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ABSTRACT 
Motivation: Obtaining soluble proteins in sufficient concentrations is 
a recurring limiting factor in various experimental studies. Solubility 
is an individual trait of proteins which, under a given set of experi-
mental conditions, is determined by their amino acid sequence. 
Accurate theoretical prediction of solubility from sequence is instru-
mental for setting priorities on targets in large-scale proteomics pro-
jects. 
Results: We present a machine-learning approach called PROSO 
to assess the chance of a protein to be soluble upon heterologous 
expression in E. coli based on its amino acid composition. The clas-
sification algorithm is organized as a two-layered structure in which 
the output of primary support vector machine classifiers serves as 
input for a secondary Naive Bayes classifier. Experimental progress 
information from the TargetDB database as well as previously pub-
lished datasets were used as the source of training data. In com-
parison with previously published methods our classification algo-
rithm possesses improved discriminatory capacity characterized by 
the Matthews Correlation Coefficient of 0.434 between predicted 
and known solubility states and the overall prediction accuracy of 
72% (75% and 68% for positive and negative class respectively). 
We also provide experimental verification of our predictions using 
solubility measurements for 31 mutational variants of two different 
proteins. 
Availability: A Web server for protein solubility prediction is avail-
able at http://webclu.bio.wzw.tum.de:8080/proso. 
Contact: d.frishman@wzw.tum.de 
Supplementary information: Supplementary data are available at 
Bioinformatics online 

1 INTRODUCTION  
Protein solubility is an important pre-requisite for structural and 
biophysical studies. Obtaining soluble proteins in sufficiently high 
concentrations remains a major experimental challenge. Many 
heterologously expressed proteins are insoluble and often solubili-
zation is a trial and error process with relatively low success rate 
(Chow et al., 2006; Singh and Panda, 2005). Although highly effi-
cient overexpression into inclusion bodies is sometimes desirable 
as it results in relatively clean protein, refolding procedures pose a 
significant technical challenge (Armstrong et al., 1999; Chow et 
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al., 2006) and frequently lead to the loss of biological activity 
(Singh and Panda, 2005). 

Common strategies to improve protein solubility during het-
erologous expression include weak promoters, low-temperature 
(Makrides, 1996), modified growth media (Georgiou and Valax, 
1996; Makrides, 1996), co-expression with molecular chaperons 
(Tresaugues et al., 2004), and fusion with solubility enhancing tags 
(Davis et al., 1999; Kapust and Waugh, 1999). If some knowledge 
of three-dimensional structure is at hand, it is possible to enhance 
solubility by structure-guided mutagenesis (Dale et al., 1994). 
When a priori knowledge of structure is not available protein solu-
bility can be increased by directed evolution method (Pedelacq et 
al., 2002; Waldo, 2003) that relies on high-throughput screening of 
large protein diversity libraries generated by random mutagenesis 
for more soluble variants. 

An alternative way to increase the overall success rate of bio-
physical studies relying on protein solubility is to avoid potentially 
difficult targets altogether and focus experimental work on those 
proteins that offer better chances to be soluble. This approach is 
being frequently practiced by large-scale structural proteomics 
consortia that initially target more proteins than they can address 
and then select the most promising candidates (“low hanging 
fruits”) according to certain criteria (Edwards et al., 2000). Despite 
the fact that the experimental determination of solubility is rela-
tively accessible, the ability to predict from protein sequence its 
potential for solubility when overexpressed in standard host cells, 
e.g Escherichia coli, would be extremely beneficial for rational 
target selection in structural proteomics as well as for a variety of 
biophysical studies. Under a given set of experimental conditions, 
including the expression host, protein solubility is an individual 
trait ultimately determined by its primary structure. 

