QtiPlot 0.9.8 project file muParser 7 naměřenéhodnoty 30 3 23.2.2012 15:22:14 geometry 0 0 445 476 header původní[Y] po první korekci[Y] po druhé korekci[Y] ColWidth 100 114 121 ColType 0;0/13 0;0/13 0;0/13 ReadOnlyColumn 0 0 0 HiddenColumn 0 0 0 Comments WindowLabel 2 0 125.3435 125.3435 125.3435 1 125.3859 125.3859 125.3859 2 125.6928 3 125.3712 125.3712 125.3712 4 125.3592 125.3592 125.3592 5 125.3355 125.3355 125.3355 6 125.3115 125.3115 125.3115 7 125.3526 125.3526 125.3526 8 125.368 125.368 125.368 9 125.3866 125.3866 125.3866 10 125.4105 125.4105 125.4105 11 125.3847 125.3847 125.3847 12 125.37 125.37 125.37 13 125.1123 125.1123 14 125.3952 125.3952 125.3952 15 125.3351 125.3351 125.3351 16 125.3499 125.3499 125.3499 17 125.3847 125.3847 125.3847 18 125.321 125.321 125.321 19 125.3129 125.3129 125.3129
2_statistika naměřenéhodnoty col 6.3.2012 12:05:08 Targets 1 ColStatType 2 3 5 6 7 8 9 10 11 12 13 14 15 geometry 0 593 945 91 minimized header Col[X] Rows[Y] Mean[Y] StandardDev[Y] StandardError[yEr] Variance[Y] Sum[Y] iMax[Y] Max[Y] iMin[Y] Min[Y] N[Y] Median[Y] ColWidth 100 100 100 100 100 100 100 100 100 100 100 100 100 ColType 0;0/13 1;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 ReadOnlyColumn 0 0 0 0 0 0 0 0 0 0 0 0 0 HiddenColumn 0 0 0 0 0 0 0 0 0 0 0 0 0 Comments Column Name Rows Included Mean Standard Deviation Standard Error Variance Sum Index of Maximum Value Maximum Value Index of Minimum Value Minimum Value Number of Points Median WindowLabel po první korekci 2 3_statistika naměřenéhodnoty col 6.3.2012 12:05:23 Targets 2 ColStatType 2 3 5 6 7 8 9 10 11 12 13 14 15 geometry 640 593 945 91 minimized header Col[X] Rows[Y] Mean[Y] StandardDev[Y] StandardError[yEr] Variance[Y] Sum[Y] iMax[Y] Max[Y] iMin[Y] Min[Y] N[Y] Median[Y] ColWidth 100 100 100 100 100 100 100 100 100 100 100 100 100 ColType 0;0/13 1;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 ReadOnlyColumn 0 0 0 0 0 0 0 0 0 0 0 0 0 HiddenColumn 0 0 0 0 0 0 0 0 0 0 0 0 0 Comments Column Name Rows Included Mean Standard Deviation Standard Error Variance Sum Index of Maximum Value Maximum Value Index of Minimum Value Minimum Value Number of Points Median WindowLabel po druhé korekci 2 1_graf 1 1 6.3.2012 11:25:21 geometry 320 593 490 466 minimized WindowLabel puvodni 2 Margins 5 5 5 5 Spacing 5 5 LayerCanvasSize 400 300 Alignement 0 0 0 0 ggeometry 5 5 466 394 PlotTitle Title #000000 4228 0 1 1 Background #ffffff 255 Margin 0 Border 0 #000000 grid 0 0 0 0 #0000ff 0 0.5 #a0a0a4 2 0.4 #0000ff 0 0.5 #a0a0a4 2 0.4 0 0 2 0 0 EnabledAxes 1 1 1 1 AxesTitles R[Ω] pocet hodnot AxesTitleColors #000000 #000000 #000000 #000000 AxesTitleAlignment 5124 5124 5124 5124 AxesTitleDistance 2 2 2 2 TitleFont MS Shell Dlg 2 10 75 0 0 0 ScaleFont0 MS Shell Dlg 2 8 75 0 0 0 ScaleFont1 MS Shell Dlg 2 8 75 0 0 0 ScaleFont2 MS Shell Dlg 2 8 75 0 0 