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ABSTRACT

Motivation: Obtaining soluble proteins in sufficient concentrations is
a recurring limiting factor in various experimental studies. Solubility
is an individual trait of proteins which, under a given set of experi-
mental conditions, is determined by their amino acid sequence.
Accurate theoretical prediction of solubility from sequence is instru-
mental for setting priorities on targets in large-scale proteomics pro-
jects.

Results: We present a machine-learning approach called PROSO
to assess the chance of a protein to be soluble upon heterologous
expression in E. coli based on its amino acid composition. The clas-
sification algorithm is organized as a two-layered structure in which
the output of primary support vector machine classifiers serves as
input for a secondary Naive Bayes classifier. Experimental progress
information from the TargetDB database as well as previously pub-
lished datasets were used as the source of training data. In com-
parison with previously published methods our classification algo-
rithm possesses improved discriminatory capacity characterized by
the Matthews Correlation Coefficient of 0.434 between predicted
and known solubility states and the overall prediction accuracy of
72% (75% and 68% for positive and negative class respectively).
We also provide experimental verification of our predictions using
solubility measurements for 31 mutational variants of two different
proteins.

Availability: A Web server for protein solubility prediction is avail-
able at http://webclu.bio.wzw.tum.de:8080/proso.

Contact: d.frishman@wzw.tum.de

Supplementary information: Supplementary data are available at
Bioinformatics online

1 INTRODUCTION

Protein solubility is an important pre-requisite &tructural and
biophysical studies. Obtaining soluble proteinsirfficiently high
concentrations remains a major experimental chgélerMany
heterologously expressed proteins are insolubleoéiet solubili-
zation is a trial and error process with relatividw success rate
(Chow et al., 2006; Singh and Panda, 2005). Althdighly effi-
cient overexpression into inclusion bodies is sames desirable
as it results in relatively clean protein, refolgliprocedures pose a
significant technical challenge (Armstrong et 4999; Chow et
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al., 2006) and frequently lead to the loss of lgatal activity
(Singh and Panda, 2005).

Common strategies to improve protein solubility idgr het-
erologous expression include weak promoters, lownperature
(Makrides, 1996), modified growth media (Georgiaud avalax,
1996; Makrides, 1996), co-expression with molecudhaperons
(Tresaugues et al., 2004), and fusion with soltyp@nhancing tags
(Davis et al., 1999; Kapust and Waugh, 1999). ihedknowledge
of three-dimensional structure is at hand, it issilnle to enhance
solubility by structure-guided mutagenesis (Daleakt 1994).
When a priori knowledge of structure is not avdigtrotein solu-
bility can be increased by directed evolution mdtiiBedelacq et
al., 2002; Waldo, 2003) that relies on high-thrqughscreening of
large protein diversity libraries generated by @ndmutagenesis
for more soluble variants.

An alternative way to increase the overall suceass of bio-
physical studies relying on protein solubility ésavoid potentially
difficult targets altogether and focus experimentakk on those
proteins that offer better chances to be solubkés Bpproach is
being frequently practiced by large-scale strudtymeteomics
consortia that initially target more proteins thaiey can address
and then select the most promising candidates (“lamging
fruits”) according to certain criteria (Edwardsaét 2000). Despite
the fact that the experimental determination ofiliity is rela-
tively accessible, the ability to predict from m@iot sequence its
potential for solubility when overexpressed in si@m host cells,
e.g Escherichia coli, would be extremely beneficial for rational
target selection in structural proteomics as welfa a variety of
biophysical studies. Under a given set of expertaderonditions,
including the expression host, protein solubilisyan individual
trait ultimately determined by its primary strueur

