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ABSTRACT

Motivation: PSORTb has remained the most precise bacterial
protein subcellular localization (SCL) predictor since it was first made
available in 2003. However, the recall needs to be improved and
no accurate SCL predictors yet make predictions for archaea, nor
differentiate important localization subcategories, such as proteins
targeted to a host cell or bacterial hyperstructures/organelles.
Such improvements should preferably be encompassed in a freely
available web-based predictor that can also be used as a standalone
program.
Results: We developed PSORTb version 3.0 with improved
recall, higher proteome-scale prediction coverage, and new refined
localization subcategories. It is the first SCL predictor specifically
geared for all prokaryotes, including archaea and bacteria with
atypical membrane/cell wall topologies. It features an improved
standalone program, with a new batch results delivery system
complementing its web interface. We evaluated the most accurate
SCL predictors using 5-fold cross validation plus we performed
an independent proteomics analysis, showing that PSORTb 3.0 is
the most accurate but can benefit from being complemented by
Proteome Analyst predictions.
Availability: http://www.psort.org/psortb (download open source
software or use the web interface).
Contact: psort-mail@sfu.ca
Supplementary Information: Supplementary data are availableat
Bioinformatics online.
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1 INTRODUCTION
Computational prediction of bacterial protein subcellular
localization (SCL) provides a quick and inexpensive means
for gaining insight into protein function, verifying experimental
results, annotating newly sequenced bacterial genomes, detecting
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potential cell surface/secreted drug targets, as well as identifying
biomarkers for microbes. In recent years, this area of computational
research has achieved an impressive level of precision (Gardy and
Brinkman, 2006), allowing SCL prediction tools to be reliably
integrated into automated proteome annotation pipelines and to
complement analyses of high-throughput proteomics experiments.

PSORTb version 2.0 (Gardy et al., 2005), the most precise
bacterial SCL prediction software (Gardy and Brinkman, 2006),
was introduced in 2005, and has been widely used for the SCL
prediction of individual proteins as well as for whole proteomes.
It generates prediction results for five major localizations for
Gram-negative bacteria (cytoplasmic, inner membrane, periplasmic,
outer membrane and extracellular) and four localizations for
Gram-positive bacteria (cytoplasmic, cytoplasmic membrane, cell
wall and extracellular). Since then, numerous SCL prediction tools
have been created for bacteria using a variety of machine learning
algorithms: CELLO version 2.0 (Yu et al., 2006) uses multi-
layered support vector machines (SVMs); SLP-Local predicts SCLs
based on local composition and distance frequencies of amino
acid groups (Matsuda et al., 2005); PSL101 makes predictions
based on amino acid compositions coupled with structural feature
conservations (Su et al., 2007); and PSLDoc bases its SVM features
on gapped di-peptides (Chang et al., 2008). Other tools such as
Gpos-PLoc (Shen and Chou, 2007) and Gneg-PLoc (Chou and
Shen, 2006) make predictions for bacterial proteins by clustering
Swiss-Prot proteins with annotated SCLs based on their GO terms
and amino acid properties using the K-nearest neighbor algorithm.
Some methods, such as SubcellPredict and HensBC, combine
multiple classifying algorithms in order to boost the prediction
performance (Bulashevska and Eils, 2006; Niu et al., 2008). LocateP
(Zhou et al., 2008) and Augur (Billion et al., 2006) differentiate
between different types of membrane-anchored, cell wall-anchored
and secreted proteins for Gram-positive bacterial proteomes. Based
on the principle that training datasets could benefit from being genus
specific, TBPred (Rashid et al., 2007) was developed specifically for
the genus of Mycobacterium spp.

Even though many bacterial SCL prediction methods have been
published, most of them focus on optimizing prediction accuracy—
maximizing the number of positive predictions on the training
dataset, at the expense of producing more false positive results.
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Furthermore, none of the current bacterial SCL predictors provide
standalone versions of software for users. Most web servers also
do not provide convenient means for analyzing whole bacterial
proteomes. PSORTb remains one of the most user-friendly bacterial
SCL prediction tools, providing both a web server and a standalone
version, and allowing for both single and batch sequence processing.
Its accompanying database, PSORTdb (Rey et al., 2005b), provides
a dataset of experimentally verified protein localizations, as well
as pre-computed prediction results for more than 1000 sequenced
bacterial genomes available from NCBI. Because of its focus on
maintaining high precision, it does not return a forced prediction
if the localization score does not reach a minimum cut-off. As a
result, only ∼50% of proteins encoded in Gram-negative bacterial
genomes and ∼75% of proteins encoded in Gram-positive bacterial
genomes receive a prediction from PSORTb. Thus, there is a need
to produce an updated version with better genome coverage.