0 ScaleFont3 MS Shell Dlg 2 8 75 0 0 0 AxisFont0 MS Shell Dlg 2 8 50 0 0 0 AxisFont1 MS Shell Dlg 2 8 50 0 0 0 AxisFont2 MS Shell Dlg 2 8 50 0 0 0 AxisFont3 MS Shell Dlg 2 8 50 0 0 0 AxesColors #000000 #000000 #000000 #000000 AxesNumberColors #000000 #000000 #000000 #000000 AxesBaseline 0 0 0 0 CanvasBackground #ffffff 255 curve - naměřenéhodnoty_původní 9 1 #000000 0 1 3 0 #000000 #000000 1 #000000 4 0 0 1 0.1 125 126 2 0 0 29 1 0 F1 gauss_pdf(x-125.3642,0.0909) x 125.1 125.7 10000 1 #ff0000 1 2 0 0 0 0 F2 gauss_pdf(x-125.3642,0.0221) x 125.1 125.7 10000 A 5.5508975346262 w 0.039028004644108 xc 125.33817216149 y0 0.25000000001274 1 #00ff00 1 2 0 0 0 0 GaussFit1 y0+A*sqrt(2/PI)/w*exp(-2*((x-xc)/w)^2) x 125 125.9 100 A 5.5508975346262 w 0.039028004644108 xc 125.33817216149 y0 0.25000000001274 1 #ff0000 1 2 0 0 1 scale 0 0 20 0 7 5 0 0 scale 1 0 20 0 8 5 0 0 scale 2 125 126 0 6 5 0 0 scale 3 125 126 0 8 5 0 0 LabelsFormat 0 4 0 4 0 4 0 4 AxisType 0 0 0 0 MajorTicks 1 1 1 1 MinorTicks 1 1 1 1 TicksLength 5 9 DrawAxesBackbone 1 1 1 1 1 AxesLineWidth 1 LabelsRotation 0 0 0 0 LabelsPrefix LabelsSuffix TickLabelsSpace 4 4 4 4 ShowTicksPolicy 0 0 0 0 EnabledTickLabels 1 1 1 1 125.632124352332 120 125.632994923858 -5.503355704698 1 #000000 SolidLine 0 0 4 45 1 1 125.10103626943 120.805369127517 125.1 -5.90604026845635 1 #000000 SolidLine 0 0 4 45 1 1 1 #000000 1 0 -41.228070175439 24.163879598662 125.219095477387 17.3825503355705 1 1 0 \l(1)%(1) \l(2)%(2) \l(3)%(3) \l(4)%(4) MS Shell Dlg 2 8 50 0 0 0 #000000 #ffffff 0 0 1 0 0 1 2_graf 1 1 6.3.2012 11:32:19 geometry 160 593 490 466 minimized WindowLabel hodnoty po prvni korekci 2 Margins 5 5 5 5 Spacing 5 5 LayerCanvasSize 400 300 Alignement 0 0 0 0 ggeometry 5 5 466 394 PlotTitle Title #000000 4228 0 1 1 Background #ffffff 255 Margin 0 Border 0 #000000 grid 0 0 0 0 #0000ff 0 0.5 #a0a0a4 2 0.4 #0000ff 0 0.5 #a0a0a4 2 0.4 0 0 2 0 0 EnabledAxes 1 1 1 1 AxesTitles %(?X) %(?Y) AxesTitleColors #000000 #000000 #000000 #000000 AxesTitleAlignment 5124 5124 5124 5124 AxesTitleDistance 2 2 2 2 TitleFont MS Shell Dlg 2 10 75 0 0 0 ScaleFont0 MS Shell Dlg 2 8 75 0 0 0 ScaleFont1 MS Shell Dlg 2 8 75 0 0 0 ScaleFont2 MS Shell Dlg 2 8 75 0 0 0 ScaleFont3 MS Shell Dlg 2 8 75 0 0 0 AxisFont0 MS Shell Dlg 2 8 50 0 0 0 AxisFont1 MS Shell Dlg 2 8 50 0 0 0 AxisFont2 MS Shell Dlg 2 8 50 0 0 0 AxisFont3 MS Shell Dlg 2 8 50 0 0 0 AxesColors #000000 #000000 #000000 #000000 AxesNumberColors #000000 #000000 #000000 #000000 AxesBaseline 0 0 0 0 CanvasBackground #ffffff 255 curve - naměřenéhodnoty_po první korekci 9 1 #000000 0 1 3 0 #000000 #000000 1 #000000 4 0 0 1 0.1 125 126 2 0 0 29 1 0 F1 gauss_pdf(x-125.3469,0.0634) x 0 1 100 1 #ff0000 1 2 0 0 0 0 F2 gauss_pdf(x-125.3469,0.0634) x 0 1 100 1 #00ff00 1 2 0 0 0 0 F3 gauss_pdf(x-125.3469,0.0634) x 125.1 125.7 100 1 #0000ff 1 2 0 0 0 0 F4 