A number of previous reports addressed the interection be-
tween protein solubility and various sequence-aetifeatures. A
simple method for calculating protein solubilitpifin sequence was
first proposed by Wilkinson et al. (1991) and thewproved by
Davis et al. (1999). Their solubility model is bds® two parame-
ters: average charge, determined by the relativebess of Asp,
Glu, Lys, and Arg residues, and the content of-forming resi-
dues (Asn, Gly, Pro, and Ser). Christendat and dasve (2000)
examined experimental success and failure datanadeted in a
high-throughput structural genomics project on #24membrane
proteins from Methanobacterium thermoautotrophicum. They
demonstrated that insoluble proteins tended to mawee hydro-
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phobic stretches (longer then 20 amino acids), toglatamine
content (Q<4%), fewer negatively charged residueE<(7%),
and higher percentage of aromatic amino acids (F¥YA8%) than
soluble ones. A set of simple rules was derivecethasn these
observations allowing prediction of protein solithilwith 65%
accuracy. A year later Bertone et al. (2001) reaeal 562 pro-
teins from the same organism and confirmed that kontent of
negative residues (DE>18%) and absence of hydroplpatiches
are associated with improved solubility. Additidgathey found
that low percentage of aspartic acid, glutamic gasparagines and
glutamine residues (DENQ<16%) increases the prihalof a
protein to be insoluble. Goh and coworkers (20@pliad random
forest and decision tree analysis to various aite of more then
27000 proteins from multiple organisms and foundlt throtein
solubility is influenced by (in decreasing order igiportance):
percentage of serine (S<6.4%), fraction of neghtiebarged resi-
dues (DE<10.8%), percentage of S,C,T, and M amaidsaand
length (<516 aa). However, in a study describirgh¥throughput
overexpression irE. coli of 10167 proteins ofCaenorhabditis
elegans, no statistically significant correlation betweprotein’s
pl, molecular weight, presence of rare codons, alveequence
hydrophobicity and protein solubility was observg¢dian et al.,
2004). The authors indicate that proteins homolsgoiuthose with
known structures have higher chances to be solilhian et al.,
2004). Finally, in a recent publication Idicula-Thas et al. (2006)
presented a solubility prediction method based Buport Vector
Machine trained on unbalanced datasets of 62 solabd 130
insoluble proteins. According to this publicatidmetmethod was
able to predict correctly the increase/decreassolnbility upon
mutations. This method is discussed and evaluatddtail below.

Here we present a novel prediction technique duliPROSO
(PROtein SOlubility predictor) to assess the chasfca protein to
be soluble upon heterologous expressiortircoli. The method
employs support vector machine and Naive Bayessifias
trained on experimental progress data stored in TtheyetDB
(Chen et al., 2004) and PDB (Berman et al., 20@G0Qalthses as
well as on an additional dataset extracted froerdiure. In com-
parison with previously published methods our dfecsgion algo-
rithm possesses improved discriminatory capaciyatterized by
the Matthews Correlation Coefficient of 0.434 betwepredicted
and known solubility states and the overall prédictccuracy of
72% (75% and 68% for positive and negative claspeetively).
We analyze the importance of diverse solubilityedeinants iden-
tified in our work as well as those previously repd. Finally, we
provide experimental verification of our predictsonsing solubil-
ity measurements for 31 mutational variants of tlifferent pro-
teins.

2 METHODS

2.1 Datasetsof solubleand insoluble proteins

The TargetDB database (Chen et al., 2004) httmg#tdb.pdb.org/) stores
amino acid sequences and experimental progressrafmn of structural
targets pursued by structural genomics consortia.€ach protein, Tar-
getDB lists its current experimental status, sustSelected, Cloned, Ex-
pressed, Purified, Soluble, Crystallized, and sthfoThus, all proteins that
achieved the status Soluble or any subsequentsstadty be confidently
considered soluble. Comparing the experimentalistat sequences stored
in TargetDB at two sufficiently distant time pointsApril 2005 and No-

vember 2005 - we divided all proteins into TargetB&uble (annotated
with the Soluble or any more advanced descriptod) BargetDB-Insoluble
(annotated as Expressed but not as Soluble in 20@b and still remain-
ing in that state seven months later). We did rastsiler work-stopped
targets (those which were expressed but then eéRplicitly stated as
“Work-stopped” or those that disappeared from TeDg@ since the reason
for aborting work on a given target can be unreldte its experimental
behavior. Furthermore, to remove targets droppeadrasult of competitors
having structure submitted to PDB all proteins with0% identity to any
PDB protein were removed from the insoluble dataset

Considering all proteins with known three-dimensiostructure soluble
by definition, another dataset of soluble prot€iRBB-Soluble) was built
from the PDB database (release 1.X11.2005). Wectade PDB entries
annotated with the descriptors “EXPRESSION_SYSTEEMCHERICHIA
COLI" and “EXPRESSION_SYSTEM_VECTOR_TYPE: PLASMID".
We also used a further dataset of soluble (Lit-Bleluand insoluble (Lit-
Insoluble) proteins fronk. coli described by Idicula-Thomas and cowork-
ers (ldicula-Thomas and Balaji, 2005; Idicula-Themsaal., 2006). Each of
the described datasets was refined by removingipowith one or more
transmembrane segments as predicted using TMHMMgKet al., 2001),
and those sequences containing more than one gonsd'X” characters.
The number of instances and other details on eatztset used in this work
can be found in Suppl. Table 1. Finally we mergegasately data for
soluble and insoluble proteins and removed redurydby homology clus-
tering at the 50% sequence identity level using@BeHIT program (Li et
al., 2001; Li et al., 2002).