The current localization classifications for PSORTb and most
existing SCL prediction software do not provide any information on
proteins targeted to specialized bacterial hyperstructures/organelles
such as the flagellum, the fimbrium/pilus or proteins destined
to the host cell. Gneg-PLoc (Chou and Shen, 2006) attempts to
address this by providing prediction categories for the nucleosome
(DNA-binding proteins) and the flagellum. Gpos-PLoc (Shen and
Chou, 2007) provides predictions for Gram-positive periplasmic
proteins. Some studies have attempted to predict effector proteins
secreted by the Type III secretion system based on N-terminal signal
sequence of proteins (Arnold et al., 2009; Samudrala et al., 2009).
Ideally, comprehensive SCL prediction software should incorporate
predictions for these more specialized compartments in addition to
reporting major SCLs.

Typically, bacterial organisms that stain Gram-positive consist
of one cytoplasmic membrane and a thick cell wall, whereas a
Gram-negative organism is enclosed by a thin cell wall within a
periplasm and an outer membrane that surrounds the entire cell.
However, some bacteria have cell structures that do not fit with the
classical Gram-negative or Gram-positive cell model. For example,
Mycoplasma spp. and other members of the phylum Tenericutes
stain Gram-negative, yet they have no outer membrane or cell wall
(Miyata and Ogaki, 2006). Deinococcus spp. has a thick cell wall
and is considered as a Gram-positive organism, but they also have
an outer membrane (Thompson and Murray, 1981). Therefore, to
make protein SCL predictions for all prokaryotes, not only does an
archaeal predictor need to be created, but we also need to be able
to make a predictor that can handle the four possible bacterial cell
structures that we now know are possible: Gram-positive without
an outer membrane (i.e. traditional Gram-positives), Gram-negative
with an outer membrane (i.e. traditional Gram-negatives), Gram-
positive with an outer membrane and Gram-negative without an
outer membrane. Only then is a predictor able to cover the true
diversity of prokaryotic life, which will become more important as
increased sampling of prokaryotes occurs through metagenomics
and other projects (Wu et al., 2009).

In addition to bacterial SCL prediction algorithms, several
software packages for predicting SCL of eukaryotic proteins have
been developed, despite the fact that they are much harder to
predict due to the greater complexity of eukaryotic cells (see
http://www.psort.org for a list of available eukaryotic protein SCL
predictors). However, there are no dedicated SCL prediction tools for
archaea, the third domain of life whose basic cellular compartments

are similar to that of a Gram-positive bacterium. Not only do
they represent an entire domain of abundant organisms that inhabit
the earth, they produce many thermotolerant and halotolerant
enzymes that have wide industrial applications (de Champdore
et al., 2007). Furthermore, identification of novel cell surface
and secreted proteins can also be very helpful for designing
new methods for the detection of specific archaeal species in the
environment.

To address these issues, we have created PSORTb version 3.0,
with a significant increase in recall of predictions as well as
proteome prediction coverage while maintaining high precision (see
2.3 Software evaluations—using literature and Swiss-Prot-based
datasets for definitions of precision and recall). In addition, we
recognize that the current localization classification scheme does
not adequately cover all bacterial proteins’detailed localization sites.
Therefore, we have added new localization subcategories commonly
found in many groups of bacteria—the first subcategory localization
system for an SCL predictor. Options specifically for predicting
archaeal proteins and proteins in organisms with membrane
structures not reflecting Gram stains have also been implemented.
We further improved usability by adding an online batch submission
system with formatted results returned by email. For the standalone
version, we have simplified the installation procedure. Finally, we
examined the results of combining complementary SCL predictions
in order to produce accurate predictions for the majority of
prokaryotic proteomes, using an independent, proteomics-derived
laboratory test dataset to aid the analysis.

2 METHODS

2.1 Training dataset
The training dataset contains data from ePSORTdb 2.0 (Rey et al., 2005b),
which was used to build PSORTb 2.0, Swiss-Prot version 49 (Wu et al.,
2006), plus protein localization data obtained from manual literature
search (the latter comprises 30% of the dataset). From Swiss-Prot, protein
localizations were based on the ‘Comments—Subcellular location’ field with
review. A natural language processing predictive model, TeGRR (Melli et al.,
2007), was used as a text mining technique on literature abstracts to confirm
the validity of the Swissprot SCL annotation. Organisms were separated
into Gram-positive and Gram-negative groups based on their phylum/class
and literature review. Bacteria belonging to the phyla of Actinobacteria,
Chloroflexi and Deinococcus-Thermus of the order Thermales, Firmicutes of
class Bacilli and most Clostridia were categorized as Gram-positive bacteria.
Bacteria in phylum groups not mentioned above were categorized as Gram-
negative. For proteins from the Swissprot library with annotated subcellular
locations, those labeled as ‘fragment’, ‘by similarity’, ‘probable’ and
‘potential’ were removed. Those that were annotated with very specialized
localizations such as ‘chlorosome’ and ‘chromatophore’ were not used for
this dataset. Proteins that were labeled with ambiguous terms such as
‘cell envelope’ were manually confirmed for their specific localization if
possible, or discarded if the precise localization could not be determined.
Some protein entries were manually retrieved from the literature as well as
the EcoSal database (http://www.ecosal.org) and the Pseudomonas Genome
Database (Winsor et al., 2008). The archaeal testing dataset was obtained in
a similar fashion as the bacterial dataset. The training dataset for building the
archaeal predictor was created by combining archaeal proteins with Gram-
positive/Gram-negative cytoplasmic and cytoplasmic membrane proteins,
as well as Gram-positive cell wall and extracellular proteins, as this was
found to notably increase accuracy when evaluated using archaeal proteins.
In total, the Gram-negative training dataset has expanded from 1572 to 8230
proteins; the Gram-positive dataset has increased from 576 to 2652 proteins,
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Table 1. New subcategory SCLs predicted by PSORTb 3.0

