Molekulární identifikace •Druh, jedinec, pohlaví MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Identifikace druhů Definice druhu •Koncept biologického druhu (Mayr, 1942) – RIM = post- nebo prezygotické bariéry toku genů (ne vždy tak jednoduché – hybridní zóny, alopatrická speciace, asexuální druhy atd.) • •Proč je vůbec potřeba druhy určovat? •Ochranářská biologie – je nutno rozhodnout o taxonomické jednotce (druhu), která vyžaduje pozornost •Forenzní genetika, vývojová stadia bez determinačních znaků, identifikace kořisti v trávicím traktu predátorů, atd. Barcoding is a standardized approach to identifying plants and animals by minimal sequences of DNA, called DNA barcodes. DNA Barcode: A short DNA sequence, from a uniform locality on the genome, used for identifying species. barcodes 12august2004 1-1 Stoeckele et al. The Barcoding Pipeline first idea in 2003 CBOL CBOL in 2005 iBol iBOL 2010-2015 world species known and unknown 26dec2004 Why barcode animal and plant species? 2. What are the benefits of standardization? why barcode standardization •Results so far suggest that a mitochondrial gene will enable identification of most animal species. •Focus to date: For animals, a 658 base-pair fragment of the mitochondrial gene, cytochrome oxidase subunit I (mtCOI). •For plants, mitochondrial genes do not differ sufficiently to distinguish among closely related species. Promising markers are genes on cpDNA: matK and rbcL •For bacteria, a 16S-rDNA emerges as very useful marker (especially in using next-generation sequencing) Why barcode animals with mitochondrial DNA? •Mitochondria, energy-producing organelles in plant and animal cells, have their own genome. Twenty years of research have established the utility of mitochondrial DNA sequences in differentiating among closely-related animal species. • •Four properties make mitochondrial genomes especially suitable for identifying species: why mitochondria Greater differences among species, on average 5- to 10-fold higher in mitochondrial than in nuclear genes. Thus shorter segments distinguish among species, and because shorter, less expensively. •Copy number. There are 100-10,000 more copies of mitochondrial than nuclear DNA per cell, making recovery, especially from small or partially degraded samples, easier and cheaper. • •Relatively few differences within species in most cases. Small intraspecific and large interspecific differences signal distinct genetic boundaries between most species, enabling precise identification with a barcode. • •Introns, which are non-coding regions interspersed between coding regions of a gene, are absent from mitochondrial DNA of most animal species, making amplification straightforward. Nuclear genes are often interrupted by introns, making amplification difficult or unpredictable. human chimp anopheles pip 26dec2004 Cytochrome c oxidase I (COI) contains differences representative of those in other protein-coding genes. Possible gains in accuracy or cost using a different protein-coding gene would likely be small. What do barcode differences among and within animal species studied so far suggest? •Barcodes identify most animal species unambiguously. •Approximately 2-5% of recognized species have shared barcodes with closely-related species. Many of the species with overlapping barcodes hybridize regularly. •In all groups studied so far, distinct barcode clusters with biologic co-variation suggest cryptic species. „barcoding