II. Tepelné fluktuace: Brownův pohyb Cvičení KOTLÁŘSKÁ 6. BŘEZNA 2013 F4110 Kvantová fyzika atomárních soustav letní semestr 2012 - 2013 Univerzální konstanty 2 3 Barometrická formule ... Koloidní částice v Perrinových pokusech podléhaly barometrické formuli. To dokazovalo atomovou hypotézu a zároveň udávalo velikost atomů 4 Barometrická formule Einsteinova a Perrinova klíčová myšlenka: částice koloidu jsou dost malé na to, aby v tepelné rovnováze s matečnou kapalinou tvořily „plyn“ (… malá koncentrace) a řídily se Boltzmannovým rozdělením pro plyny ve vnějším poli Pro koloidní částice (gumiguty) v kapalině a poli tíže 1 mm pro Perrina neznámá!!! 5 Odhad prostřednictví v barometrické formuli výška z (mm) 5.00 35.0 65.0 95.0 rel. četnost N 100. 47.0 22.6 12.0 Hledání směrnice k 6 Hledání směrnice k 7 Hledání směrnice k 8 Hledání směrnice k 9 10 Odhad prostřednictví v barometrické formuli 11 12 Brownův pohyb Jev, který byl pokládán spíše za kuriositu, ale který byl nakonec jedním z pilířů "nové" fysiky před 100 lety 13 K obsahu Einsteinovy práce: evoluce Brownovy částice [USEMAP] ! Souběžně velmi podobná práce Mariana Smoluchowskiho Postup A.E. je "polofenomenologický " Výsledky 1.Odvozen molekulárně-kinetický vzorec pro koloidní osmotický tlak (…"nezajímavé") 2.Formule pro difusní konstantu … Einsteinův vztah 3.Formule pro evoluci Brownovy částice 4.Navržen nový způsob stanovení Avogadrovy konstanty … dnes úloha do praktika Odplouvání Brownovy částice od výchozí polohy makroskopicky interpretováno jako difuse Difusní rovnice ... parciální diferenciální rovnice pro vývoj koncentrace částic Z ní lze odvodit (bez explicitního řešení) formuli 14 K obsahu Einsteinovy práce: evoluce Brownovy částice Difusní rovnice Odplouvání Brownovy částice od výchozí polohy makroskopicky interpretováno jako difuse Perrin se spolupracovníky provedl opětovaná měření a z nich vypočetl difusní konstantu. Pomocí Einsteinovy formule určil Difuse se chápe jako postupné vyměňování poloh solutu a solventu díky náhodným termálním pohybům My se tomu budeme věnovat pomocí Langevinovy rovnice Vztah v rámečku odpovídá rozměrové úvaze 15 roztékání Brownovy částice: odvození z difusní rovnice Difusní rovnice Určíme několik nejnižších momentů jako funkci času pomocí Difusní rovnice Provedu 1D, ve vyšších dimensích obdobné. 16 Ekvipartiční teorém Univerzální zákonitost klasických rovnovážných systémů 17 Ekvipartiční teorém Ekvipartiční teorém obecně platný za dvou předpokladů: 1. Systém je klasický ( fatálně důležité … viz Planckova funkce) 2. Uvažovaný stupeň volnosti (p nebo q) … v celkovém hamiltoniánu aditivní kvadratická funkce, typicky Ekvipartiční teorém Pokrývá mimo jiné Kapplerovský výpočet. Nezáleží na: z kinetické energii, z rozdílném dynamickém chování pro různé podmínky (tlak vzduchu) Podobně pro kinetickou energii nezávisle na hmotnosti částice. Střední kvadratické rychlosti se ovšem liší!! 18 Ekvipartiční teorém -- výpočet bez počítání 19 Ekvipartiční teorém -- výpočet bez počítání 20 Ekvipartiční teorém Ekvipartiční teorém obecně platný za dvou předpokladů: 1. Systém je klasický ( fatálně důležité … viz Planckova funkce) 2. Uvažovaný stupeň volnosti (p nebo q) … v celkovém hamiltoniánu aditivní kvadratická funkce, typicky Ekvipartiční teorém Nezáleží na: z kinetické energii, z rozdílném dynamickém chování pro různé podmínky (tlak vzduchu) Podobně pro kinetickou energii nezávisle na hmotnosti částice. Střední kvadratické rychlosti se ovšem liší!! 21 Ekvipartiční teorém Ekvipartiční teorém obecně platný za dvou předpokladů: 1. Systém je klasický ( fatálně důležité … viz Planckova funkce) 2. Uvažovaný stupeň volnosti (p nebo q) … v celkovém hamiltoniánu aditivní kvadratická funkce, typicky Ekvipartiční teorém Nezáleží na: z kinetické energii, z rozdílném dynamickém chování pro různé podmínky (tlak vzduchu) Podobně pro kinetickou energii nezávisle na hmotnosti částice. Střední kvadratické rychlosti se ovšem liší!! The end