SCL subcategories Description

Host-associated Any proteins destined to the host cell cytoplasm, cell
membrane or nucleus by any of the bacterial
secretion systems

Type III secretion Components of the Type III secretion apparatus
Fimbrial Components of a bacterial or archaeal fimbrium or

pilus
Flagellar Components of a bacterial or archaeal flagellum
Spore Components of a spore

and 810 archaeal proteins have been added to the training dataset. The full
training dataset is available at http://www.psort.org/dataset/datasetv3.html.

2.2 Software implementation and updates
2.2.1 New localization subcategories To account for proteins targeted to
some of the common bacterial hyperstructures and host-destined SCLs, new
subcategory localizations have been introduced in PSORTb 3.0, as listed
in Table 1. This represents, to our knowledge, the first implementation of
subcategories for primary SCL localizations, for an SCL predictor. These
subcategory localizations for a protein were identified using the SCL-
BLAST module, which infers localization by homology using criteria that
are of measured high precision (Nair and Rost, 2002). Proteins detected to
have a secondary localization are also predicted as one of the four main
categories for Gram-positive bacteria or one of five main compartments for
Gram-negative bacteria (or similarly for those bacteria with atypical cell
structures). Any protein exported past the outer-most layer of the bacterial
cell is considered as extracellular, whereas proteins localized to one of the
membranes that are part of a hyperstructure (such as the flagellum) are
identified both as an inner or outer membrane protein as well as a protein of
that hyperstructure. The basal components of the flagellum are not annotated
as such, since they are often homologous to proteins that are not part of the
flagellar apparatus (for example, a general ATPase).

2.2.2 Implementation changes to software The implementation of the new
version of PSORTb is similar to version 2.0 (Gardy et al., 2005), with
the following changes: motifs that provided false prediction results were
either updated or removed. SCL-BLASTdbs for both Gram-positive and
Gram-negative options were updated with the newly expanded dataset. The
transmembrane α-helix predictor module HMMTOP (Tusnady and Simon,
2001) was replaced with S-TMHMM, an open source transmembrane α-helix
predictor (Viklund and Elofsson, 2004). The program was modified such that
the software reports the number of helices predicted. As with the PSORTb
2.0 set-up, this module first examined if an alpha helix was predicted in the
first 70 amino acid residues; if so, this helix would be subtracted. It then
examined the rest of the protein sequence, returning a positive prediction if
more than two helices were found, to ensure high precision. Although this
leads to membrane-associated proteins being under-predicted by this module,
such proteins are instead predicted by the SCL-BLAST module and SVMs
(mentioned below).

All SVMs, except for the Gram-negative outer membrane SVM module
and Gram-positive cytoplasmic SVM module, were retrained with the new
dataset following the protocols of PSORTb 2.0 paper (Gardy et al., 2005).
The aforementioned two SVMs were not updated because the new SVMs
did not improve significantly in performance when retrained. For PSORTb
2.0, we made use of an implementation of generalized suffix tree (Wang
et al., 1994) to extract frequent subsequences, which occur in more than a
predefined fraction of total number of proteins of interest. These frequent
subsequences were used as features to discriminate localizations of related
proteins. The implementation first sampled a subset of related proteins, then

extracted frequent subsequences from this subset and finally checked whether
these frequent subsequences were frequent in all related proteins. This
method may miss some frequent subsequences or produce false positives.
To overcome this issue, we used another augmentation of generalized suffix
tree (Matias et al., 1998). The algorithm guarantees returning all the frequent
subsequences and its running time is in the order of the total length of the
related protein sequences.

A Bayesian network combines all module predictions and generates one
final localization result based on the performance accuracies of each of the
updated modules.