gap“ intra inter 28dec2004 Barcoding North American birds Tak co třeba znamená toto? > Barcoding Hominidae2 Barcodes affirm the unity of the species Homo sapiens. Comparisons show we differ from one another by only 1 or 2 nucleotides out of 648, while we differ from chimpanzees at 60 locations and gorillas at 70 locations. A barcoder? background What isn’t DNA Barcoding? §It is not intended to, in any way, supplant or invalidate existing taxonomic practice. § §It is not DNA taxonomy; it does not equate species identity, formally or informally, with a particular DNA sequence. § §It is not intended to duplicate or compete with efforts to resolve deep phylogeny (e.g., Assembling the Tree of Life, ATOL). Fly Didemnum Xmas_worm2 Fish2 Wiebe_logo_6Sept2004 CoML_Logo What are the main limits to barcoding encountered so far? •Groups with little sequence diversity •Incomplete lineage sorting •Resolution of recently diverged species •Hybrids •Nuclear pseudogenes •Gene tree vs. organismal tree Příklad: Myotis blythii vs. Myotis myotis - introgrese mtDNA Berthier et al. 2006 M. myotis - Evropa M. blythii - Asie Příklad: Myotis blythii vs. Myotis myotis - introgrese mtDNA Berthier et al. 2006 M. myotis - Evropa M. blythii - Asie samec Příklad: Myotis blythii vs. Myotis myotis - introgrese mtDNA M. myotis - Evropa M. blythii - Asie Tendence ke křížení s podobnými hybridy vedla k nárůstu proporce genomu M. blythii v Evropě Kolonizující (invazní) druh „ukradne“ mtDNA původnímu druhu (Currat et al. 2008) MLtree 98/99/1.00 70/-/- 94/100/1.00 100/100/1.00 96/96/1.00 -/97/- 66/77/0.95 89/93/1.00 A B C2 C1 D Příklad: Praomys cf. daltoni complex - introgrese mtDNA Kolik je zde druhů? Čtyři podle genotypu – cca 7% divergence (cyt b)? Dva druhy podle fenotypu? C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf DSC_5869 Fig. 2: Phylogenetic relationships between haplotypes recovered by maximum likelihood (ML) analysis. Main clades are identified on the right border; broad lines separate presumed species.The numbers above branches represent ML and neighbour joining (NJ) bootstrap support, and Bayesian posterior probability, respectively. See text and Table 1 for more details on localities and haplotypes. NOT CORRECTED !!! Fig 1 zaklad.tif 48 51 41 7 37 12 17 13 20 27 19 21 31 8 35 26 16 24 11 30 33 38 29 34 1 49 44 50 46 40 3 2 6 47 43 45 39 42 67 71 61 68 55 54 57 56 53 32 10 23 15 60 63 58 18 70 66 62 65 64 82 83 86 72 75 88 84 73 77 85 78 74 80 91 4 Senegal river Niger river Volta river 79 89 90 Clade B Clade A Clade D Clade C1 Clade C2 SENEGAL GUINEA MALI BURKINA FASO GHANA BENIN TOGO IVORY COAST NIGER NIGERIA CAMEROON 69 36 14 25 9 5 59 81 76 87 52 22 28 C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf C:\Documents and Settings\Pepa Bryja\Local Settings\Temporary Internet Files\Content.IE5\1VH7BA5N\MCAN04317_0000[1].wmf Fig. 1: Map of sampling points showing the distribution of principal phylogenetic clades identified on the basis of mtDNA analyses. Different symbols represent populations belonging to different clades: clade A (black triangles), clade B (dark purple circle), clade C1 (green triangles), clade C2 (yellow squares), and clade D (red circles). Numbers indicate collection sites. See Table 1 for description of haplotypes occurring at different localities. Rivers mentioned in the text are shown in blue. The presumed distribution of mtDNA clades is marked by dashed lines of particular colours. Fig 1 zaklad.tif 48 51 