2.2 Multiple/mono domain split and length distribu-

tion adjustment

Large multidomain proteins generally represent nobralenging structural
targets then smaller single-domain proteins. Irti@alar, the relationship
between amino acid sequence and solubility mayidrefisantly different
between single- and multidomain proteins sinceldtter involve sizeable
sequence portions corresponding to inter-domairtact; Multi-domain
proteins are believed to fold via a hierarchicalltratep organization of
individual co-translationally folded domains (Frydm 2001; Seckler and
Jaenicke, 1992). By contrast, it is common for nummain proteins to fold
in a fast two-state process (Onuchic and Wolyn884p In order to take
into account these differences in the nature difigimisfolding we split
our datasets into the subsets of long multiple doraad short monodo-
main proteins.

To find a reasonable length threshold for thistspé analyzed size dis-
tribution of mono and multiple-domain proteins gsidomain sequences
from the CATH database (Pearl et al., 2005) clestet 50% identity level
(Suppl. Figure 1). Obviously, no perfect decisiaterexists, but we found
that threshold length in the range between 2503®@dresidues provides a
good separation for dividing our data into two &ex - one enriched in
monodomain, and the other enriched in multidomaaigins; the threshold
of 250 amino acid residues was finally adopteduBibty classification
was performed independently for each dataset.

Since sequence length distributions are somewlfatefit for insoluble
and soluble datasets (data not shown), the conmosit sequence datasets
was adjusted to account for this effect using gplnapproach. Proteins
were divided into bins (5 bins for mono and 9 farltiple domain proteins)
according to their length. The width of the binssve® and 200 for proteins
with length below and above 250, respectively. &arh bin, the number of
sequences from the least populated dataset wasagsedimit of sequence
number for both datasets, thus assuring equal ptipulof sequence length
ranges and removing any length-related bias. Cleiaation of the final
datasets used for classification can be found ppSTable 2

In summary, as a result of restrictive data sedactiom TargetDB and
PDB databases we built a sufficiently large (ment14000 proteins) yet
reasonably reliable input dataset. However, itripartant to realize that the
majority of sequences in our final dataset stermfficargetDB which con-
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tains only brief descriptions of experimental résw@nd does not impose
standard requirements for annotation. Consequeitlycontrast to the
PDB-derived data, TargetDB entries lack detailefdrimation about the
expression system used and the setup of expresgpmriment. Neverthe-
less E.coli is predominantly being used as expression hosstiuctural
genomics consortia: out of 3171 PDB entries whiclgimate from Tar-
getDB (as of September 2006) 2381, or 75.1%, hadotation
“EXPRESSION_SYSTEM: ESCHERICHIA COLI".

2.3 Protein sequencefeatures

Amino acid sequences were represented by the fnegsof mono-, di-,
and tri-peptides. However, for di- and tri-peptideshe original 20-letter
amino acid alphabet the total number of featuresldvbe very large — 400
and 8000, respectively. In order to reduce the dgimmality of the feature
space and improve signal to noise ratio we cludtenmino acids into
groups with similar physico-chemical or structupebperties as described
in our previous work (Smialowski et al., 2006). Boe original amino acid
alphabet we calculated the frequencies of wordéength one and two
while for amino acid groups, words of length ongptand three were
used.

To derive amino acid clustering pertinent to protsolubility a set of
eight numeric scales related to protein solubiitgs obtained from the
Amino Acid Index Database (Kawashima and Kanehi2800):
CHAMB820102 (free energy of solution in water, koadle) (Charton and
Charton, 1982), PONP800101 (surrounding hydropliytiic folded form)
(Ponnuswamy et al., 1980), NOZY710101 (transferg@neorganic sol-
vent/water) (Nozaki and Tanford, 1971), KRIW7901@taction of site
occupied by water) (Krigbaum and Komoriya, 1979agkaum and Ko-
moriya, 1979b), ZHOH040103 (buriability) (Zhou arghou, 2004),
BIOV880101 (information value for accessibility; exage fraction 35%)
(Biou et al., 1988), ROSM880102 (side chain hydtiepacorrected for
solvation) (Roseman, 1988), and JANJ780101 (aveaagessible surface
area) (Janin and Wodak, 1978). Values from allescelere normalized and
used together to cluster amino acids by Expectdlarimization (EM)
algorithm (Dempster et al., 1977; Meila and Heckern2001), into two
alternative groupings, one wih 14 and another oitd W7 sets. These
cluster numbers have been found optimal in ouriptesvwork on protein
crystallizability (Smialowski et al., 2005). Amiraxids clustering rules are
listed in the Suppl. Table 3.