2.2.3 New prediction categories for archaea and atypical prokaryotic
organisms The SCL predictor for archaea was implemented with similar
components as the Gram-positive predictor, producing predictions for four
localizations and two subcategory localizations (flagellum and fimbrium),
but using the archaeal training dataset mentioned above. Any motifs that
reduced the precision for archaeal SCL prediction were removed.

Two other categories were implemented for bacteria with atypical cellular
structures–organisms that stain Gram-positive but have an outer membrane,
and organisms that stain Gram-negative but have no outer membrane. For the
former category, the Gram-negative pipeline was employed, which enables
outer membrane and periplasmic localizations to be predicted. For the latter
category, the Gram-positive modules were used, but the cell wall localization
prediction was disabled, since the intended organisms (i.e. Tenericutes) lack
cell walls.

2.2.4 Software usability improvements To improve usability of the new
software version, the web interface of PSORTb 3 now allows user to upload a
batch job (such as an entire proteome), and a formatted results file is returned
to the user by email when computations are completed. The installation
process of the standalone software has also been improved such that the
process requires fewer packages and can be installed in a more automated
manner. PSORTb 3.0 works with most versions of Linux as well as Mac OS
X (except Snow Leopard at press time).

2.3 Software evaluations—using literature and
Swiss-Prot-based datasets

Five-fold cross validation was performed on the updated Gram-positive
bacteria, Gram-negative bacteria and archaeal datasets using the approach
as described in the PSORTb 2.0 paper (Gardy et al., 2005). To use this new
dataset to evaluate the performance of other SCL predictors, proteins from
the training set of PSORTb 2.0 were subtracted from this evaluation dataset,
since this particular set of proteins is included in the training dataset of
most of the bacterial SCL prediction tools. To improve the robustness of the
assessment of accuracy, homology reduction was performed on the testing
datasets using CD-HIT (Li and Godzik, 2006) such that none of the sequences
in the testing set exhibited >80% identity with other sequences in the set.
Performance metrics used to evaluate different software include precision,
defined as TP/(TP + FP); recall, defined as TP/(TP + FN); accuracy, defined as
(TP + TN)/(TP + TN + FP + FN); and Matthew’s Coefficient Constant (MCC),
defined as

MCC = TP·TN−FP·FN
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(1)

The following web servers were benchmarked for their predictive
capabilities, in addition to PSORTb versions 2.0 and 3.0: CELLO version
2.0 (Yu et al., 2006), Gneg-PLoc (Chou and Shen, 2006), Gpos-PLoc (Shen
and Chou, 2007), and Proteome Analyst version 2.5 (PA 2.5; Lu et al.,
2004), whose performance was previously shown to be comparable to
PSORTb 2.0 (Gardy and Brinkman, 2006). Proteome Analyst 3.0 (PA 3.0), an
unpublished method, was also included in this benchmark analysis, though
it could only be evaluated using a new proteomics-derived experimental
dataset, since we could not confirm that our test data was not in the training
data for this software. Methods that are specific to an organism, such as
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TBPred (Rashid et al., 2007), and methods that do not allow for user
submission of protein sequences, such as LocateP (Zhou et al., 2008) and
Augur (Billion et al., 2006), could not be included in this comparison. Two
of the recently developed methods, PSL101 (Su et al., 2007) and PSLDoc
(Chang et al., 2008) were not tested since the servers could not handle
large testing datasets. Once the level of precision was determined for each
software, those with highest precision were also evaluated for ‘proteome
coverage’, i.e. the proportion of proteins predicted in a deduced proteome
from a genome, at that level of precision.

2.4 Proteomics analysis
We performed a laboratory analysis to construct an experimental dataset
of proteins from a Gram-negative bacterium, Pseudomonas aeruginosa
PA01, which was used to assess PSORTb 2.0, PSORTb 3.0, PA 2.5 and
PA 3.0. This represents an independent dataset that includes hypothetical
and uncharacterized proteins with previously unknown SCLs. P.aeruginosa
is a bacterium noted for its diverse metabolic capacity and large
genome/proteome size, and so represents an excellent organism with which
to generate such a dataset (Stover et al., 2000). To generate this experimental
dataset, we extracted protein samples from the cytoplasmic, periplasmic
and secreted fractions of P.aeruginosa PA01. The resulting proteins in
each fraction were digested to peptides and differentially labeled using
formaldehyde isotopologues (Chan and Foster, 2008) prior to analysis by
liquid chromatography–tandem mass spectrometry (LC–MS/MS), exactly
as previously described (Chan et al., 2006). Abundance ratios between
SCL were calculated using MSQuant (http://msquant.sourceforge.net/). To
ensure a high-quality dataset with minimal contaminating proteins from other
subcellular compartments, proteins that were only found in the cytoplasmic
fraction and never in the other two soluble fractions were used to assess
PSORTb 3.0 and PA 3.0 prediction results. This dataset was also felt to be
most appropriate for assessment, since our analysis had suggested that most
proteins of previously unknown localization in the old version of PSORTb
were most likely cytoplasmic proteins. Further details on the experimental
protocols for this proteomics analysis of the subcellular fractions can be
found in Supplementary Material—methods for mass spectrometry protein
identification.

