appl Optics_medved\Appl Optics\Sent\Figures\Fig_7.tif Ethology of the studied fossil brown bear LA-ICP-(Q)MS 22.5.2012 80 Universidad de La Laguna 44Ca.tif pomer86Sr138Ba.tif pomer86Sr64Zn.tif pomer86Sr44Ca.tif bear_root.tif LA-ICP-(TOF)MS 22.5.2012 81 Universidad de La Laguna 86Sr/64Zn 86Sr/138Ba 44Ca 86Sr/44Ca 22.5.2012 Universidad de La Laguna 82 Environmental •Uroliths – renal calculi 22.5.2012 Universidad de La Laguna 83 UROLITH LOCAL ANALYSIS Kidney stones, urinary stones (renal calculi, urolithiasis) = solid concretions (crystal aggregations) of dissolved minerals in urine calculi typically form inside kidneys, ureter, urethra, bladder, prostate To date over 200 components have been found in calculi; however, the most common constituents of kidney stones are: •Calcium Oxalate Monohydrate (Whewellite); CaC2O4 · H2O •Calcium Oxalate Dihydrate (Weddellite); CaC2O4 · 2H2O •Magnesium Ammonium Phosphate Hexahydr. (Struvite); MgNH4PO4 · 2H2O •Ca Phosphate &Carbonate (Carbonate Apatite); Ca10(PO4 · CO3OH)6(OH)2 •Calcium Phosphate, Hydroxyl Form (Hydroxyl Apatite); Ca10(PO4)6(OH)2 •Calcium Hydrogen Phosphate Dihydrate (Brushite); CaHPO4 · 2H2O •Uric Acid; C5H4N4O3 •Cystine; (SCH2CH(NH2) · COOH)2 •Sodium Acid Urate; C5H3N4O3Na · H2O •Tricalcium Phosphate (Whitlockite); Ca3(PO4)2 •Ammonium Acid Urate; NH4H · C5H2O3N4 · H2O •Magnesium Hydrogen Phosphate Trihydrate (Newberyite); MgHPO4 · 3H2O 22.5.2012 Universidad de La Laguna 84 Layered structure: growth of uroliths 22.5.2012 Universidad de La Laguna 85 Designed procedure 1.Average elemental contents in uroliths by PN-ICP-MS after acid mixture decomposition 2.LA-ICP-MS calibration with homogenized urolith pellets and assignment of content values found using PN-ICP-MS to the pellets. 3.LA-ICP-MS calibration with pressed pellet of powdered SRM NIST 1486 Bone Meal. 4.LA-ICP-MS elemental distribution recording = line of single-spot ablation events directed perpendicularly to layered structure of urolith section 5.LA-ICP-MS calibration using: •NIST 1486 Bone Meal •urolith pellets with contents by PN-ICP-MS •NIST 612 Glass 6.Calculation of concentration profile of uroliths Agilent 7500ce NIST 612 Glass Urolith sections NIST 1486 Bone Meal Urolith pellet 22.5.2012 Universidad de La Laguna 86 •Lines of single spots •Laser spot size 55 /um •Crater distance 110 /um •Repetition rate 20 Hz •Fluence of 3 J cm-2 •No internal standard ICP-MS 22.5.2012 Universidad de La Laguna 87 Calibration Zn, Pb, Cu powdered urolith pressed pellets 22.5.2012 Universidad de La Laguna 88 Calibration Ca, P: powdered urolith pressed pellets 22.5.2012 Universidad de La Laguna 89 Radial profile of urolith - signal 22.5.2012 Universidad de La Laguna 90 Urolith section, complementarity of apatite and oxalate vs urate, quatification – pressed pellets V Konecna, M. Novackova, M. Hola, P. Martinec, J. Machat, V. Kanicky 22.5.2012 Universidad de La Laguna 91 2D graph of distribution of Ca concentration in sample 10806 Length (mm) Width (mm) concentration (g/kg) 43Ca 22.5.2012 Universidad de La Laguna 92 2D graph of distribution of P concentration in sample 10806 Length (mm) Width (mm) concentration (g/kg) 31P 22.5.2012 Universidad de La Laguna 93 2D graph of distribution of Mg concentration in sample 10806 Width (mm) Lenght (mm) concentration (g/kg) 24Mg 22.5.2012 Universidad de La Laguna 94 2D graph of distribution of C presence in sample 10806 Lenght (mm) Lenght (mm) intensity (cps) 12C 22.5.2012 Universidad de La Laguna 95 LA-ICP-MS LIBS Scanned areas of uroliths 22.5.2012 Universidad de La Laguna 96 Provenance study -Archaeology •Application of laser ablation–based methods and multivariate statistics to provenance studies of artifacts • OUTLINE •Archaeometry – study of artifacts •Application of LA-ICP-MS to study of obsidian artifacts •Samples •LA-ICP-MS analysis •Statistical treatment of data • 97 22.5.2012 Universidad de La Laguna ARCHAEOMETRY ØArchaeological science or Archaeometry consists in the application of techniques of natural sciences to the analysis of archaeological materials. ØArchaeometry involves dating and studying ancient materials. [1] 1.Killick, D; Young, SMM (1997). Archaeology and Archaeometry: From Casual Dating to a Meaningful Relationship?. Antiquity. 