\(\left( \begin{array}{rr} 3 & 2\\ 4 & 1 \end{array}\right)\)
\(\left( \begin{array}{rr} 3 & -1\\ 1 & 1 \end{array}\right)\)
\(\left( \begin{array}{rrr} 0 & 1 & 0\\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)\)
\(\left( \begin{array}{rrr} 1 & 1 & 1\\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array}\right)\)
Výsledky:
\(\lambda_1=-1, \vec{u}=(t,-2t), t \in \mathbb{C}; \lambda_2=5, \vec{u}=(t,t), t \in \mathbb{C}\)
\(\lambda_1=\lambda_2=2, \vec{u}=(t,t), t \in \mathbb{C}\)
\(\lambda_1=\lambda_2=\lambda_3=0, \vec{u}=(t,0,0), t \in \mathbb{C}\)
\(\lambda_1=\lambda_2=1, \vec{u}=(t,s,-s), t,s \in \mathbb{C}; \lambda_3=2, \vec{u}=(t,t,0), t \in \mathbb{C}\)