3 RESULTS

3.1 PSORTb 3.0: expanded predictive capabilities for
all prokaryotes and localization subcategories

We present version 3.0 of PSORTb. Like the version 2 series,
version 3.0 has the capability to make predictions for all Bacteria,
but now makes predictions for archaea and bacteria with atypical
cell wall/membrane structures as well. Users must simply select the
Domain of life (Bacteria or Archaea) and, in the case of bacteria,
select whether the organism is Gram-positive or Gram-negative or
‘Advanced’ (i.e. Gram-positive with an outer membrane or Gram-
negative without an outer membrane). Localization predictions now
include a subcategorization (see Section 2 as well as Table 1) for
more precise identification of localizations (i.e. a protein may be
in the outer membrane but also be a component of the flagellar
machinery, so it would be classified as ‘outer membrane’, with a
subcategory classification as ‘flagellar’).

3.2 PSORTb 3.0 outperforms PSORTb 2.0 and other
SCL prediction tools in terms of precision and
recall for bacterial proteins

The overall performance for PSORTb 3.0, calculated using
5-fold cross validation, along with the performance of other

Table 2. Performance comparisons for Gram-positive and Gram-negative
bacterial SCL prediction software

Softwarea Precisionb Recallb Accuracyb MCCb

Gram-positive
PSORTb 3.0 98.2 93.1 97.9 0.79
PSORTb 2.0 97.0 90.0 96.8 0.76
CELLO 2.5 93.7 93.7 96.9 0.76
Gpos-PLocc 91.2 90.7 95.5 0.64
PA 2.5d 90.0 81.8 90.9 0.57

Gram-negative
PSORTb 3.0 97.3 94.1 98.3 0.85
PA 2.5 97.3 92.0 97.9 0.85
PSORTb 2.0 95.9 85.3 96.3 0.69
SubcellPredicte 94.3 94.3 96.0 0.52
SLP-Locale 93.8 93.8 95.9 0.59
Gneg-PLocf 89.6 88.9 95.7 0.65
CELLO 2.5 87.5 87.5 95.0 0.61

aPA 3.0 is not included in the analysis since we are unable to determine the degree of
overlap between our testing dataset and the training dataset of PA 3.0.
bPrecision = TP/(TP+FP);recall = TP/(TP+FN);accuracy = (TP+TN)/(TP+FP+
TN+FN);MCC = TP·TN−FP·FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

where TP is the number of true positives, FP the number of false positives, TN the
number of true negatives, FN the number of false negatives and MCC the Matthew’s
Coefficient Constant.
cSoftware also predicts periplasmic SCL. None of the testing dataset proteins received
a periplasmic SCL prediction.
dSoftware only predicts cytoplasmic, membrane and extracellular categories. All
proteins (including cell wall proteins) submitted to the server will receive one or more
of these three localization predictions (or ‘no predictions’).
eSoftware only predicts cytoplasmic, periplasmic, and extracellular categories. All
proteins (including membrane proteins) submitted to the server will receive one of
these three SCL predictions.
f Software also predicts flagellar, fimbrium and nucleoid localizations; however, none
of test dataset proteins received one of these three SCL predictions.

recently published bacterial SCL prediction tools tested using
the homology-reduced dataset, are shown in Table 2. The SCL-
specific performance values for each predictor can be found in
Supplementary Tables 1 and 2. For the Gram-positive option,
both PSORTb 3.0 and PSORTb 2.0 exhibit precision values
>97%, whereas CELLO 2.5, Gpos-PLoc and PA 2.5 measured
<95%. Overall recall values were above 90% for all benchmarked
software except for PA 2.5, which seems to have an especially
low recall (11.5%) for membrane proteins. For the Gram-negative
option, PSORTb 3.0 still maintains the highest precision of 97.3%
and the highest recall of 94.1%, where recall has increased by
8.8% compared to PSORTb 2.0. PA 2.5, which was previously
shown to be comparable to PSORTb 2.0, still exhibits comparable
precision (97.3%) and recall (92.0%) with this new test dataset.
Although SubcellPredict and SLP-Local also show high overall
precision and recall values, their precision values for the periplasmic
localization prediction are under 55%. Gneg-PLoc and CELLO 2.5,
having precision values <90%, also exhibit lower specificities for
periplasmic localizations (56.5 and 35.2%, respectively) as well
as outer membrane localizations (66.4 and 34.6%, respectively).
Overall, PSORTb 3.0 appears to be the most accurate versus all
other comparable methods that were tested. Compared to PSORTb
2.0, PSORTb 3.0 appears to predict more cytoplasmic proteins in
particular, reflecting difficulty in identifying the localization of such
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Table 3. Performance comparison for archaeal proteins between the
PSORTb 3.0 archaeal option and software with Gram-positive SCL
prediction capability