A number of previous reports addressed the interconnection be-
tween protein solubility and various sequence-derived features. A 
simple method for calculating protein solubility from sequence was 
first proposed by Wilkinson et al. (1991) and then improved by 
Davis et al. (1999). Their solubility model is based on two parame-
ters: average charge, determined by the relative numbers of Asp, 
Glu, Lys, and Arg residues, and the content of turn-forming resi-
dues (Asn, Gly, Pro, and Ser). Christendat and coworkers (2000) 
examined experimental success and failure data accumulated in a 
high-throughput structural genomics project on 424 nonmembrane 
proteins from Methanobacterium thermoautotrophicum. They 
demonstrated that insoluble proteins tended to have more hydro-
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phobic stretches (longer then 20 amino acids), lower glutamine 
content (Q<4%), fewer negatively charged residues (DE<17%), 
and higher percentage of aromatic amino acids (FYW >7.5%) than 
soluble ones. A set of simple rules was derived based on these 
observations allowing prediction of protein solubility with 65% 
accuracy. A year later Bertone et al. (2001) reanalyzed 562 pro-
teins from the same organism and confirmed that high content of 
negative residues (DE>18%) and absence of hydrophobic patches 
are associated with improved solubility. Additionally they found 
that low percentage of aspartic acid, glutamic acid, asparagines and 
glutamine residues (DENQ<16%) increases the probability of a 
protein to be insoluble. Goh and coworkers (2004) applied random 
forest and decision tree analysis to various attributes of more then 
27000 proteins from multiple organisms and found that protein 
solubility is influenced by (in decreasing order of importance): 
percentage of serine (S<6.4%), fraction of negatively charged resi-
dues (DE<10.8%), percentage of S,C,T, and M amino acids, and 
length (<516 aa). However, in a study describing high-throughput 
overexpression in E. coli of 10167 proteins of Caenorhabditis 
elegans, no statistically significant correlation between protein’s 
pI, molecular weight, presence of rare codons, overall sequence 
hydrophobicity and protein solubility was observed (Luan et al., 
2004). The authors indicate that proteins homologous to those with 
known structures have higher chances to be soluble (Luan et al., 
2004). Finally, in a recent publication Idicula-Thomas et al. (2006) 
presented a solubility prediction method based on a Support Vector 
Machine trained on unbalanced datasets of 62 soluble and 130 
insoluble proteins. According to this publication the method was 
able to predict correctly the increase/decrease in solubility upon 
mutations. This method is discussed and evaluated in detail below. 

Here we present a novel prediction technique dubbed PROSO 
(PROtein SOlubility predictor) to assess the chance of a protein to 
be soluble upon heterologous expression in E. coli. The method 
employs support vector machine and Naive Bayes classifiers 
trained on experimental progress data stored in the TargetDB 
(Chen et al., 2004) and PDB (Berman et al., 2000) databases as 
well as on an additional dataset extracted from literature. In com-
parison with previously published methods our classification algo-
rithm possesses improved discriminatory capacity characterized by 
the Matthews Correlation Coefficient of 0.434 between predicted 
and known solubility states and the overall prediction accuracy of 
72% (75% and 68% for positive and negative class respectively). 
We analyze the importance of diverse solubility determinants iden-
tified in our work as well as those previously reported. Finally, we 
provide experimental verification of our predictions using solubil-
ity measurements for 31 mutational variants of two different pro-
teins. 

2 METHODS 

2.1 Datasets of soluble and insoluble proteins 
The TargetDB database (Chen et al., 2004) http://targetdb.pdb.org/) stores 
amino acid sequences and experimental progress information of structural 
targets pursued by structural genomics consortia. For each protein, Tar-
getDB lists its current experimental status, such as Selected, Cloned, Ex-
pressed, Purified, Soluble, Crystallized, and so forth. Thus, all proteins that 
achieved the status Soluble or any subsequent status may be confidently 
considered soluble. Comparing the experimental status of sequences stored 
in TargetDB at two sufficiently distant time points - April 2005 and No-

vember 2005 - we divided all proteins into TargetDB-Soluble (annotated 
with the Soluble or any more advanced descriptor) and TargetDB-Insoluble 
(annotated as Expressed but not as Soluble in April 2005 and still remain-
ing in that state seven months later). We did not consider work-stopped 
targets (those which were expressed but then either explicitly stated as 
“Work-stopped” or those that disappeared from TargetDB) since the reason 
for aborting work on a given target can be unrelated to its experimental 
behavior. Furthermore, to remove targets dropped as a result of competitors 
having structure submitted to PDB all proteins with 100% identity to any 
PDB protein were removed from the insoluble dataset. 