98 22.5.2012 Universidad de La Laguna Archaeometry •Comprises: [2] Øphysical and chemical dating methods Øartifact studies Øenvironmental studies on past landscapes, climates, flora, fauna; the diet, nutrition and health of beings Ømathematical methods for data treatment Øremote sensing and geophysical survey for the location and characterization of buried features Øconservation sciences for the study of decay processes; development of methods for conservation Øtechniques such as lithic analysis, archaeometallurgy, paleoethnobotany, palynology, zooarchaeology 2.Tite, M.S. (1991) Archaeological Science - past achievements and future prospects. Archaeometry 31 139-151. 99 22.5.2012 Universidad de La Laguna Artifact studies •XRF X-ray fluorescence spectrometry •ICP-MS inductively coupled plasma mass spectrometry •NAA neutron activation analysis •SEM scanning electron microscopy •LIBS laser induced breakdown spectrometry •Provenance analysis • has the potential to determine the original source of the materials used to make a particular artifact. • 100 22.5.2012 Universidad de La Laguna APPLICATION OF LA-ICP-MS IN ARCHAEOMETRY – ANALYSIS OF OBSIDIAN ARTIFACTS ØObsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. ØIt is produced when felsic lava extruded from a volcano cools rapidly without crystal growth. Ø Because of this lack of crystal structure, obsidian blade edges can reach nearly molecular thinness: Øancient use as projectile points and blades Ømodern use as surgical scalpel blades 101 22.5.2012 Universidad de La Laguna Øa glassy volcanic rock, homogeneous in bulk & surface, reflecting the volcanic environment where it was produced; Øraw material for prehistoric people (paleolith, neolith, 9 000 B.C. Mesopotamia, later Mayas, Aztecs) because of the ability to produce extremely sharp cutting edge; Østudy of composition of obsidian tools and material from the original geological source makes it possible to learn about: •exchange centers, trade routs; •organization of life (hunting, craft) Ø Ø Obsidians: rock and artifact 102 22.5.2012 Universidad de La Laguna Viničky, Slovakia Kašov, Slovakia E. Švecová: Bachelor thesis, Sources of obsidian in Central Europe and possibilities of their differentiation, Masaryk University, 2009. 103 22.5.2012 Universidad de La Laguna Chemical analysis of obsidians Øchemical analysis can yield information on composition of both natural sources and artifacts Øsolution analysis can be performed for raw material x artifacts Ønon- destructive analysis is required for artifacts: (XRF, NAA, LA-ICP-MS, LIBS) ØLA-ICP-MS: quasi non-destructive, simple sample preparation, applicable to small samples (1 mm), relatively rapid determination – 104 22.5.2012 Universidad de La Laguna LA-ICP-MS analysis of obsidians •LA-ICP-MS is used for analysis of obsidians 105 3.Eerkens J. W., Spurling A. M., Gras M, A., Measuring prehistoric mobility strategies based on obsidian geochemical and technological signatures in the Owens Valley, California, Journal of Archaeological Science 35 (2008)668-680. 4.Whitaker A. R., Eerkens J. W., Spurling A. M., Smith E. L., Gras M. A., Linguistic boundaries as barriers to exchange, Journal of Archaeological Science 36 (2007)1-10. 5.Gratuze B., Obsidian characterization by LA-ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia, Journal of Archaeological Science 26 (1999)869-881. 