Softwarea Precision Recall Accuracy MCCb

PSORTb 3.0 97.2 93.4 97.7 0.83
PSORTb 2.0 95.7 81.0 94.3 0.59
Gpos-PLocc 92.3 92.3 96.2 0.65
PA 2.5d 90.0 77.5 89.6 0.38
CELLO 2.5 86.5 86.5 93.2 0.46

aPA 3.0 is not included in the analysis since the exact content of the training dataset is
unknown and may skew the cross-validation results.
bSee Table 2 footnotes for definitions of the four performance metrics.
cSoftware also predicts periplasmic SCL. None of the testing dataset proteins received
a periplasmic SCL prediction.
dSoftware does not predict cell wall localization.

proteins without an improved training dataset (since literally they
have no signals to transport them to other localizations that may be
detected). PSORTb 3.0 has a marked improvement over PSORTb 2.0
in recall in particular for Gram-negatives, representing a significant
improvement in predictive capability for the only SCL predictor of
its kind that is freely available as a standalone package.

3.3 PSORTb 3.0 outperforms PSORTb 2.0 and other
bacterial prediction software for predicting
archaeal SCLs

The domain of archaea exhibits highly diverse morphologies.
However, for most archaeal organisms, the basic compartments are
similar to that of Gram-positive bacteria, namely cytoplasmic space,
cell membrane, a proteinaceous cell wall and secreted proteins.
The 5-fold cross validation results for the archaeal predictor are
shown in Table 3. SCL-specific performance values for different
predictors can be found in Supplementary Table 3. We compared
the performance of our archaeal-specific predictor to Gram-positive
bacterial SCL predictors since there is no other archaeal-specific
predictor. We found that overall, Gram-positive bacterial predictors
can predict archaeal cytoplasmic and membrane proteins with
relatively high recall and precision, but with extracellular proteins
the precision is quite low. PSORTb 3.0 is able to capture predictions
for some of the archaeal-specific proteins and demonstrates
superiority in performance compared to PSORTb 2.0 and to other
Gram-positive bacterial SCL predictors, and now represents the first
predictor specifically designed for the important domain of archaea.

3.4 Evaluation of PSORTb and PA 3.0 using a new
proteomics-derived experimental
dataset—PSORTb 3.0 has highest recall

PA 3.0, an unpublished version of bacterial SCL predictor
is also available through the Proteome Analyst website
(http://webdocs.cs.ualberta.ca/∼bioinfo/PA/) with updated
algorithms. We wished to compare the accuracy of this predictor,
but we were unable to determine the content of the software’s
training dataset and the degree of overlap with our testing dataset.
To account for the bias associated with testing and training with
the same dataset, we therefore opted to evaluate PSORTb 3.0 and
PA 3.0 using an independent dataset of 171 cytoplasmic proteins

Table 4. Evaluation of PSORTb 3.0, PSORTb 2, PA 3.0 and PA 2.5 using
an LC–MS/MS proteomics dataset of proteins found exclusively in the
cytoplasmic fraction when comparing to the periplasmic and extracellular
fractions of P.aeruginosa PA01

Software Precisiona Recall

PSORTb 3.0 96.3 91.8
PA 3.0 95.9 81.3
PA 2.5 90.7 51.5
PSORTb 2.0 90.3 54.4

aPrecision in this case refers to TP/(TP + FP), where FP refers to proteins predicted as
SCLs other than ‘Cytoplasmic’ or ‘Unknown’.

from the Gram-negative organism P.aeruginosa PA01. This dataset
likely contains some proteins that are part of the training dataset of
one or both tools, but most of the proteins with unknown functions
that are identified from the experiment were never previously
characterized for their localizations before and would not have been
included in any SCL predictor’s training data. This experimentally
generated proteomics dataset should more accurately evaluate the
software’s predictive capabilities for analyzing a proteome. Table 4
shows the precision and recall of each predictor, where a false
positive is defined as a protein receiving an SCL prediction that is
not ‘cytoplasmic’. The prediction results for PSORTb 2.0 and PA
2.5 are also shown for reference. Similar to the results derived using
the literature-derived dataset, PSORTb 3.0 and PA 3.0 demonstrate
higher precision and recall compared to PSORTb 2.0 and PA
2.5. However, more proteins in this dataset receive a prediction
from PSORTb 3.0 than from PA 3.0, indicating that PSORTb 3.0
achieves higher recall than PA 3.0. A full list of proteins used in
the proteomic analysis, and their prediction results, can be found in
Supplementary Table 4.