Considering all proteins with known three-dimensional structure soluble 
by definition, another dataset of soluble proteins (PDB-Soluble) was built 
from the PDB database (release 1.XII.2005). We selected PDB entries 
annotated with the descriptors “EXPRESSION_SYSTEM: ESCHERICHIA 
COLI” and “EXPRESSION_SYSTEM_VECTOR_TYPE: PLASMID”. 
We also used a further dataset of soluble (Lit-Soluble) and insoluble (Lit-
Insoluble) proteins from E. coli described by Idicula-Thomas and cowork-
ers (Idicula-Thomas and Balaji, 2005; Idicula-Thomas et al., 2006). Each of 
the described datasets was refined by removing proteins with one or more 
transmembrane segments as predicted using TMHMM (Krogh et al., 2001), 
and those sequences containing more than one contiguous “X” characters. 
The number of instances and other details on each dataset used in this work 
can be found in Suppl. Table 1. Finally we merged separately data for 
soluble and insoluble proteins and removed redundancy by homology clus-
tering at the 50% sequence identity level using the CD-HIT program (Li et 
al., 2001; Li et al., 2002). 

2.2 Multiple/mono domain split and length distribu-
tion adjustment 

Large multidomain proteins generally represent more challenging structural 
targets then smaller single-domain proteins. In particular, the relationship 
between amino acid sequence and solubility may be significantly different 
between single- and multidomain proteins since the latter involve sizeable 
sequence portions corresponding to inter-domain contacts. Multi-domain 
proteins are believed to fold via a hierarchical multi-step organization of 
individual co-translationally folded domains (Frydman, 2001; Seckler and 
Jaenicke, 1992). By contrast, it is common for monodomain proteins to fold 
in a fast two-state process (Onuchic and Wolynes, 2004). In order to take 
into account these differences in the nature of folding/misfolding we split 
our datasets into the subsets of long multiple domain and short monodo-
main proteins. 

To find a reasonable length threshold for this split we analyzed size dis-
tribution of mono and multiple-domain proteins using domain sequences 
from the CATH database (Pearl et al., 2005) clustered at 50% identity level 
(Suppl. Figure 1). Obviously, no perfect decision rule exists, but we found 
that threshold length in the range between 250 and 300 residues provides a 
good separation for dividing our data into two sections - one enriched in 
monodomain, and the other enriched in multidomain proteins; the threshold 
of 250 amino acid residues was finally adopted. Solubility classification 
was performed independently for each dataset. 

Since sequence length distributions are somewhat different for insoluble 
and soluble datasets (data not shown), the composition of sequence datasets 
was adjusted to account for this effect using a simple approach. Proteins 
were divided into bins (5 bins for mono and 9 for multiple domain proteins) 
according to their length. The width of the bins was 50 and 200 for proteins 
with length below and above 250, respectively. For each bin, the number of 
sequences from the least populated dataset was used as a limit of sequence 
number for both datasets, thus assuring equal population of sequence length 
ranges and removing any length-related bias. Characterization of the final 
datasets used for classification can be found in Suppl. Table 2 

In summary, as a result of restrictive data selection from TargetDB and 
PDB databases we built a sufficiently large (more then 14000 proteins) yet 
reasonably reliable input dataset. However, it is important to realize that the 
majority of sequences in our final dataset stem from TargetDB which con-
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tains only brief descriptions of experimental results and does not impose 
standard requirements for annotation. Consequently, in contrast to the 
PDB-derived data, TargetDB entries lack detailed information about the 
expression system used and the setup of expression experiment. Neverthe-
less E.coli is predominantly being used as expression host by structural 
genomics consortia: out of 3171 PDB entries which originate from Tar-
getDB (as of September 2006) 2381, or 75.1%, had annotation 
“EXPRESSION_SYSTEM: ESCHERICHIA COLI”. 

2.3 Protein sequence features 
Amino acid sequences were represented by the frequencies of mono-, di-, 
and tri-peptides. However, for di- and tri-peptides in the original 20-letter 
amino acid alphabet the total number of features would be very large – 400 
and 8000, respectively. In order to reduce the dimensionality of the feature 
space and improve signal to noise ratio we clustered amino acids into 
groups with similar physico-chemical or structural properties as described 
in our previous work (Smialowski et al., 2006). For the original amino acid 
alphabet we calculated the frequencies of words of length one and two 
while for amino acid groups, words of length one, two, and three were 
used. 

