HOMEWORK 4 (1) Compute the homology groups of S1 ∨ S1 . (2) Using the Mayer–Vietoris exact sequence, compute the homology groups of the n–hole torus (we cut horizontally) (3) Prove the exactness of the long exact sequence for the triple A ⊂ B ⊂ X in the map ∂∗ given the two long exact sequences · · · // Hn(B) // Hn(B, A) // Hn−1(A) // Hn−1(B) ∼=  // Hn−1(B, A) // · · · · · · // Hn(B) // Hn(X) // Hn(X, B) ∂∗ // Hn−1(B) // Hn−1(X) // · · · where ∂∗ : Hn(X, B) → Hn−1(B, A) (right, up, right) (4) Let A ⊂ X Compute the homology groups of CX/A i.e. make a cone and then collapse part of the base (Hint: make cone CA in the other direction). Date: March 15, 2013. 1