3.5 Proteome prediction coverage is increased
Although PSORTb 3.0 exhibited higher recall compared to PSORTb
2, our main goal was to increase prediction coverage for whole
bacterial proteomes while maintaining a high level of precision.
Figure 1 shows the coverage results of PSORTb 2.0 compared to
PSORTb 3.0. Coverage is defined as the proportion of proteins in
a deduced proteome that receives a prediction from the software
at a measured level of precision (see above for precision results).
The proteomes analyzed were chosen to cover a wide spectrum of
bacterial phyla, ranging from well-studied model organisms such
as Escherichia coli to lesser studied species that previously had
low predictive coverage with PSORTb 2.0. Among the species
tested, on average there was a 17.1% increase in proteome
prediction coverage for Gram-negative bacterial proteomes and
5.9% increase for Gram-positive bacterial proteomes. Among the
selected Gram-negatives, the Aquifex aeolicus proteome achieved
the highest coverage (90.5%). Helicobacter pylori obtained the
highest coverage increase (23.9%), whereas P.aeruginosa PA01 only
gained 10.6% of coverage increase, the lowest of the Gram-negative
list. Lactobacillus johnsonii, among the list of tested Gram-positive
organisms, gained 7.9% in coverage, wheras Clostridium difficile
received a modest boost of 2.8% in predictive coverage. Overall,
proteome prediction for all tested organisms benefitted from the
performance boost from PSORTb 3.
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Fig. 1. Genome coverage prediction for PSORTb 2.0 and PSORTb 3.0
for Gram-negative and Gram-positive bacteria genomes. Chr1 denotes
chromosome 1.

Fig. 2. Genome prediction coverage results from combining PSORTb 3.0
and PA 3.0 output. The majority of the ‘disagreement’ cases are boundary
localizations (membrane prediction and a neighboring compartment). This
likely reflects the true nature of the proteins. Only a small fraction of the
disagreements (2.5–5% of the deduced proteome) are non-boundary cases.

3.6 PSORTb 3.0 and PA 3.0 make complementary
predictions—a combined analysis with both
methods has the highest coverage overall

Since PA 3.0 was the only comparable program to PSORTb in
terms of precision and ability to not force predictions (i.e. have
an ‘unknown’ prediction category), and has been validated using
the proteomics dataset to have better performance compared to PA
2.5, we examined the prediction results for combining PSORTb
3.0 and PA 3.0. We tested this on several Gram-positive and
Gram-negative bacterial genomes, including both model organisms
and lesser-studied species. The results are shown in Figure 2.
In combination, the two predictors were capable of generating

predictions for about 80–95% of all bacterial proteins encoded in the
selected bacterial genomes, which exhibits an impressive increase
versus the previous predictive capability of PSORTb 2.0 (57–75%)
(Gardy et al., 2005) and PA 2.5 (67–76%) (Lu et al., 2004). On
average, 52.5% of the proteins in each genome-derived proteome
received consensus SCL predictions from the two predictors. About
20–30% of the genes were predicted by either PA 3.0 or PSORTb
3.0 but not both programs, which shows a significant level of
complementarities for two very precise predictors. Of the cases
with different predictions (5–10%), we found that over half of these
predictions consist of neighboring localizations (e.g. cytoplasmic
versus cytoplasmic membrane). Upon manual inspection, these
likely reflect the nature of peripheral membrane proteins that could
not be detected as such by each predictor alone. For example, one
program predicted cytoplasmic and the other predicted cytoplasmic
membrane. For such membrane-associated proteins, technically
both programs could be considered correct. For Gram-positive
bacterial proteomes, although PA 3.0 does not predict a ‘cell
wall’ SCL, many of the PSORTb-predicted cell wall proteins
received ‘membrane’ or ‘extracellular’ predictions by PA, which
does reflect the fact that many of them are membrane-anchored
and protrude into the extracellular space. Taking these points into
consideration, only ∼2.5–5% of the predictions appear to disagree,
reflecting an expected level of error given the precision of each
method. Taken together, it appears that combining the two methods
notably increases genome prediction coverage indicating that the
two methods are complementary and should be used together when
possible.

4 DISCUSSION
The new version of PSORTb was created with the following
improvements in mind: refining localization prediction,
implementing archaeal SCL prediction capabilities, increasing
software recall and proteome prediction coverage while maintaining
high precision, and ensuring user-friendly software installation as
well as usage. We found it necessary to implement subcategory
localizations for several reasons. First of all, we have anecdotally
observed that effector proteins secreted by Types III and IV secretion
systems were predicted as cytoplasmic proteins by PSORTb 2.0 and
most other SCL predictors due to the fact that their final destination
is the host cell cytoplasm and likely contain properties similar to
cytoplasmic proteins. Second, for structural proteins that are parts
of a bacterial organellar apparatus, it would be more informative
to note the apparatus itself as localization in addition to the main
subcellular compartment currently assigned by PSORTb. Although
the initial BLAST-based approach may be limited in capturing
only effector proteins with enough sequence similarity to each
other, we hope to further expand the dataset of effector proteins for
training as they are identified. Having a subcategory localization
detection allows PSORTb to give these types of proteins a more
refined localization annotation, for example: ‘extracellular—T3SS
(Type III secretion apparatus)’ rather than just the misleading
classification of ‘extracellular’.