2.4 Classification and feature selection

We classified data using the two level procedurgcdeed in detail in our
previous publication (Smialowski et al., 2006). éBly, each set of input
data for a fixed word size and a given amino acimuging scheme was
first classified using a primary classifier — a gogt vector machine (SVM)
with the Gaussian kernel (Keerthi et al., 20011tPE999) as described by
Fan et al. (2005). The output of the primary clessfor each protein was
obtained by 10-fold cross-validation and servednasit for a secondary
Naive Bayes classifier (Domingos and Pazzani, 198éh-fold stratified
cross-validation over input data was performedhbtaio class assignment
for each protein and to estimate the accuracyes#tond level classifier.

For feature selection we used the wrapper methazhdki and John,
1997) with the Naive Bayes method (Domingos andz&@iz 1996) as a
classification procedure and the ‘Best first' apgmio (Kohavi and John,
1997) as a search algorithm. The detailed procecamebe found in Smia-
lowski et al. (2006). Additionally feature rankimgas performed by meas-
uring symmetrical uncertainty of attributes wittspect to a given class
(Hall and Holmes, 2003). While selecting featuries grouping schema
which performed best for a given word size wasaetil.

2.5 Classifier evaluation

In order to quantify the performance of the classsfthe following meas-
ures were calculated:

« accuracy: the number of correctly classified instéandivided by the
total number of instances

« true positive rate (TP rate) (also called sensitiar recall of positive
class): the number of correctly classified instantem the positive
class divided by the number of all instances frben positive class
(TP+FN)

¢ true negative rate (TN rate) (also called sensytior recall of nega-
tive class): the number of correctly classifiedamses from the nega-
tive class divided by the number of all instancesf the negative
class (TN+FP)

¢ precision (selectivity): the ratio of the numberogirectly classified
positive (TP) or negative (TN) instances to the hemof all in-
stances classified as positive (TP+FP) or negéfii-FN), for posi-
tive and negative class respectively

¢ gain: proportion of given class precision (selettjvto the ratio of
the given class in full dataset

« Matthews Correlation Coefficient (MCC), calculaizs!

(TPCTN)-(FPLFN)

Mee= J{TP+ FN)(TP+ FP)TN + FP)(TN + FN)

where TP, FP, and FN are the numbers of true pesitialse positive and
false negative instances, respectively.

In particular, gain is an important performance soea that quantifies
how much better is the decision when guided byctassifier in compari-
son to random drawing of instances. MCC indicatasetation between
the classifier assignments and the actual clagiseinwo class case. It is a
good measure of classifier performance even whesseb are unbalanced.
Additionally, the statistical relevance of the cifisation was compared
separately for positive and negative classes ubimghi square test against
the null hypothesis which states that the clagslii@s no discriminatory
capacity (Motulsky, 1995).

2.6  Evaluation of additional global protein features

and previously reported solubility prediction
methods

We evaluated all previously published methods wtsicbre protein solu-
bility known to us. For every protein in our datase calculated solubility
according to Wilkinson-Harrison (Davis et al., 19%arrison, 1999; Wil-
kinson and Harrison, 1991) using their web-server
(http://www.biotech.ou.edu/) and according to Idéelihomas (ldicula-
Thomas and Balaji, 2005) using our own implemeatatf their method.
Unfortunately the newer method published in 20@éc(la-Thomas et al.,
2006) is not available publicly and was not prodide us upon repeated e-
mail requests to the authors. Discriminatory powkboth methods was
evaluated directly according to the rules speciligdhe authors. Addition-
ally, the scores produced by these methods weik as@put to train and
evaluate a Naive Bayes classifier. We also caledlghe following global
sequence features: sequence length, isoelectrit (m), grand average of
hydropathicity index (GRAVY) (Gasteiger et al., Z)Kyte and Doolittle,
1982), aliphatic index (Al) (Ikai, 1980), and fdlidex (FI) (Prilusky et al.,
2005). Naive Bayes classifier was trained and extatliwith these features
used as input to check whether any of them cowddlrén reasonably good
classification performance. Additionally, the comdtion of Al, FI,
GRAVY and pl was also used.