41 7 37 12 17 13 20 27 19 21 31 8 35 26 16 24 11 30 33 38 29 34 1 49 44 50 46 40 3 2 6 47 43 45 39 42 67 71 61 68 55 54 57 56 53 32 10 23 15 60 63 58 18 70 66 62 65 64 82 83 86 72 75 88 84 73 77 85 78 74 80 91 4 Senegal river Niger river Volta river 79 89 90 Clade B Clade A Clade D Clade C1 SENEGAL GUINEA MALI BURKINA FASO GHANA BENIN TOGO IVORY COAST NIGER NIGERIA CAMEROON 69 36 14 25 9 5 59 81 76 87 52 22 28 What is species??? Fig. 1: Map of sampling points showing the distribution of principal phylogenetic clades identified on the basis of mtDNA analyses. Different symbols represent populations belonging to different clades: clade A (black triangles), clade B (dark purple circle), clade C1 (green triangles), clade C2 (yellow squares), and clade D (red circles). Numbers indicate collection sites. See Table 1 for description of haplotypes occurring at different localities. Rivers mentioned in the text are shown in blue. The presumed distribution of mtDNA clades is marked by dashed lines of particular colours. Fig 1 zaklad.tif 48 51 41 7 37 12 17 13 20 27 19 21 31 8 35 26 16 24 11 30 33 38 29 34 1 49 44 50 46 40 3 2 6 47 43 45 39 42 67 71 61 68 55 54 57 56 53 32 10 23 15 60 63 58 18 70 66 62 65 64 82 83 86 72 75 88 84 73 77 85 78 74 80 91 4 Senegal river Niger river Volta river 79 89 90 Clade B Clade A Clade D Clade C1 SENEGAL GUINEA MALI BURKINA FASO GHANA BENIN TOGO IVORY COAST NIGER NIGERIA CAMEROON 69 36 14 25 9 5 59 81 76 87 52 22 28 Morphology and ecology Fig. 1: Map of sampling points showing the distribution of principal phylogenetic clades identified on the basis of mtDNA analyses. Different symbols represent populations belonging to different clades: clade A (black triangles), clade B (dark purple circle), clade C1 (green triangles), clade C2 (yellow squares), and clade D (red circles). Numbers indicate collection sites. See Table 1 for description of haplotypes occurring at different localities. Rivers mentioned in the text are shown in blue. The presumed distribution of mtDNA clades is marked by dashed lines of particular colours. Fig 1 zaklad.tif 48 51 41 7 37 12 17 13 20 27 19 21 31 8 35 26 16 24 11 30 33 38 29 34 1 49 44 50 46 40 3 2 6 47 43 45 39 42 67 71 61 68 55 54 57 56 53 32 10 23 15 60 63 58 18 70 66 62 65 64 82 83 86 72 75 88 84 73 77 85 78 74 80 91 4 Senegal river Niger river Volta river 79 89 90 Clade B Clade A Clade D Clade C1 SENEGAL GUINEA MALI BURKINA FASO GHANA BENIN TOGO IVORY COAST NIGER NIGERIA CAMEROON 69 36 14 25 9 5 59 81 76 87 52 22 28 Karyotypes Fig. 1: Map of sampling points showing the distribution of principal phylogenetic clades identified on the basis of mtDNA analyses. Different symbols represent populations belonging to different clades: clade A (black triangles), clade B (dark purple circle), clade C1 (green triangles), clade C2 (yellow squares), and clade D (red circles). Numbers indicate collection sites. See Table 1 for description of haplotypes occurring at different localities. Rivers mentioned in the text are shown in blue. The presumed distribution of mtDNA clades is marked by dashed lines of particular colours. Fig 1 zaklad.tif 48 51 41 7 37 12 17 13 20 27 19 21 31 8 35 26 16 24 11 30 33 38 29 34 1 49 44 50 46 40 3 2 6 47 43 45 39 42 67 71 61 68 55 54 57 56 53 32 10 23 15 60 63 58 18 70 66 62 65 64 82 83 86 72 75 88 84 73 77 85 78 74 80 91 4 Senegal river Niger river Volta river 79 89 90 Clade B Clade A Clade D Clade C1 SENEGAL GUINEA MALI BURKINA FASO GHANA