
 

CHAPTER 9
AUCTIONS AND
MECHANISM DESIGN

In most real-world markets, sellers do not have perfect knowledge of market demand.
Instead, sellers typically have only statistical information about market demand. Only the
buyers themselves know precisely how much of the good they are willing to buy at a
particular price. In this chapter, we will revisit the monopoly problem under this more
typical circumstance.

Perhaps the simplest situation in which the above elements are present occurs when
a single object is put up for auction. There, the seller is typically unaware of the buyers’
values but may nevertheless have some information about the distribution of values across
buyers. In such a setting, there are a number of standard auction forms that the seller might
use to sell the good – first-price, second-price, Dutch, English. Do each of these standard
auctions raise the same revenue for the seller? If not, which is best? Is there a non-standard
yet even better selling mechanism for the seller? To answer these and other questions, we
will introduce and employ some of the tools from the theory of mechanism design.

Mechanism design is a general theory about how and when the design of appropri-
ate institutions can achieve particular goals. This theory is especially germane when the
designer requires information possessed only by others to achieve his goal. The subtlety
in designing a successful mechanism lies in ensuring that the mechanism gives those who
possess the needed information the incentive to reveal it to the designer. This chapter pro-
vides an introduction to the theory of mechanism design. We shall begin by considering
the problem of designing a revenue-maximising selling mechanism. We then move on to
the problem of efficient resource allocation. In both cases, the design problem will be sub-
ject to informational constraints – the agents possessing private information will have to
be incentivised to report their information truthfully.

9.1 THE FOUR STANDARD AUCTIONS

Consider a seller with a single object for sale who wishes to sell the object to one of N
buyers for the highest possible price. How should the seller go about achieving this goal?
One possible answer is to hold an auction. Many distinct auctions have been put to use at
one time or another, but we will focus on the following four standard auctions.1

1We shall assume throughout and unless otherwise noted that in all auctions ties in bids are broken at random:
each tied bidder is equally likely to be deemed the winner.
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• First-Price, Sealed-Bid: Each bidder submits a sealed bid to the seller. The
highest bidder wins and pays his bid for the good.

• Second-Price, Sealed-Bid: Each bidder submits a sealed bid to the seller. The
highest bidder wins and pays the second-highest bid for the good.

• Dutch Auction: The seller begins with a very high price and begins to reduce it.
The first bidder to raise his hand wins the object at the current price.

• English Auction: The seller begins with very low price (perhaps zero) and begins
to increase it. Each bidder signals when he wishes to drop out of the auction. Once
a bidder has dropped out, he cannot resume bidding later. When only one bidder
remains, he is the winner and pays the current price.

Can we decide even among these four which is best for the seller? To get a handle
on this problem, we must begin with a model.

9.2 THE INDEPENDENT PRIVATE VALUES MODEL

A single risk-neutral seller wishes to sell an indivisible object to one of N risk-neutral
buyers. The seller values the object at zero euros.2 Buyer i’s value for the object, vi, is
drawn from the interval [0, 1] according to the distribution function Fi(vi) with density
function fi(vi).3 We shall assume that the buyers’ values are mutually independent. Each
buyer knows his own value but not the values of the other buyers. However, the density
functions, f1, . . . , fN, are public information and so known by the seller and all buyers. In
particular, while the seller is unaware of the buyers’ exact values, he knows the distribution
from which each value is drawn. If buyer i’s value is vi, then if he wins the object and pays
p, his payoff (i.e., von Neumann-Morgenstern utility) is vi − p, whereas his payoff is −p
if he must pay p but does not win the object.4

This is known as the ‘independent, private values’ model. Independent refers to the
fact that each buyer’s private information (in this case, each buyer’s value) is independent
of every other buyer’s private information. Private value refers to the fact that once a buyer
employs his own private information to assess the value of the object, this assessment
would be unaffected were he subsequently to learn any other buyer’s private information,
i.e., each buyer’s private information is sufficient for determining his value.5

Throughout this chapter, we will assume that the setting in which our monopolist
finds himself is well-represented by the independent private values model. We can now

2This amounts to assuming that the object has already been produced and that the seller’s use value for it is zero.
3Recall that Fi(vi) denotes the probability that i’s value is less than or equal to vi, and that fi(vi) = F′

i(vi). The
latter relation can be equivalently expressed as Fi(vi) = ∫ vi

0 fi(x)dx. Consequently, we will sometimes refer to fi
and sometimes refer to Fi since each one determines the other.
4Although such an outcome is not possible in any one of the four auctions above, there are other auctions (i.e.,
all-pay auctions) in which payments must be made whether or not one wins the object.
5There are more general models in which buyers with private information would potentially obtain yet additional
information about the value of the object were they to learn another buyer’s private information, but we shall not
consider such models here.
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begin to think about how the seller’s profits vary with different auction formats. Note
that with the production decision behind him and his own value equal to zero, profit-
maximisation is equivalent to revenue-maximisation.