2.7 Protein cloning, expression, purification and solu-

bility measurements
For direct experimental verification of our predcs we utilized two
proteins - FOP (FGFR1 oncogene partner, SWISSPR©O&saion humber
095684) and CAP350 (centrosome associated profdn SWISSPROT
code Q5VTO06) — as well as their multiple sequenagants (constructs)
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generated by directed mutagenesis. All studiedeprotonstructs were
cloned into the pET46 EK/LIC vector (Novagen) adaog to the manufac-
turer’'s manual. Mutations were introduced by thec@Change Site Di-
rected Mutagenesis Kit (Stratagene).

All used proteins excluding ten FOP constructs spanresidues 54-
134, had the N-terminal His-tag. 19 of them hadbaafnino acid His-tag
from the pET46 Ek/Lic vector and two constructs sdrRC2SHisMut and
FC2LisH_2 had shorter tags spanning 10 and 9 residespectively
(Suppl. Table 4). To increase the efficiency oftgiro production, ten FOP
constructs were expressed as high yielding 1-13%toacts with a factor
Xa cleavage site at position 54. N-terminal 1-58apeptides were subse-
guently removed by factor Xa protease cleavage.itibaally, to facilitate
protein concentration measurements we added triypto@t the position
135 to all FOP constructs spanning amino acids 4143 54-134. Se-
guences of all resulting constructs are listedup. Table 4.

All constructs were expressed in tBecoli strain BL21 STAR (DE3)
(Invitrogen) grown in LB medium supplemented witb01mg/ml of am-
picillin by overnight induction with 0.5 mM IPTG &5 °C for CAP350
constructs and 1 mM IPTG at 37°C for FOP construttier expression
cells were lysed in a lysis buffer (50 mM N#&@,, pH 8, 300 mM NacCl,
10 mM BME, 10 mM imidazole), sonicated and centrifugedp&uatants
were passed through NiNTA column (Qiagen) in thst fstep of purifica-
tion. The samples were loaded onto the column aadhed with lysis
buffer supplemented with 20 mM imidazole. Elutiomsaperformed with
the lysis buffer supplemented with 250 mM imidazola protease cleav-
age was performed in 20 mM Tris-HCI at pH 7.5 sapmnted with 100
mM NaCl and 2 mM CagGl

Identities of all the constructs were checked byADdéquencing. All
proteins were checked by Western-blot, mass spwetrg and/or N-
terminal Edman-sequencing. Purity of all proteiresvestimated to be 85-
98% from SDS-PAGE and mass spectrometry. It wapossible to purify
two tested constructs, namely FOP_FL (full lengthdl FC3.

Protein solubility was first estimated by measurnetpative amount of
protein in the cytoplasmatic fraction and in inddus bodies by SDS-
PAGE, dot-blot and/or Western-blot with appropriatgibodies. Concen-
tration of purified proteins was calculated by me#asy absorbance at 280
nm (Layne, 1957; Stoscheck, 1990). Extinction doigfiits for all con-
structs were calculated with the ExPASy ProtParaoh (Gasteiger et al.,
2005; Gill and Hippel, 1989). For some of them maadi concentration
achievable in the given buffer without causing fpi&tion was measured
after purification as described by Golovanov andvariers (2004). All
concentrations were performed using 10 ml stirdpgcentrator (Amicon
Inc). Oligomerization state of all proteins wasedtined using the AKTA
explorer 10 chromatography system (Amersham-Phaanagth the fol-
lowing gel filtration chromatography columns: Sugex 75 HR 10/30 or
HiLoad 26/60 Superdex 75 prep grade (both AmersRharmacia).

A protein was considered insoluble when it pred@mtly accumulated
in inclusion bodies and resisted standard atteioptsfold from denaturiz-
ing solution (Singh and Panda, 2005; Tsumoto ¢28D4) using the dilu-
tion-refolding method. Stability in solution wassasned when the protein
did not precipitate nor degrade (as checked by BBSE) over a one
week period at 4°C.

For all proteins we calculated solubility scoresngsour classifier.
When the protein was classified as a positive {de)uthe class probability
was used as a score, in the case of negative ifLlvetess probability. This
resulted in score values in the range from O twifh insoluble proteins
having values less then 0.5 and soluble greatequal 0.5.