BENIN TOGO IVORY COAST NIGER NIGERIA CAMEROON 69 36 14 25 9 5 59 81 76 87 52 22 28 Mitochondrial DNA + microsatellites in Benin + karyotypes Fig. 1: Map of sampling points showing the distribution of principal phylogenetic clades identified on the basis of mtDNA analyses. Different symbols represent populations belonging to different clades: clade A (black triangles), clade B (dark purple circle), clade C1 (green triangles), clade C2 (yellow squares), and clade D (red circles). Numbers indicate collection sites. See Table 1 for description of haplotypes occurring at different localities. Rivers mentioned in the text are shown in blue. The presumed distribution of mtDNA clades is marked by dashed lines of particular colours. Fig 1 zaklad.tif 48 51 41 7 37 12 17 13 20 27 19 21 31 8 35 26 16 24 11 30 33 38 29 34 1 49 44 50 46 40 3 2 6 47 43 45 39 42 67 71 61 68 55 54 57 56 53 32 10 23 15 60 63 58 18 70 66 62 65 64 82 83 86 72 75 88 84 73 77 85 78 74 80 91 4 Senegal river Niger river Volta river 79 89 90 Clade B Clade A Clade D Clade C1 SENEGAL GUINEA MALI BURKINA FASO GHANA BENIN TOGO IVORY COAST NIGER NIGERIA CAMEROON 69 36 14 25 9 5 59 81 76 87 52 22 28 Splitting approach taking morphology and ecology into account – the reproductive barrier between Clade C1 and Clade D remains to be identified Fig. 1: Map of sampling points showing the distribution of principal phylogenetic clades identified on the basis of mtDNA analyses. Different symbols represent populations belonging to different clades: clade A (black triangles), clade B (dark purple circle), clade C1 (green triangles), clade C2 (yellow squares), and clade D (red circles). Numbers indicate collection sites. See Table 1 for description of haplotypes occurring at different localities. Rivers mentioned in the text are shown in blue. The presumed distribution of mtDNA clades is marked by dashed lines of particular colours. Identifikace jedinců Identifikace jedince - metody •DNA fingerprinting (název dnes používán pro různé metody) - velké množství kvalitní DNA - technická náročnost + univerzalita • •AFLP - kvalitní nedegradovaná DNA + univerzalita • •Sekvenování, alozymy - nemusí rozlišit jedince • •Mikrosatelity + stačí malé množství nekvalitní DNA, optimální pro neinvazivní přístupy - je nutné znát konkrétní lokusy a sekvence specifických primerů Mikrosatelity •Tandemová opakování krátkých motivů • •Izolace DNA • •PCR • •Detekce → sekvenátor, fragmentační analýza CTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTT CTTTCTTTCTTTCTTTC CTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTT CTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTT tools_1a 3LOKCELE detektor laserový paprsek Identifikace jedinců závisí na stupni polymorfismu •multilocus microsatellite fingerprinting – power estimated as „probability of identity“ (P(ID)) (Waits et al. 2001) • Number of loci (H=0.6) Random Sibs •pilot studies with tissue samples are required to identify P(ID) in a population studied by e.g. Non-invasive methods Medvědi v Pyrenejích Taberlet et al. 1997 •Trus a chlupy • •24 mikrosatelitových lokusů • •4 samci a jedna samice (o jednoho víc než podle stop a fotografií) • •Multiple-tube approach, mnohonásobné opakování PCR reakcí Lidská forenzní genetika •Pozůstatky vojáků z války Vietnam a Korea Identifikace na základě mtDNA příbuzných osob (lze jen někdy) V současnosti: vzorek DNA (krve) při odvodu, jiné markery Armed Forces Repository of Specimen Samples for the