Before we can determine the seller’s revenues in each of the four standard auc-
tions, we must understand the bidding behaviour of the buyers across the different auction
formats. Let us start with the first-price auction.

9.2.1 BIDDING BEHAVIOUR IN A FIRST-PRICE, SEALED-BID AUCTION

To understand bidding behaviour in a first-price auction, we shall, for simplicity, assume
that the buyers are ex ante symmetric. That is, we shall suppose that for all buyers
i = 1, . . . ,N, fi(v) = f (v) for all v ∈ [0, 1].

Clearly, the main difficulty in determining the seller’s revenue is in determining how
the buyers, let us agree to call them bidders now, will bid. But note that if you are one of
the bidders, then because you would prefer to win the good at a lower price rather than a
higher one, you will want to bid low when the others are bidding low and you will want to
bid higher when the others bid higher. Of course, you do not know the bids that the others
submit because of the sealed-bid rule. Yet, your optimal bid will depend on how the others
bid. Thus, the bidders are in a strategic setting in which the optimal action (bid) of each
bidder depends on the actions of others. Consequently, to determine the behaviour of the
bidders, we shall employ the game theoretic tools developed in Chapter 7.

Let us consider the problem of how to bid from the point of view of bidder i.
Suppose that bidder i’s value is vi. Given this value, bidder i must submit a sealed bid,
bi. Because bi will in general depend on i’s value, let us write bi(vi) to denote bidder
i’s bid when his value is vi. Now, because bidder i must be prepared to submit a bid
bi(vi) for each of his potential values vi ∈ [0, 1], we may view bidder i’s strategy as a
bidding function bi : [0, 1] → R+, mapping each of his values into a (possibly different)
non-negative bid.

Before we discuss payoffs, it will be helpful to focus our attention on a natural class
of bidding strategies. It seems very natural to expect that bidders with higher values will
place higher bids. So, let us restrict attention to strictly increasing bidding functions. Next,
because the bidders are ex ante symmetric, it is also natural to suppose that bidders with
the same value will submit the same bid. With this in mind, we shall focus on finding
a strictly increasing bidding function, b̂ : [0, 1] → R+, that is optimal for each bidder to
employ, given that all other bidders employ this bidding function as well. That is, we wish
to find a symmetric Nash equilibrium in strictly increasing bidding functions.

Now, let us suppose that we find a symmetric Nash equilibrium given by the strictly
increasing bidding function b̂(·). By definition it must be payoff-maximising for a bidder,
say i,with value v to bid b̂(v) given that the other bidders employ the same bidding function
b̂(·). Because of this, we can usefully employ what may at first appear to be a rather
mysterious exercise.

The mysterious but useful exercise is this: imagine that bidder i cannot attend the
auction and that he sends a friend to bid for him. The friend knows the equilibrium bidding
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function b̂(·), but he does not know bidder i’s value. Now, if bidder i’s value is v, bidder
i would like his friend to submit the bid b̂(v) on his behalf. His friend can do this for him
once bidder i calls him and tells him his value. Clearly, bidder i has no incentive to lie to
his friend about his value. That is, among all the values r ∈ [0, 1] that bidder i with value
v can report to his friend, his payoff is maximised by reporting his true value, v, to his
friend. This is because reporting the value r results in his friend submitting the bid b̂(r) on
his behalf. But if bidder i were there himself he would submit the bid b̂(v).

Let us calculate bidder i’s expected payoff from reporting an arbitrary value, r, to his
friend when his value is v, given that all other bidders employ the bidding function b̂(·).
To calculate this expected payoff, it is necessary to notice just two things. First, bidder i
will win only when the bid submitted for him is highest. That is, when b̂(r) > b̂(vj) for
all bidders j �= i. Because b̂(·) is strictly increasing this occurs precisely when r exceeds
the values of all N − 1 other bidders. Letting F denote the distribution function associated
with f , the probability that this occurs is (F(r))N−1 which we will denote FN−1(r). Second,
bidder i pays only when he wins and he then pays his bid, b̂(r). Consequently, bidder i’s
expected payoff from reporting the value r to his friend when his value is v, given that all
other bidders employ the bidding function b̂(·), can be written

u(r, v) = FN−1(r)(v − b̂(r)). (9.1)