gauss_pdf(x-125.3469,0.0634) x 125.1 125.7 100 1 #00ffff 1 2 0 0 0 0 F5 gauss_pdf(x-125.3469,0.0146) x 125.1 125.7 100 1 #ff00ff 1 2 0 0 0 0 GaussFit1 y0+A*sqrt(2/PI)/w*exp(-2*((x-xc)/w)^2) x 125 125.9 100 A 5.4353028708212 w 0.039680720350279 xc 125.33835076032 y0 0.12499999980027 1 #ff0000 1 2 0 0 1 scale 0 0 20 0 7 5 0 0 scale 1 0 20 0 7 5 0 0 scale 2 125 126 0 3 5 0 0 scale 3 125 126 0 8 5 0 0 LabelsFormat 0 4 0 4 0 4 0 4 AxisType 0 0 0 0 MajorTicks 1 1 1 1 MinorTicks 1 1 1 1 TicksLength 5 9 DrawAxesBackbone 1 1 1 1 1 AxesLineWidth 1 LabelsRotation 0 0 0 0 LabelsPrefix LabelsSuffix TickLabelsSpace 4 4 4 4 ShowTicksPolicy 0 0 0 0 EnabledTickLabels 1 1 1 1 125.185279187817 30.3523489932886 125.185279187817 -4.41275167785235 1 #000000 SolidLine 0 0 4 45 1 1 125.527918781726 27.7684563758389 125.527918781726 -6.99664429530202 1 #000000 SolidLine 0 0 4 45 1 1 1 #000000 1 0 -41.228070175439 24.163879598662 125.273869346734 26.0738255033557 1 1 0 \l(1)%(1) \l(2)%(2) \l(3)%(3) \l(4)%(4) \l(5)%(5) \l(6)%(6) \l(7)%(7) MS Shell Dlg 2 8 50 0 0 0 #000000 #ffffff 0 0 1 0 0 1 3_graf 1 1 6.3.2012 11:41:35 geometry 480 593 490 466 minimized WindowLabel po druhé korekci 2 Margins 5 5 5 5 Spacing 5 5 LayerCanvasSize 400 300 Alignement 0 0 0 0 ggeometry 3 5 466 394 PlotTitle Title #000000 4228 0 1 1 Background #ffffff 255 Margin 0 Border 0 #000000 grid 0 0 0 0 #0000ff 0 0.5 #a0a0a4 2 0.4 #0000ff 0 0.5 #a0a0a4 2 0.4 0 0 2 0 0 EnabledAxes 1 1 1 1 AxesTitles R[Ω] pocet hodnot AxesTitleColors #000000 #000000 #000000 #000000 AxesTitleAlignment 4 5124 4 5124 AxesTitleDistance 2 2 2 2 TitleFont MS Shell Dlg 2 10 75 0 0 0 ScaleFont0 MS Shell Dlg 2 8 75 0 0 0 ScaleFont1 MS Shell Dlg 2 8 75 0 0 0 ScaleFont2 MS Shell Dlg 2 8 75 0 0 0 ScaleFont3 MS Shell Dlg 2 8 75 0 0 0 AxisFont0 MS Shell Dlg 2 8 50 0 0 0 AxisFont1 MS Shell Dlg 2 8 50 0 0 0 AxisFont2 MS Shell Dlg 2 8 50 0 0 0 AxisFont3 MS Shell Dlg 2 8 50 0 0 0 AxesColors #000000 #000000 #000000 #000000 AxesNumberColors #000000 #000000 #000000 #000000 AxesBaseline 0 0 0 0 CanvasBackground #ffffff 255 curve - naměřenéhodnoty_po druhé korekci 9 1 #000000 0 1 3 0 #000000 #000000 1 #000000 4 0 0 0 0.1 125 126 2 0 0 29 1 0 F1 gauss_pdf(x-125.3599,0.0291) x 0 1 100 1 #ff0000 1 2 0 0 0 0 F2 gauss_pdf(x-125.3599,0.0069) x 0 1 100 1 #00ff00 1 2 0 0 0 0 F3 gauss_pdf(x-125.3599,0.0069) x 125.1 125.7 100 1 #0000ff 1 2 0 0 0 0 F4 gauss_pdf(x-125.3599,0.0291) x 125.1 125.7 100 1 #00ffff 1 2 0 0 0 0 F5 gauss_pdf(x-125.3599,0.0291) x 125.1 125.7 100 1 #ff00ff 1 2 0 0 0 0 GaussFit1 y0+A*sqrt(2/PI)/w*exp(-2*((x-xc)/w)^2) x 125 125.9 100 A 2.46870433965649 w 0.0498770236645655 xc 125.332379436054 y0 -3.75693626740106e-06 1 #ff0000 1 2 0 0 1 scale 0 0 40 0 8 5 0 0 scale 1 0 40 0 8 5 0 0 scale 2 125.1 125.7 0 7 5 0 0 scale 3 125.1 125.7 0 8 5 0 0 LabelsFormat 0 4 0 4 0 4 0 4 AxisType 0 0 0 0 MajorTicks 1 1 1 1 