To derive amino acid clustering pertinent to protein solubility a set of 
eight numeric scales related to protein solubility was obtained from the 
Amino Acid Index Database (Kawashima and Kanehisa, 2000): 
CHAM820102 (free energy of solution in water, kcal/mole) (Charton and 
Charton, 1982), PONP800101 (surrounding hydrophobicity in folded form) 
(Ponnuswamy et al., 1980), NOZY710101 (transfer energy, organic sol-
vent/water) (Nozaki and Tanford, 1971), KRIW790102 (fraction of site 
occupied by water) (Krigbaum and Komoriya, 1979a; Krigbaum and Ko-
moriya, 1979b), ZHOH040103 (buriability) (Zhou and Zhou, 2004), 
BIOV880101 (information value for accessibility; average fraction 35%) 
(Biou et al., 1988), ROSM880102 (side chain hydropathy, corrected for 
solvation) (Roseman, 1988), and JANJ780101 (average accessible surface 
area) (Janin and Wodak, 1978). Values from all scales were normalized and 
used together to cluster amino acids by Expectation-Maximization (EM) 
algorithm (Dempster et al., 1977; Meila and Heckerman, 2001), into two 
alternative groupings, one wih 14 and another one with 17 sets. These 
cluster numbers have been found optimal in our previous work on protein 
crystallizability (Smialowski et al., 2005). Amino acids clustering rules are 
listed in the Suppl. Table 3. 

2.4 Classification and feature selection 
We classified data using the two level procedure described in detail in our 
previous publication (Smialowski et al., 2006). Briefly, each set of input 
data for a fixed word size and a given amino acid grouping scheme was 
first classified using a primary classifier – a support vector machine (SVM) 
with the Gaussian kernel (Keerthi et al., 2001; Platt, 1999) as described by 
Fan et al. (2005). The output of the primary classifier for each protein was 
obtained by 10-fold cross-validation and served as input for a secondary 
Naive Bayes classifier (Domingos and Pazzani, 1996). Ten-fold stratified 
cross-validation over input data was performed to obtain class assignment 
for each protein and to estimate the accuracy of the second level classifier. 

For feature selection we used the wrapper method (Kohavi and John, 
1997) with the Naive Bayes method (Domingos and Pazzani, 1996) as a 
classification procedure and the ‘Best first’ approach (Kohavi and John, 
1997) as a search algorithm. The detailed procedure can be found in Smia-
lowski et al. (2006). Additionally feature ranking was performed by meas-
uring symmetrical uncertainty of attributes with respect to a given class 
(Hall and Holmes, 2003). While selecting features the grouping schema 
which performed best for a given word size was utilized. 

2.5 Classifier evaluation 
In order to quantify the performance of the classifiers the following meas-
ures were calculated: 

• accuracy: the number of correctly classified instances divided by the 
total number of instances 

• true positive rate (TP rate) (also called sensitivity or recall of positive 
class): the number of correctly classified instances from the positive 
class divided by the number of all instances from the positive class 
(TP+FN) 

• true negative rate (TN rate) (also called sensitivity or recall of nega-
tive class): the number of correctly classified instances from the nega-
tive class divided by the number of all instances from the negative 
class (TN+FP) 

• precision (selectivity): the ratio of the number of correctly classified 
positive (TP) or negative (TN) instances to the number of all in-
stances classified as positive (TP+FP) or negative (TN+FN), for posi-
tive and negative class respectively 

• gain: proportion of given class precision (selectivity) to the ratio of 
the given class in full dataset  

• Matthews Correlation Coefficient (MCC), calculated as:  

( ) ( )
( )( )( )( )FN+TNFP+TNFP+TPFN+TP

FNFPTNTP
=MCC

∗−∗

 

where TP, FP, and FN are the numbers of true positive, false positive and 
false negative instances, respectively. 

In particular, gain is an important performance measure that quantifies 
how much better is the decision when guided by the classifier in compari-
son to random drawing of instances. MCC indicates correlation between 
the classifier assignments and the actual class in the two class case. It is a 
good measure of classifier performance even when classes are unbalanced. 
Additionally, the statistical relevance of the classification was compared 
separately for positive and negative classes using the chi square test against 
the null hypothesis which states that the classifier has no discriminatory 
capacity (Motulsky, 1995). 