22.5.2012 Universidad de La Laguna ØDevelopment of method LA-ICP-MS ØAnalysis of artifacts from various areas ØSelection of elements applicable to distinguish between archaelogical sites ØStatistical analysis – distinguishing between areas of archaelogical discovery of artifacts Ø Ø • • • AIM OF STUDY 106 22.5.2012 Universidad de La Laguna 107 [USEMAP] 1 2 3 4 Provenance of samples: 1 – Czech Rep., 2 – Slovakia, 3 – Greece, 4 – Italy, Lipari island 22.5.2012 Universidad de La Laguna [USEMAP] 108 ITALY SICILY LIPARI 22.5.2012 Universidad de La Laguna 109 [USEMAP] Provenance of samples: Syria, Iraq 22.5.2012 Universidad de La Laguna Czech Republic artifacts Breznik Horakov Jaromerice Moravske Branice Nova Dedina Popuvky Prstice Rozdrojovice Spytihnev Tesetice I Tesetice II U Kr. Borovice Zebetin Slovakia artifacts Kasov I Kasov II source Barca Vinicky Mala Bara Italy artifact La Castagne (Lipari) Greece artifact Sesklo Syria artifacts Tell Arbid I Tell Arbid II Tell Arbid III Iraq artifacts Tell Asmar I Tell Asmar II Nicaragua artifacts Sebaco Somoto I Somoto II Mexico source List of samples 110 22.5.2012 Universidad de La Laguna % Barca Lipari Vinicky SiO2 75.83 73.32 75.89 Al2O3 13.17 13.20 13.22 Fe2O3 1.05 1.77 0.98 CaO 0.82 0.87 0.82 MgO 0.12 0.05 0.07 Na2O 3.65 4.04 3.66 K2O 4.56 5.27 4.57 TiO2 0.05 0.08 0.05 P2O5 0.03 0.02 0.03 MnO 0.05 0.07 0.05 Composition of obsidians ACME reference analysis Acme Analytical Laboratories (Vancouver) Ltd., 1020 Cordova St. East Vancouver BC V6A 4A3 Canada, www.acmelab.com 22.5.2012 111 Universidad de La Laguna mg kg-1 Barca Lipari Vinicky Hf 2.8 6.4 2.8 Nb 9.9 35.0 9.7 Rb 188.2 305.3 191.1 Sr 74.1 19.3 72.9 Ta 1.5 2.4 1.5 Th 16.6 58.7 17 U 10 16.9 9.9 Zr 75.4 178.4 71.2 Y 33.8 41.0 33.7 La 25.6 63.3 25.8 Ce 49.5 127.5 49.1 Pr 6.05 13.04 6.05 Nd 21.9 43.9 21.5 Sm 4.28 8.20 4.27 Eu 0.34 0.14 0.37 Gd 4.04 6.41 4.07 Tb 0.82 1.15 0.81 112 22.5.2012 Universidad de La Laguna LA-ICP-(Q)MS Ablation system – UP 213 Nd:YAG (New Wave, USA) •ablation chamber – SuperCell 20 cm3 (New Wave, USA) •diameter of ablation craters – 100 mm; •laser repetition rate 20 Hz; •fluence 5 J cm-2; •1 l/min He carrier through ablation cell •data acquisition: 120 s (50 s ablation), 10 spots ICP-MS Agilent 7500 CE (Agilent, Japan) •carrier gas flow 0.6 l/min Ar •collison-reaction cell: He 5,5 ml/min and H2 2,5 ml/min Calibration NIST 612 NIST 610 113 22.5.2012 Universidad de La Laguna Dodat podminky, při kterych linda merila Graph2.tif ICP-(Q)MS signal 114 Vinicky, Slovakia: SiO2 75.89 %, Dy 4.58 mg kg-1, Ce 49.1 mg kg-1(ACME) 22.5.2012 Universidad de La Laguna Ablation system – UP 213 Nd:YAG (New Wave, USA), •ablation chamber – SuperCell 20 cm3 (New Wave, USA); •diameter of ablation craters – 100 mm; •laser repetition rate 10 Hz; •fluence 16 J cm-2; •300 ml/min He carrier through ablation cell •data acquisition: after 5 s sample uptake1 second measurement in 5 spots. ICP-MS – OptiMass 8000 (GBC Australia) •plasma gas flow 10 l/min Ar •auxiliary gas flow 0.5 l/min Ar •nebulizer gas flow 1.02 l/min Ar •sampling depth 10 mm LA-ICP-(TOF)MS Calibration NIST 614 NIST 612 NIST 610 NIST GB P1070713.JPG P1070711.JPG 115 22.5.2012 Universidad de La Laguna Dodat fotku-popis Ti,Mn,Fe_novy.tif Czech Republic Slovakia Nicaragua Content of Ti, Mn, Fe obtained by LA-ICP-MS Mexico 116 22.5.2012 Universidad de La Laguna Content of Zr, Sr, Ba obtained by LA-ICP-MS 117 Czech Republic Slovakia Nicaragua Mexico 22.5.2012 Universidad de La Laguna Content of Ce, Dy, Sm obtained by LA-ICP-MS Ce,Dy,Sm_novy.tif Czech Republic Slovakia Nicaragua Mexico 118 22.5.2012 Universidad de La Laguna LA-ICP-MS vs. ACME Element Literature ACME LA-ICP-MS mg kg-1 Y 35 33.70 32.71 Zr 66 71.20 60.33 La 24.4-30.4 25.80 25.54 Ce 49.10 55.20 Pr 6.05 5.78 Sm 3.68-4.32 