3 RESULTS AND DISCUSSION

3.1 Performanceof theprimary classifier

We classified independently data for mono and mlgtdomain
proteins. Based on Matthews Correlation Coeffici¢CC) val-
ues we chose the best classifiers for each amidonaird size and

clustering schema. For each word length, the Hassiéier corre-
sponding to clustering schemes was selected. lergenmprove-
ment of accuracy and MCC by increasing word sipenfone to
two is limited. Performance of classifiers basedaand size three
is lower than the results for shorter word sizdsisEeffect can be
associated with lower number of counts for wore $fzree leading
to less efficient problem generalization by SVM.lakge differ-

ence was observed between classification resuttamiono and
multidomain proteins. All primary classifiers for uttidomain

proteins had MCC higher than 0.4 and accuracy @0&6 while

monodomain protein classifiers had MCC not excepi85 and
accuracies below 68 %. Detailed results for mond awltiple

domain proteins are listed in Suppl. Tables 5 ante$pectively.
All statistical descriptions of the classifiers aidssification of all
instances were obtained using 10-fold stratifiedssfvalidation
over the dataset. In other words, we always testedlassifier on
the data which were never part of the training dhtalso means
that the test sequences did not share sequenclargymgreater
than 49% with the training data.

3.2 Featuresdection for primary classification

The most advantageous feature subsets were selesieg the

wrapper (Kohavi and John, 1997) method as desciibbthterials

and Methods. Primary features selected for the besttering

schema for word size of one, two and three resjdaresreported
in Suppl. Table 7 separately for mono and multigibenain pro-

teins. It is important to remember that wrappedésigned to es-
tablish subsets of features optimal for classifacatKohavi and

John, 1997). In doing so, however, it does not id@directly the

relations between feature values and solubilitis ihteresting that
out of eight frequencies of amino acids (R, D, C& L, M, S)

selected by wrapper for both mono and multiple danpaoteins

four — G, R, D, and E - are common with those wsednput for

the Wilkinson-Harrison method (Davis et al., 199Rglative con-
tent of negatively charged residues (DE) seem=tthé strongest
determinant of protein solubility as it was seldcés an important
attribute by all researchers so far (Bertone e28l01; Christendat
et al., 2000; Davis et al., 1999; Goh et al., 2004lkinson and

Harrison, 1991). Frequencies of cysteine and methéwere also
found to be important by Goh and coworkers (Golalet2004).

Amongst di-peptide frequencies five of them are cmm for

mono and multiple domain proteins: RE, QA, EG, Hwid KG.

Notably, the first position in three out of fivepi@les is occupied
by charged (in 2 cases basic, in one acidic) andne by polar
residues while in the second position in four cabkese is a resi-
due with non-polar side chain and only in one oaik charged

(acidic) side chain. Thus, frequencies of di-peggtidvith the first
residue charged and the second non-polar standsoirhportant
determinants of protein solubility. Interestingfyequencies of all
such peptides were shown to be neutral or everrdai® for pro-

tein stability (Guruprasad et al., 1990).

Evaluation of symmetrical uncertainty confirmed thportance
of these five peptides only partially. EG, HM, akd@ had scores
at least five times larger then the average foh @acno and multi-
ple domain dataset, while RE and QA were not fotmdorrelate
significantly with protein solubility by this appaoh (data not
shown). Overall, the frequencies of these five @ijles when
considered alone for Naive Bayes classificationdge 56.5% and
62% accuracy for mono and multiple domain datasetspec-




Protein solubility: sequence based prediction and experimental verification

tively, 10% less then the classification based requdencies of all
400 peptides.

3.3 Performance of the meta-classifier

Naive Bayes was used as a second-level classifieggregate the
information from primary SVM classifiers. Input ddbr the meta-
classifier was formed by the classification restdtseach instance
acquired upon 10-fold cross validation of the tHvest performing
primary-classifiers (one for each of the three atght word

lengths). Combining inputs from different primarkassifiers im-

proved the overall separation power of the methudi made clas-
sifiers less prone to overfitting.

In total our two-level method had an overall accyraf 72%,
with 75% for positive and 68.5% for negative claBse statistical
relevance of the results for both classes is vagh Wwith p-value
<2.2E-16. The MCC value achieved in this work i43@, the
highest amongst all tested or previously reportedsifiers. For
mono and multiple domain proteins the accuracy 890% and
74.6% respectively. A more detailed characteriratibthe meta-
classifier is given in the last column of TableSLippl. Table 8 and
by the receiver operating characteristic (ROC) earghown in
Suppl. Figure 3. The area under ROC curve is emudl781. This
last value is a good measurement of classifierop@dince and is
usually interpreted as the probability that thessifier will assign a
higher score to the positive example than to thgatiee, when
both are randomly picked. The shape of the curveals the de-
tailed relation between the classifier sensitiviBensitiv-
ity(P)=TPrate) and indirectly specificity (FPrateSpecificity(P))
in the entire range of these variables. The diagbnea on the
graph symbolizes random classifier. The PROSO RQ@®@es are
slightly asymmetrical. For the insoluble class theve goes up
steeper in the first half of the chart. This typdrR®C is typical for
classifiers that can discriminate relatively modfeattions of ex-
amples, but do so with high degree of certainty.t@nother hand
the curve for soluble class grows slower and reatligher values
on the right side of the chart, which is charastarifor classifiers
able to retrieve high percentage of instances efgilien class. As
revealed by the ROC curve, PROSO classified ~70¢osftive or
negative instances correctly while having only ~2&8%tances
misclassified into the opposite class.