MinorTicks 1 1 1 1 TicksLength 5 9 DrawAxesBackbone 1 1 1 1 1 AxesLineWidth 1 LabelsRotation 0 0 0 0 LabelsPrefix LabelsSuffix TickLabelsSpace 4 4 4 4 ShowTicksPolicy 0 0 0 0 EnabledTickLabels 1 1 1 1 125.420418848168 59.7651006711409 125.420418848168 -5.30201342281879 1 #000000 SolidLine 0 0 4 45 1 1 125.231937172775 60.2348993288591 125.231937172775 -4.83221476510067 1 #000000 SolidLine 0 0 4 45 1 1 1 #000000 1 0 -41.228070175439 24.163879598662 125.26432160804 34.7651006711409 1 1 0 \l(1)%(1) \l(2)%(2) \l(3)%(3) \l(4)%(4) \l(5)%(5) \l(6)%(6) \l(7)%(7) MS Shell Dlg 2 8 50 0 0 0 #000000 #ffffff 0 0 1 0 0 1 1_statistika naměřenéhodnoty col 7.3.2012 21:56:57 Targets 0 ColStatType 2 3 5 6 7 8 9 10 11 12 13 14 15 geometry 800 593 945 99 minimized active header Col[X] Rows[Y] Mean[Y] StandardDev[Y] StandardError[yEr] Variance[Y] Sum[Y] iMax[Y] Max[Y] iMin[Y] Min[Y] N[Y] Median[Y] ColWidth 100 100 100 100 100 100 100 100 100 100 100 100 100 ColType 0;0/13 1;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 0;0/13 ReadOnlyColumn 0 0 0 0 0 0 0 0 0 0 0 0 0 HiddenColumn 0 0 0 0 0 0 0 0 0 0 0 0 0 Comments Column Name Rows Included Mean Standard Deviation Standard Error Variance Sum Index of Maximum Value Maximum Value Index of Minimum Value Minimum Value Number of Points Median WindowLabel Column Statistics of naměřenéhodnoty 2 1 [7.3.2012 6:51:12 Plot: ''Graph3''] Gauss Fit of dataset: Table1_6, using function: y0+A*sqrt(2/PI)/w*exp(-2*((x-xc)/w)^2) Weighting Method: No weighting Scaled Levenberg-Marquardt algorithm with tolerance = 0,0001 From x = 1,250000000000000e+02 to x = 1,259000000000000e+02 A (area) = 2,468704339656488e+00 +/- 7,900327304290840e-02 xc (center) = 1,253323794360537e+02 +/- 4,474394294672701e-04 w (width) = 4,987702366456546e-02 +/- 6,332769700319800e-04 y0 (offset) = -3,756936267401062e-06 +/- 4,338231714336112e-06 -------------------------------------------------------------------------------------- Chi^2/doF = 1,317341187095856e-10 R^2 = 0,999999999996932 Adjusted R^2 = 0,999999999994477 RMSE (Root Mean Squared Error) = 1,14775484625278e-05 RSS (Residual Sum of Squares) = 7,90404712258051e-10 --------------------------------------------------------------------------------------- Iterations = 359 Status = success --------------------------------------------------------------------------------------- [7.3.2012 6:52:22 Plot: ''Graph1''] Gauss Fit of dataset: Table1_4, using function: y0+A*sqrt(2/PI)/w*exp(-2*((x-xc)/w)^2) Weighting Method: No weighting Scaled Levenberg-Marquardt algorithm with tolerance = 0,0001 From x = 1,250000000000000e+02 to x = 1,259000000000000e+02 A (area) = 5,550897534626168e+00 +/- 1,994126358241283e+08 xc (center) = 1,253381721614896e+02 +/- 1,634950541610770e+05 w (width) = 3,902800464410769e-02 +/- 2,697401448328248e+05 y0 (offset) = 2,500000000127412e-01 +/- 