4.27 4.14 Eu 0.41-0.52 0.37 0.38 Gd 4.07 4.27 Tb 0.44-0.84 0.81 0.73 Yb 2.82-3.65 2.96 2.96 119 Vinicky obsidian sample 22.5.2012 Universidad de La Laguna STATISTICAL ANALYSIS 120 Two-way cluster analysis: data matrix is reoreded after the results of cluster analysis on objects (samples) and variables (elements). The output of this method is „heat map“. R –statistical package (http://cran.r-project.org/), released under the GNU General Public License. http://www.sciviews.org/_style/img/RLogo.png Principal component analysis: linear transformation of the (correlated) characteristics (elements) of the data matrix into non-correlated principal components. The most information about the variability in original data matrix involved the first PC (see screeplot). PCA Loadings: reflects the relations between the original variables and between the original variables and principal components. Cosines of the angles in the plot of the PCA loadings are related to the correlation coefficients. PCA Scores: the coordinates of the objects (samples) in the space of PCs. 22.5.2012 Universidad de La Laguna 121 Statistical analysis •Correspondence analysis (CA): the method is commolnly used for analysis of categorical data, but may be useful as a visualization technique for the analytical data. The method is similar to PCA, but in CA the data are transformed to the „compositional data“ (vectors of proportions describing the relative contributions of each of the categories to the whole) for both rows and columns of the data matrix. The method enable, contrary to PCA, simultaneous depiction of the results for samples and elements in one plot. •The results of Principal Component Analysis and Correspondence Analysis were used for the selection of pairs of elements or their ratios for scatterplots. 22.5.2012 Universidad de La Laguna Heat map: two-way cluster analysis 122 Results od two-way cluster analysis of the autoscaled data (manhattan distances, average linkage clustering). The results of cluster analysis are significantly influenced with correlations in the data. 22.5.2012 Universidad de La Laguna bezpopCAscree.bmp Correspondence analysis (CA) 123 Correspondence analysis was performed on the mean-normalized data matrix. The breakpoint on the scree plot indicates two important dimensions, involving more than 80 per cent of total inertia of the data. 22.5.2012 Universidad de La Laguna C:\Documents and Settings\Administrator\Plocha\obsid\popisky.bmp bezpopCA.bmp Correspondence analysis (CA) 124 22.5.2012 Universidad de La Laguna Correlation matrix (Pearson), reordered with average linkage clustering. Correlation matrix (Pearson) bezpop corrP.bmp 125 22.5.2012 Universidad de La Laguna bezpopPCAscree.bmp Principal Component Analysis (PCA) 126 Principal components were calculated from autoscaled data matrix. The breakpoint on the scree plot indicates two important PCs, involving about 80 per cent of total variance of the data. 22.5.2012 Universidad de La Laguna bezpopPCAloadings.bmp PCA loadings reflects correlations of elements in data matrix and contribution of the each element to the each of 2 principal components (cosines of the angles between elements or between elements and axes of PCs, respectively). Principal Component Analysis (PCA) 127 22.5.2012 Universidad de La Laguna bezpopPCAscores.bmp PCA scores are coordinates of the samples in the space of the principal components. C:\Documents and Settings\Administrator\Plocha\obsid\popisky.bmp Principal Component Analysis (PCA) 128 22.5.2012 Universidad de La Laguna bezpopDyZn.bmp 129 22.5.2012 Universidad de La Laguna bezpopSrNb.bmp 130 22.5.2012 Universidad de La Laguna bezpopZrBa.bmp 131 22.5.2012 Universidad de La Laguna C:\Documents and Settings\Administrator\Plocha\bezpop\bezpopCeEr.bmp 132 22.5.2012 Universidad