We have built the first SCL predictor specific for the domain of
archaea and assessed its performance with a dataset of archaeal
proteins. Although Gram-positive bacterial predictors seem to
perform quite well for archaeal cytoplasmic and membrane proteins,
the low recall values show that a bacterial only training dataset
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fails to predict archaeal cell wall and extracellular proteins well.
Because of the unique nature of archaeal cell walls, which usually
consist of a proteinaceous S-layer rather than peptidoglycan found in
bacteria, proteins that reside in this localization can be quite different
from cell wall proteins of Gram-positive organisms. If the training
dataset does not contain representative properties for its localization
category, no software would be able to generate highly accurate
predictions for that particular category or that particular species. To
further improve prediction for archaeal proteomes, we suspect that
a more extensive training dataset needs to be collected for cell wall
and secreted proteins in particular.

We have also added the capability to handle predictions for the
four possible different types of bacteria: Gram-positive with and
without an outer membrane, and Gram-negative with and without an
outer membrane. As the diversity of bacteria being studied increases
through metagenomics and other larger scale studies, having such
capability to handle the diversity found in this domain of life will
become increasingly important. Future research should focus on
increasing the ability of SCL predictors to handle more specialized
types of bacteria and archaea with atypical cell structures.

Most high-throughput mass spectrometry-based proteomic
studies of subcellular fractions tend to include proteins from other
subcellular compartments, due to some degree of cell lysis (Rey
et al., 2005a). We were able to generate a relatively small dataset of
highly reliant cytoplasmic identifications by eliminating any proteins
that were found also in periplasmic or extracellular fractions in
a proteome-scale analysis. While this approach will miss a lot of
potential cytoplasmic proteins, this dataset is of high specificity and
contains proteins that are not part of any SCL predictor’s training
dataset. For the other localizations, however, it is much more difficult
to obtain relatively contaminant-free fraction samples, due to the
fact that highly abundant cytoplasmic proteins (such as ribosomal
proteins and molecular chaperone GroEL) tend to contaminate
other fractions at such high levels. Further improvements in protein
sample preparation for the non-cytoplasmic fractions are needed if
we want to use this approach to validate software precision for the
other SCLs.

We show that with the addition of new training data, PSORTb’s
recall and coverage improved and the performance remains ahead
of other comparable bacterial SCL prediction software. This
demonstrates that the effect of increasing training data size on
improving such a prediction tool is still an effective way to increase
predictive accuracy. By combining PA and PSORTb, two of the
most accurate SCL predictors, we can now predict localizations for
80–95% of most bacterial proteomes. Efforts to further improve
prediction capabilities should focus on developing approaches to
tackle the last 5–20% of the proteomes. Preliminary analysis
suggests that these are likely to be uncharacterized genes that are
either common to a smaller subset of prokaryotic classes or unique
to particular strains. A combined effort of small-scale as well as
refined high-throughput experimental approaches, continual data
mining from literature and algorithm improvement will be required
to determine the localization of these proteins. The significant
number of cases where PSORTb and PA predicted localizations
to neighboring compartments highlights the need to further refine
the SCL classification and identification of peripheral membrane
proteins, which include proteins attached to the inner or outer
membrane via a single α-helix, a lipid moiety or covalently linked
to an integral membrane protein. Although LocateP and Augur

begin to deal with this issue, such refinement should eventually be
incorporated into whole-genome SCL analyzing software.

5 CONCLUSION
In summary, PSORTb 3.0 continues to be the most precise SCL
predictor of its kind and now has notably increased recall and
predictive coverage. It is also the most flexible SCL prediction
software for prokaryotes, with both an online web server (with
associated email client for larger jobs) as well as an open source
standalone version with simplified installation procedure, which
allows it to be easily used locally or incorporated into any
existing bioinformatics analysis pipeline. With the added predictive
capability of archaeal protein SCL prediction, predictions for
bacteria with atypical cell morphologies and the addition of new
predictive subcategories, this represents the first SCL predictor
designed to handle a diverse range of all prokaryotes and handle
prokaryotic subcategory localizations. Our results show that this
tool can be effectively complemented by PA 3.0, generating an
impressively high number of SCL predictions for proteomes at high
precision. This new version of PSORTb, as well as the datasets
used to train the software, will serve as a useful resource for
bioinformaticists and the greater microbiology community.
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