2.6 Evaluation of additional global protein features 
and previously reported solubility prediction 
methods 

We evaluated all previously published methods which score protein solu-
bility known to us. For every protein in our dataset we calculated solubility 
according to Wilkinson-Harrison (Davis et al., 1999; Harrison, 1999; Wil-
kinson and Harrison, 1991) using their web-server 
(http://www.biotech.ou.edu/) and according to Idicula-Thomas (Idicula-
Thomas and Balaji, 2005) using our own implementation of their method. 
Unfortunately the newer method published in 2006 (Idicula-Thomas et al., 
2006) is not available publicly and was not provided to us upon repeated e-
mail requests to the authors. Discriminatory power of both methods was 
evaluated directly according to the rules specified by the authors. Addition-
ally, the scores produced by these methods were used as input to train and 
evaluate a Naive Bayes classifier. We also calculated the following global 
sequence features: sequence length, isoelectric point (pI), grand average of 
hydropathicity index (GRAVY) (Gasteiger et al., 2003; Kyte and Doolittle, 
1982), aliphatic index (AI) (Ikai, 1980), and fold index (FI) (Prilusky et al., 
2005). Naive Bayes classifier was trained and evaluated with these features 
used as input to check whether any of them could result in reasonably good 
classification performance. Additionally, the combination of AI, FI, 
GRAVY and pI was also used. 

2.7 Protein cloning, expression, purification and solu-
bility measurements 

For direct experimental verification of our predictions we utilized two 
proteins - FOP (FGFR1 oncogene partner, SWISSPROT accession number 
O95684) and CAP350 (centrosome associated protein 350, SWISSPROT 
code Q5VT06) – as well as their multiple sequence variants (constructs) 
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generated by directed mutagenesis. All studied protein constructs were 
cloned into the pET46 Ek/LIC vector (Novagen) according to the manufac-
turer’s manual. Mutations were introduced by the Quick-Change Site Di-
rected Mutagenesis Kit (Stratagene). 

All used proteins excluding ten FOP constructs spanning residues 54-
134, had the N-terminal His-tag. 19 of them had a 15 amino acid His-tag 
from the pET46 Ek/Lic vector and two constructs named FC2SHisMut and 
FC2LisH_2 had shorter tags spanning 10 and 9 residues respectively 
(Suppl. Table 4). To increase the efficiency of protein production, ten FOP 
constructs were expressed as high yielding 1-134 constructs with a factor 
Xa cleavage site at position 54. N-terminal 1-53 oligopeptides were subse-
quently removed by factor Xa protease cleavage. Additionally, to facilitate 
protein concentration measurements we added tryptophan at the position 
135 to all FOP constructs spanning amino acids 1-134 and 54-134. Se-
quences of all resulting constructs are listed in Suppl. Table 4. 

All constructs were expressed in the E. coli strain BL21 STAR (DE3) 
(Invitrogen) grown in LB medium supplemented with 100 mg/ml of am-
picillin by overnight induction with 0.5 mM IPTG at 25 ºC for CAP350 
constructs and 1 mM IPTG at 37ºC for FOP constructs. After expression 
cells were lysed in a lysis buffer (50 mM NaH2PO4, pH 8, 300 mM NaCl, 
10 mM βME, 10 mM imidazole), sonicated and centrifuged. Supernatants 
were passed through NiNTA column (Qiagen) in the first step of purifica-
tion. The samples were loaded onto the column and washed with lysis 
buffer supplemented with 20 mM imidazole. Elution was performed with 
the lysis buffer supplemented with 250 mM imidazole. Xa protease cleav-
age was performed in 20 mM Tris-HCl at pH 7.5 supplemented with 100 
mM NaCl and 2 mM CaCl2. 

Identities of all the constructs were checked by DNA sequencing. All 
proteins were checked by Western-blot, mass spectrometry and/or N-
terminal Edman-sequencing. Purity of all proteins was estimated to be 85-
98% from SDS-PAGE and mass spectrometry. It was not possible to purify 
two tested constructs, namely FOP_FL (full length) and FC3. 

Protein solubility was first estimated by measuring relative amount of 
protein in the cytoplasmatic fraction and in inclusion bodies by SDS-
PAGE, dot-blot and/or Western-blot with appropriate antibodies. Concen-
tration of purified proteins was calculated by measuring absorbance at 280 
nm (Layne, 1957; Stoscheck, 1990). Extinction coefficients for all con-
structs were calculated with the ExPASy ProtParam tool (Gasteiger et al., 
2005; Gill and Hippel, 1989). For some of them maximal concentration 
achievable in the given buffer without causing precipitation was measured 
after purification as described by Golovanov and coworkers (2004). All 
concentrations were performed using 10 ml stirring concentrator (Amicon 
Inc). Oligomerization state of all proteins was determined using the ÄKTA 
explorer 10 chromatography system (Amersham-Pharmacia) with the fol-
lowing gel filtration chromatography columns: Superdex 75 HR 10/30 or 
HiLoad 26/60 Superdex 75 prep grade (both Amersham-Pharmacia). 