de La Laguna C:\Documents and Settings\Administrator\Plocha\bezpop\bezpopSrBa.bmp 133 22.5.2012 Universidad de La Laguna C:\Documents and Settings\Administrator\Plocha\bezpop\bezpopUCe.bmp 134 22.5.2012 Universidad de La Laguna C:\Documents and Settings\Administrator\Plocha\bezpop\bezpopHfZrBaSr.bmp 135 22.5.2012 Universidad de La Laguna 136 C:\Documents and Settings\Administrator\Plocha\pcach.png modified item var. height of face Sr width of face Ba structure of face Sc height of mouth Pb width of mouth Zn smiling U height of eyes Eu width of eyes Rb height of hair Nb width of hair Ta style of hair Gd height of nose Hf width of nose Ce width of ear La height of ear Nd The elements were chosen and sorted after the increasing value of the PC1 loadings. Chernoff faces 22.5.2012 Universidad de La Laguna CONCLUSION 137 ØCalibration of LA-ICP-MS obsidian analysis using NIST reference materials yields concentration data that are in agreement with solution analysis (ACME) ØPrincipal Component Analysis (PCA) and Correspondence Analysis (CA) are suitable as exploratory data analysis methods for the purpose of this study. 22.5.2012 Universidad de La Laguna ONGOING WORK 138 ØVerification of the results of statistical analysis on large-scale data series ØTesting some other multivariate statistical and visualization techniques. 22.5.2012 Universidad de La Laguna ACKNOWLEDGEMENT L. Prokeš, L. Zaorálková, A. Hrdlička, T. Vaculovič, A. Prichystal, M. Galiová, K. Novotný Dep. of Chemistry and Dep. of Geological Sciences , Faculty of Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic bnr_urd2_budgetcentral.jpg A. Z. Mason, H. Neff Department of Biological Sciences, Faculty of Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach 90840, USA The authors acknowledge support from the Ministry of Education, Youth and Sports of the Czech Republic (projects ME10012, MSM0021622411, MSM0021622412 and MSM0021622427). 139 22.5.2012 Universidad de La Laguna 22.5.2012 Universidad de La Laguna 140 Aknowledgements to my collaborators •Masaryk Univ. •Karel Novotný •Markéta Holá •Tomáš Vaculovič •Aleš Hrdlička •Lubomír Prokeš •Michaela Galiová •Monika Nováčková •Veronika Konečná •Tereza Čtvrtníčková •Tereza Warchilová •Tech. Univ. Brno • Jozef Kaiser •University of Malaga •X. Laserna mapa_evropy 22.5.2012 141 Universidad de La Laguna mapa Czech Republic area: 78 864 km2, inhabitans: 10.3 millions 22.5.2012 142 Universidad de La Laguna 1_pohled05 1_pohled07 1_jakub02 1_pohled06 Katedrála sv. Petra a Pavla Brno inhabitans: 370 000 22.5.2012 143 Universidad de La Laguna Masaryk University Campus (Brno) 22.5.2012 Universidad de La Laguna 144 Detail fotografie Detail fotografie Fac.of Science Faculty of Medicine Faculty of Sport Studies http://www.muni.cz/general/events/p233332/gallery 22.5.2012 Universidad de La Laguna 145 Detail fotografie Masaryk University Campus Detail fotografie 22.5.2012 Universidad de La Laguna 146 Detail fotografie Detail fotografie Masaryk University Campus Detail fotografie 22.5.2012 Universidad de La Laguna 147 Detail fotografie Detail fotografie Masaryk University Campus 22.5.2012 Universidad de La Laguna 148 Detail fotografie Detail fotografie Masaryk University Campus 22.5.2012 Universidad de La Laguna 149 C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2933.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2932.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\Dscn2931.jpg C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2927.JPG 22.5.2012 Universidad de La Laguna 150 C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2925.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2922.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2920.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2918.JPG 22.5.2012 Universidad de La Laguna 151 C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2916.