Now, as we have already remarked, because b̂(·) is an equilibrium, bidder i’s
expected payoff-maximising bid when his value is v must be b̂(v). Consequently, (9.1)
must be maximised when r = v, i.e., when bidder i reports his true value, v, to his friend.
So, if we differentiate the right-hand side with respect to r, the resulting derivative must
be zero when r = v. Differentiating yields

dFN−1(r)(v − b̂(r))

dr
= (N − 1)FN−2(r)f (r)(v − b̂(r))− FN−1(r)b̂′(r). (9.2)

Evaluating the right-hand side at r = v, where it is equal to zero, and rearranging yields,

(N − 1)FN−2(v)f (v)b̂(v)+ FN−1(v)b̂′(v) = (N − 1)vf (v)FN−2(v). (9.3)

Looking closely at the left-hand side of (9.3), we see that it is just the derivative of the
product FN−1(v)b̂(v) with respect to v. With this observation, we can rewrite (9.3) as

dFN−1(v)b̂(v)

dv
= (N − 1)vf (v)FN−2(v). (9.4)

Now, because (9.4) must hold for every v, it must be the case that

FN−1(v)b̂(v) = (N − 1)
∫ v

0
xf (x)FN−2(x)dx + constant.
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Noting that a bidder with value zero must bid zero, we conclude that the constant above
must be zero. Hence, it must be the case that

b̂(v) = N − 1

FN−1(v)

∫ v

0
xf (x)FN−2(x)dx,

which can be written more succinctly as

b̂(v) = 1

FN−1(v)

∫ v

0
xdFN−1(x). (9.5)

There are two things to notice about the bidding function in (9.5). First, as we had
assumed, it is strictly increasing in v (see Exercise 9.1). Second, it has been uniquely
determined. Hence, in conclusion, we have proven the following.

THEOREM 9.1 First-Price Auction Symmetric Equilibrium

If N bidders have independent private values drawn from the common distribution, F, then
bidding

b̂(v) = 1

FN−1(v)

∫ v

0
xdFN−1(x)

whenever one’s value is v constitutes a symmetric Nash equilibrium of a first-price, sealed-
bid auction. Moreover, this is the only symmetric Nash equilibrium.6

EXAMPLE 9.1 Suppose that each bidder’s value is uniformly distributed on [0, 1]. Then
F(v) = v and f (v) = 1. Consequently, if there are N bidders, then each employs the
bidding function

b̂(v) = 1

vN−1

∫ v

0
xdxN−1

= 1

vN−1

∫ v

0
x(N − 1)xN−2dx

= N − 1

vN−1

∫ v

0
xN−1dx

= N − 1

vN−1

1

N
vN

= v − v

N
.

6Strictly speaking, we have not shown that this is an equilibrium. We have shown that if a symmetric equilibrium
exists, then this must be it. You are asked to show that this is indeed an equilibrium in an exercise. You might
also wonder about the existence of asymmetric equilibria. It can be shown that there are none, although we shall
not do so here.
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So, each bidder shades his bid, by bidding less than his value. Note that as the number of
bidders increases, the bidders bid more aggressively.

Because FN−1(·) is the distribution function of the highest value among a bidder’s
N − 1 competitors, the bidding strategy displayed in Theorem 9.1 says that each bidder
bids the expectation of the second highest bidder’s value conditional on his own value
being highest. But, because the bidders use the same strictly increasing bidding func-
tion, having the highest value is equivalent to having the highest bid and so equivalent to
winning the auction. So, we may say:

In the unique symmetric equilibrium of a first-price, sealed-bid auction, each bidder bids
the expectation of the second-highest bidder’s value conditional on winning the auction.

The idea that one ought to bid conditional on winning is very intuitive in a first-
price auction because of the feature that one’s bid matters only when one wins the auction.
Because this feature is present in other auctions as well, this idea should be considered one
of the basic insights of our strategic analysis.

Having analysed the first-price auction, it is an easy matter to describe behaviour in
a Dutch auction.

9.2.2 BIDDING BEHAVIOUR IN A DUTCH AUCTION

In a Dutch auction, each bidder has a single decision to make, namely, ‘At what price
should I raise my hand to signal that I am willing to buy the good at that price?’
Moreover, the bidder who chooses the highest price wins the auction and pays this price.
Consequently, by replacing the word ‘price’ by ‘bid’ in the previous sentence we see that
this auction is equivalent to a first-price auction! So, we can immediately conclude the
following.