A protein was considered insoluble when it predominantly accumulated 
in inclusion bodies and resisted standard attempts to refold from denaturiz-
ing solution (Singh and Panda, 2005; Tsumoto et al., 2004) using the dilu-
tion-refolding method. Stability in solution was assumed when the protein 
did not precipitate nor degrade (as checked by SDS-PAGE) over a one 
week period at 4°C. 

For all proteins we calculated solubility scores using our classifier. 
When the protein was classified as a positive (soluble) the class probability 
was used as a score, in the case of negative it was 1-class probability. This 
resulted in score values in the range from 0 to 1, with insoluble proteins 
having values less then 0.5 and soluble greater or equal 0.5. 

3 RESULTS AND DISCUSSION 

3.1 Performance of the primary classifier 
We classified independently data for mono and multiple domain 
proteins. Based on Matthews Correlation Coefficient (MCC) val-
ues we chose the best classifiers for each amino acid word size and 

clustering schema. For each word length, the best classifier corre-
sponding to clustering schemes was selected. In general, improve-
ment of accuracy and MCC by increasing word size from one to 
two is limited. Performance of classifiers based on word size three 
is lower than the results for shorter word sizes. This effect can be 
associated with lower number of counts for word size three leading 
to less efficient problem generalization by SVM. A large differ-
ence was observed between classification results for mono and 
multidomain proteins. All primary classifiers for multidomain 
proteins had MCC higher than 0.4 and accuracy over 70% while 
monodomain protein classifiers had MCC not exceeding 0.35 and 
accuracies below 68 %. Detailed results for mono and multiple 
domain proteins are listed in Suppl. Tables 5 and 6, respectively. 
All statistical descriptions of the classifiers and classification of all 
instances were obtained using 10-fold stratified cross-validation 
over the dataset. In other words, we always tested our classifier on 
the data which were never part of the training data. It also means 
that the test sequences did not share sequence similarity greater 
than 49% with the training data. 

3.2 Feature selection for primary classification 
The most advantageous feature subsets were selected using the 
wrapper (Kohavi and John, 1997) method as described in Materials 
and Methods. Primary features selected for the best clustering 
schema for word size of one, two and three residues, are reported 
in Suppl. Table 7 separately for mono and multiple domain pro-
teins. It is important to remember that wrapper is designed to es-
tablish subsets of features optimal for classification (Kohavi and 
John, 1997). In doing so, however, it does not provide directly the 
relations between feature values and solubility. It is interesting that 
out of eight frequencies of amino acids (R, D, C, E, G, L, M, S) 
selected by wrapper for both mono and multiple domain proteins 
four – G, R, D, and E - are common with those used as input for 
the Wilkinson-Harrison method (Davis et al., 1999). Relative con-
tent of negatively charged residues (DE) seems to be the strongest 
determinant of protein solubility as it was selected as an important 
attribute by all researchers so far (Bertone et al., 2001; Christendat 
et al., 2000; Davis et al., 1999; Goh et al., 2004; Wilkinson and 
Harrison, 1991). Frequencies of cysteine and methionine were also 
found to be important by Goh and coworkers (Goh et al., 2004). 
Amongst di-peptide frequencies five of them are common for 
mono and multiple domain proteins: RE, QA, EG, HM, and KG. 
Notably, the first position in three out of five peptides is occupied 
by charged (in 2 cases basic, in one acidic) and in one by polar 
residues while in the second position in four cases there is a resi-
due with non-polar side chain and only in one case with charged 
(acidic) side chain. Thus, frequencies of di-peptides with the first 
residue charged and the second non-polar stand out as important 
determinants of protein solubility. Interestingly, frequencies of all 
such peptides were shown to be neutral or even favorable for pro-
tein stability (Guruprasad et al., 1990). 

Evaluation of symmetrical uncertainty confirmed the importance 
of these five peptides only partially. EG, HM, and KG had scores 
at least five times larger then the average for each mono and multi-
ple domain dataset, while RE and QA were not found to correlate 
significantly with protein solubility by this approach (data not 
shown). Overall, the frequencies of these five di-peptides when 
considered alone for Naive Bayes classification yielded 56.5% and 
62% accuracy for mono and multiple domain datasets, respec-
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tively, 10% less then the classification based on frequencies of all 
400 peptides. 