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2915.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2914.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSCN2913.JPG 22.5.2012 Universidad de La Laguna 152 C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSC_2529.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSC_2526.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSC_2524.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSC_2518.JPG 22.5.2012 Universidad de La Laguna 153 C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSC_2515.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSC_2513.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSC_2511.JPG C:\Users\Viktor\Documents\ZALOHA TOSHIBA NB\My Notebook\Texty\LABUDA\FOTO\DSC_2501.JPG Thank you for your attention 22.5.2012 Universidad de La Laguna 154 22.5.2012 Universidad de La Laguna 155 •Sodium-cooled fast reactor (SFR) – Generation IV of nuclear reactors; cooling medium – liquid sodium; heat is transferred from sodium circuit in heat exchanger to CO2 . Possible reaction of sodium with CO2 at elevated temperatures is experimentally studied => determination of carbon in sodium by means of LA-ICP-OES and ICP-OES REACTION OF CO2 WITH SODIUM - NUCLEAR REACTOR COOLING MEDIA T. Vaculovič*, V. Kanický, O.Matal 22.5.2012 Universidad de La Laguna 156 Molten Na-CO2 interaction A new apparatus was designed for sodium melting under CO2 atmosphere at high temperature. Apparatus is placed into glove box with CO2 atmosphere. Furnace is heated up to 300, 350 and 450 °C, respectively. 180 minutes of melting + 120 min cooling down Two ways of carbon content determination 1.Laser ablation of solidified sodium with ICP-OES detection (calibration pellets with two types of matrix – NaCl and NaF) 2.Dissolution of solidified sodium with water vapor – nebulization into ICP-OES (calibration solution with NaCl, NaNO3 and NaOH matrices) Glove box for: 1) Na purity determination by distillation in Ar atmosphere: residual carbonate and oxide dissolved and Na determined ICP-OES 2) Reaction of Na with carbon dioxide in CO2 atmosphere 22.5.2012 Universidad de La Laguna 157 1 – distillation chamber 2 – temperature measure. 3 – membrane pump 4 – two-stage oil pump 5 – pressure sensor (workspace) 6 – pressure sensor ( input press. in pump) 7 – vent 8 – pressure measurement 9 – preparation box 10 – interface chambe 11 – Ar input 12 – input vent 13 – output vent 14 – manometer of interface 15 – power meter 16 – Ar control 158 jobin Ø ICP-OES Jobin Yvon Ø Model Ultrace 170 Ø 40.68 MHz, 0.6 – 1.200 kW Ø Observation lateral Ø mono.: 1-m Czerny-Turner Ø poly.: 0.5-m Paschen Runge Ø SBW: 4-5 pm / 20-25 pmBW Ø detectors: photomultipliers ØPTFE sample introduction system + corundum injector ICP-OES 22.5.2012 Universidad de La Laguna Laser ablation system 22.5.2012 Universidad de La Laguna 159 up213 LA-ICP-OES conditions of measurement 22.5.2012 Universidad de La Laguna 160 LA parameters Laser wavelength/nm 266 Laser spot diameter/µm 750 Laser power density/(J cm−2) 4.7 Laser repetition rate/Hz 10 Carrier gas (argon) flow rate/(L min−1) 0.8 ICP-OES parameters RF power input/W 1200 Observation Lateral viewing; 15 mm above load coil Gas (argon) flow rates/(L min−1) outer: 12.0; intermediate: 0.6; sheath: 0.2; carrier: 0.6 LA-ICP-OES results 22.5.2012 Universidad de La Laguna 161 Matrix NaF NaCl T/°C 300 450 600 300 450 600 CC-1L/% 0.81 ± 0.09 1.2 ± 0.1 1.5 ± 0.1 0.84 ± 0.07 1.3 + 0.09 1.6 ± 0.1 CC-2L/% 0.17 ± 0.03 0.87 ± 0.09 1.2 ± 0.1 0.18 ± 0.02 0.93 ± 0.08 1.3 ± 0.2 CC-3L/% 0.10 ± 0.01 0.47 ± 0.07 1.0 ± 0.1 0.11 ± 0.02 0.50 ± 0.08 1.1 ± 0.1 a) Content of carbon in: first layer – CC-1L, second layer – CC-2L, and third layer – CC-3L.