34 A comparative study of solubility predicting
methods

We compared the performance of our predictor witheo previ-
ously reported algorithms: the widely used Wilkindgarrison
method (Wilkinson and Harrison, 1991), and the médgereported
Idicula-Thomas method (ldicula-Thomas and Balafi0®). We
assessed the results of the Wilkinson-Harrisonldiedila-Thomas
approaches using classification thresholds as itbescby the au-
thors (Harrison, 1999; Idicula-Thomas and Bala)02). Addi-
tionally, using the output of these methods andimbver of global
protein features such as pl, length, etc. we tchimed evaluated
(by 10-fold stratified cross-validation) a set cille Bayes classi-
fiers as described in Materials and Methods. Adlufs obtained
on a dataset including 14200 proteins are sumndtizélable 1
and Suppl. Table 8. In this comparison our methchieved the
highest value of MCC 0.434 and the accuracy of 7PB&. Wilkin-
son-Harrison approach resulted in much lower acyucd 56.2%
and the MCC of 0.127. Although the accuracy valeorted by

Idicula-Thomas (ldicula-Thomas et al., 2006) is 7af@ is thus
equal to ours, the MCC of this classifier is 18%véo (0.358).
Furthermore, the latter classifier was originakysted only on a
small set of 64 instances. A chi square test redetidat the results
reported by Idicula-Thomas et al. (2006) are otlilghtly statisti-
cally significant for the negative class (p-valu@d®5) and not
significant for the positive class (p-value 0.988uppl. Table 8).
The performance reported by Idicula-Thomas and ckeve (ac-
curacy 72%) is due to unbalance in the class reptaton. Their
method is strongly biased toward the negative clasth
TNrate=0.8 and TPrate=0.55. On the same data a guwlassifier
labeling all proteins as insoluble would have theusacy of 67%,
meaning that the reported classifier outperformes dammy ap-
proach only by 5 percentage points. PROSO surpéssefummy
classifier by over 20 percent points.

Amongst all classifiers based on single globalJest the one
exploiting isoelectrical point (pl) was the mosfi@ént: it reached
MCC of 0.2 and accuracy of 59.5%. The combinatiballoglobal
descriptors was slightly more successful, with M&@l accuracy
values of 0.222 and 60.7%, respectively. Despitgr trelatively
high accuracy, both pl based and combined classi§ieffer from
high unbalance of classification (TPrate ~0.7 ahilate ~0.4) and
relatively limited statistical significance of résufor the negative
class (p-value > 0.001). It is also worth notingttNaive Bayes
based on the combination of all global descriptwes the only
method except PROSO to reach both positive andtineggain
values of more then 1.15. Amongst dedicated satylplediction
methods used in combination with Naive Bayes, Wgkin-
Harrison clearly outperformed Idicula-Thomas applo@n our
dataset reaching the accuracy of 57.6% (MCC=0.E83)con-
trasted with 54.5% (MCC=0.091) of the later meth©dr solubil-
ity prediction method reaches gain values of 1@rlsbluble and
1.46 for insoluble class, which means that it ilmethe likeli-
hood of correctly distinguishing between solubled @nsoluble
proteins by more then 40% relative to random sieledigain=1).
It is important to realize that the use of any siféar which shows
the gain value 1 or lower is pointless as the emaivt can be
achieved by randomly drawing instances from inpatad From
this comparison we also conclude that the perfoomarf our clas-
sifier can not be explained by merely detectinguess indirectly
linked to pl (accuracy = 60.7%) nor the presencerdblded re-
gions (accuracy = 55.5%).

3.5 Experimental verification of solubility predictions

We tested our method against experimental data odubifity

measured for 31 different constructs of two prateFOP (FGFR1
oncogene partner) and CAP350 (centrosome assocatedin

350). For two FOP constructs FOP_FL and FC3 we weable to
obtain proteins pure enough for reliable estimatiérconcentra-
tion. For these two constructs protein solubilitgsaquantified as
the percentage of soluble fraction in relation riolusion bodies

after expression ii. coli and was measured by SDS-PAGE and/or

Western-blot (Suppl. Table 9). The rest of the @rat were di-
vided into insoluble, medium soluble and highlyuddé based on
their estimated maximum concentration, oligomeriastate, and
stability in solution as described in Materials afdthods. Insolu-
ble proteins were those that could not stay intgmuwithout de-
naturizing agents like urea or gauanidinium hydtogtie. Highly

soluble proteins were defined as those that statyesblution in
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Table 1 Comparative analysis of solubility prediction nwds?