3.3 Performance of the meta-classifier 
Naive Bayes was used as a second-level classifier to aggregate the 
information from primary SVM classifiers. Input data for the meta-
classifier was formed by the classification results for each instance 
acquired upon 10-fold cross validation of the three best performing 
primary-classifiers (one for each of the three different word 
lengths). Combining inputs from different primary classifiers im-
proved the overall separation power of the method and made clas-
sifiers less prone to overfitting. 

In total our two-level method had an overall accuracy of 72%, 
with 75% for positive and 68.5% for negative class. The statistical 
relevance of the results for both classes is very high with p-value 
<2.2E-16. The MCC value achieved in this work is 0.434, the 
highest amongst all tested or previously reported classifiers. For 
mono and multiple domain proteins the accuracy is 68.0% and 
74.6% respectively. A more detailed characterization of the meta-
classifier is given in the last column of Table 1, Suppl. Table 8 and 
by the receiver operating characteristic (ROC) curves shown in 
Suppl. Figure 3. The area under ROC curve is equal to 0.781. This 
last value is a good measurement of classifier performance and is 
usually interpreted as the probability that the classifier will assign a 
higher score to the positive example than to the negative, when 
both are randomly picked. The shape of the curve reveals the de-
tailed relation between the classifier sensitivity (Sensitiv-
ity(P)=TPrate) and indirectly specificity (FPrate=1-Specificity(P)) 
in the entire range of these variables. The diagonal line on the 
graph symbolizes random classifier. The PROSO ROC curves are 
slightly asymmetrical. For the insoluble class the curve goes up 
steeper in the first half of the chart. This type of ROC is typical for 
classifiers that can discriminate relatively modest fractions of ex-
amples, but do so with high degree of certainty. On the other hand 
the curve for soluble class grows slower and reaches higher values 
on the right side of the chart, which is characteristic for classifiers 
able to retrieve high percentage of instances of the given class. As 
revealed by the ROC curve, PROSO classified ~70% of positive or 
negative instances correctly while having only ~25% instances 
misclassified into the opposite class. 

3.4 A comparative study of solubility predicting 
methods 

We compared the performance of our predictor with other previ-
ously reported algorithms: the widely used Wilkinson-Harrison 
method (Wilkinson and Harrison, 1991), and the recently reported 
Idicula-Thomas method (Idicula-Thomas and Balaji, 2005). We 
assessed the results of the Wilkinson-Harrison and Idicula-Thomas 
approaches using classification thresholds as described by the au-
thors (Harrison, 1999; Idicula-Thomas and Balaji, 2005). Addi-
tionally, using the output of these methods and a number of global 
protein features such as pI, length, etc. we trained and evaluated 
(by 10-fold stratified cross-validation) a set of Naive Bayes classi-
fiers as described in Materials and Methods. All results obtained 
on a dataset including 14200 proteins are summarized in Table 1 
and Suppl. Table 8. In this comparison our method achieved the 
highest value of MCC 0.434 and the accuracy of 72%. The Wilkin-
son-Harrison approach resulted in much lower accuracy of 56.2% 
and the MCC of 0.127. Although the accuracy value reported by 

Idicula-Thomas (Idicula-Thomas et al., 2006) is 72% and is thus 
equal to ours, the MCC of this classifier is 18% lower (0.358). 
Furthermore, the latter classifier was originally tested only on a 
small set of 64 instances. A chi square test revealed that the results 
reported by Idicula-Thomas et al. (2006) are only slightly statisti-
cally significant for the negative class (p-value 0.0065) and not 
significant for the positive class (p-value 0.988) (Suppl. Table 8). 
The performance reported by Idicula-Thomas and coworkers (ac-
curacy 72%) is due to unbalance in the class representation. Their 
method is strongly biased toward the negative class with 
TNrate=0.8 and TPrate=0.55. On the same data a dummy classifier 
labeling all proteins as insoluble would have the accuracy of 67%, 
meaning that the reported classifier outperforms the dummy ap-
proach only by 5 percentage points. PROSO surpasses the dummy 
classifier by over 20 percent points.  