Identification of Remains • •Soudní pře Clinton-Lewinská Pozůstatky ruského cara Nikolaje II •Kriminalistika • •Oběti tragických událostí • • • 461921_Clinton_Lewinski News Czar-Nicholas-II- Klony Bambus Sasa senanensis •Suyama et al. 2000 • •Plocha 10 hektarů • •AFLP • •22 klonů • •Klon na ploše 300 m v průměru s_senanensis_M Slavní klonální bezobratlí •Rotifera – Bdelloidea • •Ostracoda (Darwinula) • •Partenogenetické klony vysokého stáří (milióny let) Darwinula stevensoni •organismy složené z buněk s různými genotypy • •Dictyostelium discoideum chimérismus je pravidelná součást života Genetické chiméry Genetické chiméry •Ficus srůst kořenů různých jedinců • •sumky Botryllus schlosseri chimérické kolonie příbuzní jedinci • •Diplosoma listerianum i nepříbuzní Celleporella hyalina (Bryozoa) Hughes et al. 2004 •Pravděpodobnost fůze koreluje s příbuzností • •Histokompatibilita • •Lepší rozpoznávání v pokročilejších fázích → dozrávání imunokompetence • •Speciální proteiny (spongikany...) Genetické chiméry •kosman bělovousý Callithrix jacchus (asi i Saguinus) • •Dizygotická dvojčata • •DNA fingerprinting krve • •Jsou to hematopoietické chiméry • •Během embryonálního vývoje vzájemná výměna buněk kostní dřeně • •Týká se to asi jen krve (neinvazivní metody – chlupy, trus →jeden genotyp) • •Průnik embryonálních erytroblastů a volné DNA přes placentu u člověka • •(pohlaví dítěte před narozením lze určit i pomocí PCR sekvencí typických pro Chr Y, jako templát periferní krev matky) • title07-01 sagui_de_tufos_brancos Identifikace pohlaví Genetická identifikace pohlaví 1)druhy s nevýrazným pohlavním dimorfismem (ptáci) 2)zárodky v ranném stádiu ontogeneze (embrya) 3)neinvazivní metody (trus, skořápky, šupiny) 4) Genetická identifikace pohlaví •druhy s genetickou determinací pohlaví (tj. nejčastěji pohlavní chromozómy) •ptáci (♂=ZZ, ♀=ZW) •savci (♂=XY, ♀=XX) •amplifikace DNA oblasti specifické pro heterogametické pohlaví •W, Y – malé chromozómy http://www.nature.com/scitable/content/18935/pierce_4_10_large_2.jpg Určení pohlaví – ptáci Griffith et al. 1998 •CHD1W a CHD1Z, geny na pohlavních chromosomech (chromobox-helicase-DNA-binding gene (CHD) – Griffiths & Tiwari 1995) • •Primery amplifikují introny obou genů • •Introny se mohou lišit délkou • •Existují už tři možnosti běžně používaných primerů • •Problematické druhy Struthioniformes • ♂ ♂ ♂ ♂ ♀ ♀ ♀ ostrich Manorina melanocephala (Meliphagidae) Arnold et al. 2001 •Synové fungují jako pomocníci • •U adultů 2,31 samců na 1 samici • •Mláďata v hnízdě poměr pohlaví 1:1 (57:57) • •První se líhnou samci (v 17 hnízdech z 18) Při opouštění hnízda jsou větší a těžší • • OW_NoisyMinerThumbnail medosavka hlučná Určení pohlaví - savci •Amplifikace genu na Chr Y (Sry) (nejlépe duplex PCR s genem na X nebo autosomech) • • •Microtus cabrerae Sry na Chr X Ellobius, Tokudaia Sry zcela chybí •Nannomys • Velká variabilita • • Bryja a Konečný 2003 Ellobius Tokudaia osimensis M. cabrerae DSC_5565 Nannomys Určení pohlaví - savci •Amplifikace genu na Chr Y (Sry) (nejlépe duplex PCR s genem na X nebo autosomech) • • • • •Analýzy z trusu: nutno používat druhově specifické markery (jinak cross-amplification s druhy tvořícími potravu) bear3 odocoileus x Murphy et al. 2003 Bryja a Konečný 2003 Určení pohlaví – jiné skupiny •Chr Y občas i u rostlin Rumex • •Plazi Calotes versicolor Sry má i 50% samic! • •Hledání markerů pomocí nespecifických metod (RAPD, AFLP) aflp-gel_01 image002 Calotes_versicolor400