Naive Bayes

Method Idicula-Thomas, Dummy classifier Idicula-Thomas Idicula-Thomas Al+FI+G

(2006) (all insoluble) (2005) WH (2005) WH Length Al GRAVY pl RAVY+pl PROSO
Instances 64 64 14200 14200 14200 14200 14200 14200 14200 14200 14200 14200
Accuracy 72 67.2 53.1 56.2 54.5 57.6 50.5 58.4 56.0 59.5 60.7 71.7
Mcc 0.358 - 0.078 0.127  0.091 0.153  0.011 0.171 (8% 0.201 0.222 0.434
TPrate 0.55 0 0.233 0.447  0.451 0.623  0.589 0.678 0.781 0.753  0.737 0.749
TNrate 0.803 1 0.829 0.676  0.639 0.530 0.422 0.490 0.339 0.438 0477 0.685
Gain(P) 1.677 - 1.155 1.160 1.111 1.140 1.009 1.141 1.083 1.145 1.170 1.408
Gain(N) 1.195 1 1.039 1100 1.076 1.169 1.013 1.207.215 1.278 1.290 1.463
AUROC - - 0.573 0.601  0.565 0.598  0.499 0.611 0576 0.628 0.650 0.781

#Performance of different methods for solubility gition. Additionally in the first column we pregawrsults reported by Idicula-Thomas and cowork2@€6) on the small test
dataset inclusing 64 instances. WH: Wilkinson Hami method. We also evaluated how strongly pratelability is correlated with simple sequence feasualiphatic index
(A1), fold index (FI), GRAVY index (GRAVY), and plpl). To optimize the performance a Naive Bayessgifier was trained with output values of a giveetinod or a se-
quence feature. All results presented were obtaiséth stratified ten fold cross validation as dibed in the text. MCC: Matthews Correlation Coeiffint, AUROC: Area
under receiver operating characteristic curve. [Etters P and N in parentheses refer to positiolide) and negative (insoluble) class, respegtiiROSO: our method

presented in this work.

high concentrations, did not oligomerize strongher€entage of
oligomers lower then 50%) and were stable (didpretipitate or
aggregate). As an example, Suppl. Figure 2 denaipstrexperi-
mental evaluation of solubility for one of the ctmsts used in
this work (FC2SHisMut). Proteins were labeled medisoluble
when more than half of the protein in solution viashigh oli-

gomeric stage. In all cases our method categoiizgdnces cor-
rectly to soluble/insoluble class. Additionally tkevas a correla-
tion between PROSO score (see Methods) and menibeirsh
medium or highly soluble class. By attributing theteins with

PROSO score higher or equal 0.745 to the highlytdelcategory
we were correct in 10 out of 14 cases (the numbéighly solu-

ble proteins) achieving TPrate(highly soluble) #10.For medium
soluble proteins we were able to classify correetllyinstances
(PROSO score higher or equal 0.5 and lower the#5). Detailed
results are provided in Suppl. Table 9 and 10.

3.6 Conclusions; advances, limitations, and future

directions

We report a novel sequence-based approach to fglgssiteins
into “soluble” and “insoluble”. It is able to catmige sequences
with low or no sequence homology to training d&ased on the
MCC value of 0.434 and accuracy values of 74.9%&h8% for
positive and negative class, respectively, we beltbat our classi-
fier outperforms any previously reported solubilisedictor and is
thus expected to be helpful in selecting solubletgins for bio-
physical studies as well as in detecting partiduldward cases.
Predictive abilities of our method were furthermeomnfirmed by
high correlation of assigned scores with experimgntetermined
solubility. We also identified the subset of feasiwhich have the
strongest impact on protein solubility.

An obvious limitation of our method is that it ialg applicable
to non-membrane proteins. It is also unable to iake account
factors unrelated to protein sequence such as rbodfi@position
etc. Instead of the currently used simplistic apphoto dividing
proteins into single- and multi-domain a more septated predic-

tion technique would be desirable, such as destyritoe example,
by Jones et al. (2005) or Liu & Rost (2004). Fipad significant
potential for further improvement of our methodstgias the anno-
tation of TargetDB proteins gets more accuratedetdiled.
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