Geometrický růst x(t+1)=qx(t) t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x(t) 0,01000 0,01500 0,02250 0,03375 0,05063 0,07594 0,11391 0,17086 0,25629 0,38443 0,57665 0,86498 1,29746 1,94620 2,91929 q= 1,5 3,50000 3,00000 2,50000 x(t ) 2,00000 1,50000 1,00000 0,50000 0,00000 0 1 2 3 4 5 6 7 t Stránka 1 Geometrický růst 3 4 5 6 7 8 9 10 11 12 13 14 t Stránka 2 Logistická rovnice - Maynard Smith, May x(t+1)=x(t)(r-(r-1)/K x(t)) t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 x(t) 0,0100 0,0150 0,0223 0,0332 0,0493 0,0727 0,1064 0,1540 0,2191 0,3046 0,4105 0,5315 0,6560 0,7689 0,8577 0,9187 0,9561 0,9771 0,9883 0,9941 0,9970 0,9985 0,9993 0,9996 0,9998 0,9999 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 r= 1,5 K= 1 1,2000 1,0000 0,8000 x(t) 0,6000 0,4000 0,2000 0,0000 0 5 10 15 20 25 30 t Stránka 3 Logistická rovnice - Maynard Smith, May 20 25 30 35 40 45 50 t Stránka 4 Beverton-Holt, Pielou x(t+1)=rKx(t/(K+(r-1)x(t)) t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 x(t) 0,0100 0,0149 0,0222 0,0330 0,0486 0,0712 0,1032 0,1472 0,2056 0,2797 0,3681 0,4663 0,5672 0,6628 0,7468 0,8156 0,8690 0,9087 0,9372 0,9573 0,9711 0,9805 0,9869 0,9913 0,9942 0,9961 0,9974 0,9983 0,9988 0,9992 0,9995 0,9997 0,9998 0,9998 0,9999 0,9999 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 r= 1,5 K= 1 1,2000 1,0000 0,8000 x(t) 0,6000 0,4000 0,2000 0,0000 0 5 10 15 20 25 30 t Stránka 5 Beverton-Holt, Pielou 20 25 30 35 40 45 50 t Stránka 6 Ricker x(t+1)=x(t)exp[(1-x(t)/K) ln r] t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 x(t) 0,0100 0,0149 0,0223 0,0331 0,0490 0,0721 0,1050 0,1509 0,2129 0,2930 0,3902 0,4997 0,6121 0,7163 0,8036 0,8702 0,9172 0,9485 0,9685 0,9810 0,9886 0,9932 0,9959 0,9976 0,9986 0,9991 0,9995 0,9997 0,9998 0,9999 0,9999 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 r= 1,5 K= 1 1,2000 1,0000 0,8000 x(t) 0,6000 0,4000 0,2000 0,0000 0 5 10 15 20 25 3 t 1,04 Stránka 7 Ricker 20 25 30 35 40 45 50 t Stránka 8