1,889846627613891e-01 -------------------------------------------------------------------------------------- Chi^2/doF = 2,500000001233311e-01 R^2 = 0,994047619044683 Adjusted R^2 = 0,989285714280429 RMSE (Root Mean Squared Error) = 0,500000000123331 RSS (Residual Sum of Squares) = 1,50000000073999 --------------------------------------------------------------------------------------- Iterations = 1000 Status = the iteration has not converged yet --------------------------------------------------------------------------------------- [7.3.2012 6:53:53 Plot: ''Graph1''] Gauss Fit of dataset: Table1_4, using function: y0+A*sqrt(2/PI)/w*exp(-2*((x-xc)/w)^2) Weighting Method: No weighting Scaled Levenberg-Marquardt algorithm with tolerance = 0,0001 From x = 1,250000000000000e+02 to x = 1,259000000000000e+02 A (area) = 5,550897534626168e+00 +/- 1,994126358241283e+08 xc (center) = 1,253381721614896e+02 +/- 1,634950541610770e+05 w (width) = 3,902800464410769e-02 +/- 2,697401448328248e+05 y0 (offset) = 2,500000000127412e-01 +/- 1,889846627613891e-01 -------------------------------------------------------------------------------------- Chi^2/doF = 2,500000001233311e-01 R^2 = 0,994047619044683 Adjusted R^2 = 0,989285714280429 RMSE (Root Mean Squared Error) = 0,500000000123331 RSS (Residual Sum of Squares) = 1,50000000073999 --------------------------------------------------------------------------------------- Iterations = 1000 Status = the iteration has not converged yet --------------------------------------------------------------------------------------- [7.3.2012 6:57:12 Plot: ''Graph2''] Gauss Fit of dataset: Table1_5, using function: y0+A*sqrt(2/PI)/w*exp(-2*((x-xc)/w)^2) Weighting Method: No weighting Scaled Levenberg-Marquardt algorithm with tolerance = 0,0001 From x = 1,250000000000000e+02 to x = 1,259000000000000e+02 A (area) = 5,435302870821206e+00 +/- 7,245098809434038e+07 xc (center) = 1,253383507603185e+02 +/- 6,203496942312274e+04 w (width) = 3,968072035027918e-02 +/- 1,056546328155997e+05 y0 (offset) = 1,249999998002721e-01 +/- 1,443404414262407e-01 -------------------------------------------------------------------------------------- Chi^2/doF = 1,458333334595631e-01 R^2 = 0,996567281283808 Adjusted R^2 = 0,993821106310854 RMSE (Root Mean Squared Error) = 0,38188130807826 RSS (Residual Sum of Squares) = 0,875000000757379 --------------------------------------------------------------------------------------- Iterations = 1000 Status = the iteration has not converged yet --------------------------------------------------------------------------------------- [7.3.2012 21:46:24 "naměřenéhodnoty"] Statistics on naměřenéhodnoty_4: Mean = 125,3641550000000 Standard Deviation = 0,0989908846149 Median = 125,3636000000000 Size = 20 --------------------------------------------------------------------------------------