Amongst all classifiers based on single global features the one 
exploiting isoelectrical point (pI) was the most efficient: it reached 
MCC of 0.2 and accuracy of 59.5%. The combination of all global 
descriptors was slightly more successful, with MCC and accuracy 
values of 0.222 and 60.7%, respectively. Despite their relatively 
high accuracy, both pI based and combined classifiers suffer from 
high unbalance of classification (TPrate ~0.7 and TNrate ~0.4) and 
relatively limited statistical significance of results for the negative 
class (p-value > 0.001). It is also worth noting that Naive Bayes 
based on the combination of all global descriptors was the only 
method except PROSO to reach both positive and negative gain 
values of more then 1.15. Amongst dedicated solubility prediction 
methods used in combination with Naive Bayes, Wilkinson-
Harrison clearly outperformed Idicula-Thomas approach on our 
dataset reaching the accuracy of 57.6% (MCC=0.153) as con-
trasted with 54.5% (MCC=0.091) of the later method. Our solubil-
ity prediction method reaches gain values of 1.41 for soluble and 
1.46 for insoluble class, which means that it improves the likeli-
hood of correctly distinguishing between soluble and insoluble 
proteins by more then 40% relative to random selection (gain=1). 
It is important to realize that the use of any classifier which shows 
the gain value 1 or lower is pointless as the equivalent can be 
achieved by randomly drawing instances from input data. From 
this comparison we also conclude that the performance of our clas-
sifier can not be explained by merely detecting features indirectly 
linked to pI (accuracy = 60.7%) nor the presence of unfolded re-
gions (accuracy = 55.5%).  

3.5 Experimental verification of solubility predictions 
We tested our method against experimental data on solubility 
measured for 31 different constructs of two proteins: FOP (FGFR1 
oncogene partner) and CAP350 (centrosome associated protein 
350). For two FOP constructs FOP_FL and FC3 we were unable to 
obtain proteins pure enough for reliable estimation of concentra-
tion. For these two constructs protein solubility was quantified as 
the percentage of soluble fraction in relation to inclusion bodies 
after expression in E. coli and was measured by SDS-PAGE and/or 
Western-blot (Suppl. Table 9). The rest of the proteins were di-
vided into insoluble, medium soluble and highly soluble based on 
their estimated maximum concentration, oligomerization state, and 
stability in solution as described in Materials and Methods. Insolu-
ble proteins were those that could not stay in solution without de-
naturizing agents like urea or gauanidinium hydrochloride. Highly 
soluble proteins were defined as those that stayed in solution in 
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high concentrations, did not oligomerize strongly (percentage of 
oligomers lower then 50%) and were stable (did not precipitate or 
aggregate). As an example, Suppl. Figure 2 demonstrates experi-
mental evaluation of solubility for one of the constructs used in 
this work (FC2SHisMut). Proteins were labeled medium soluble 
when more than half of the protein in solution was in high oli-
gomeric stage. In all cases our method categorized instances cor-
rectly to soluble/insoluble class. Additionally there was a correla-
tion between PROSO score (see Methods) and membership in 
medium or highly soluble class. By attributing the proteins with 
PROSO score higher or equal 0.745 to the highly soluble category 
we were correct in 10 out of 14 cases (the number of highly solu-
ble proteins) achieving TPrate(highly soluble) = 0.71. For medium 
soluble proteins we were able to classify correctly all instances 
(PROSO score higher or equal 0.5 and lower then 0.745). Detailed 
results are provided in Suppl. Table 9 and 10.  

3.6 Conclusions: advances, limitations, and future 
directions 

We report a novel sequence-based approach to classify proteins 
into “soluble” and “insoluble”. It is able to categorize sequences 
with low or no sequence homology to training data. Based on the 
MCC value of 0.434 and accuracy values of 74.9% and 68.5% for 
positive and negative class, respectively, we believe that our classi-
fier outperforms any previously reported solubility predictor and is 
thus expected to be helpful in selecting soluble proteins for bio-
physical studies as well as in detecting particularly hard cases. 
Predictive abilities of our method were furthermore confirmed by 
high correlation of assigned scores with experimentally determined 
solubility. We also identified the subset of features which have the 
strongest impact on protein solubility. 

An obvious limitation of our method is that it is only applicable 
to non-membrane proteins. It is also unable to take into account 
factors unrelated to protein sequence such as buffer composition 
etc. Instead of the currently used simplistic approach to dividing 
proteins into single- and multi-domain a more sophisticated predic-

tion technique would be desirable, such as described, for example, 
by Jones et al. (2005) or Liu & Rost (2004). Finally, a significant 
potential for further improvement of our method exists as the anno-
tation of TargetDB proteins gets more accurate and detailed. 
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