THEOREM 9.2 Dutch Auction Symmetric Equilibrium

If N bidders have independent private values drawn from the common distribution, F, then
raising one’s hand when the price reaches

1

FN−1(v)

∫ v

0
xdFN−1(x)

whenever one’s value is v constitutes a symmetric Nash equilibrium of a Dutch auction.
Moreover, this is the only symmetric Nash equilibrium.

Clearly then, the first-price and Dutch auctions raise exactly the same revenue for
the seller, ex post (i.e., for every realisation of bidder values v1, . . . , vN).

We now turn to the second-price, sealed-bid auction.



 

AUCTIONS AND MECHANISM DESIGN 433

9.2.3 BIDDING BEHAVIOUR IN A SECOND-PRICE, SEALED-BID AUCTION

One might wonder why we would bother considering a second-price auction at all. Is it
not obvious that a first-price auction must yield higher revenue for the seller? After all, in
a first-price auction the seller receives the highest bid, whereas in a second-price auction
he receives only the second-highest bid.

While this might sound convincing, it neglects a crucial point: The bidders will bid
differently in the two auctions. In a first-price auction, a bidder has an incentive to raise
his bid to increase his chances of winning the auction, yet he has an incentive to reduce
his bid to lower the price he pays when he does win. In a second-price auction, the second
effect is absent because when a bidder wins, the amount he pays is independent of his
bid. So, we should expect bidders to bid more aggressively in a second-price auction than
they would in a first-price auction. Therefore, there is a chance that a second-price auction
will generate higher expected revenues for the seller than will a first-price auction. When
we recognise that bidding behaviour changes with the change in the auction format, the
question of which auction raises more revenue is not quite so obvious, is it?

Happily, analysing bidding behaviour in a second-price, sealed-bid auction is
remarkably straightforward. Unlike our analysis of the first-price auction, we need not
restrict attention to the case involving symmetric bidders. That is, we shall allow the
density functions f1, . . . , fN, from which the bidders’ values are independently drawn, to
differ.7

Consider bidder i with value vi, and let B denote the highest bid submitted by the
other bidders. Of course, B is unknown to bidder i because the bids are sealed. Now, if
bidder i were to win the auction, his bid would be highest and B would then be the second-
highest bid. Consequently, bidder i would have to pay B for the object. In effect, then, the
price that bidder i must pay for the object is the highest bid, B, submitted by the other
bidders.

Now, because bidder i’s value is vi, he would strictly want to win the auction when
his value exceeds the price he would have to pay, i.e., when vi > B; and he would strictly
want to lose when vi < B.When vi = B he is indifferent between winning and losing. Can
bidder i bid in a manner that guarantees that he will win when vi > B and that he will
lose when vi < B, even though he does not know B? The answer is yes. He can guarantee
precisely this simply by bidding his value, vi!

By bidding vi, bidder i is the high bidder, and so wins, when vi > B, and he is not
the high bidder, and so loses, when vi < B. Consequently, bidding his value is a payoff-
maximising bid for bidder i regardless of the bids submitted by the other bidders (recall
that B was the highest bid among any arbitrary bids submitted by the others). Moreover,
because bidding below one’s value runs the risk of losing the auction when one would have
strictly preferred winning it, and bidding above one’s value runs the risk of winning the
auction for a price above one’s value, bidding one’s value is a weakly dominant bidding
strategy. So, we can state the following.

7In fact, even the independence assumption can be dropped. (See Exercise 9.5.)
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THEOREM 9.3 Second-Price Auction Equilibrium

If N bidders have independent private values, then bidding one’s value is the unique weakly
dominant bidding strategy for each bidder in a second-price, sealed-bid auction.

This brings us to the English auction.

9.2.4 BIDDING BEHAVIOUR IN AN ENGLISH AUCTION

In contrast to the auctions we have considered so far, in an English auction there are poten-
tially many decisions a bidder has to make. For example, when the price is very low, he
must decide at which price he would drop out when no one has yet dropped out. But, if
some other bidder drops out first, he must then decide at which price to drop out given the
remaining active bidders, and so on. Despite this, there is a close connection between the
English and second-price auctions.

In an English auction, as in a second-price auction, it turns out to be a dominant
strategy for a bidder to drop out when the price reaches his value, regardless of which
bidders remain active. The reason is rather straightforward. A bidder i with value vi who,
given the history of play and the current price p < vi, considers dropping out can do no
worse by planning to remain active a little longer and until the price reaches his value,
vi. By doing so, the worst that can happen is that he ends up dropping out when the
price does indeed reach his value. His payoff would then be zero, just as it would be
if he were to drop out now at price p. However, it might happen, were he to remain
active, that all other bidders would drop out before the price reaches vi. In this case,
bidder i would be strictly better off by having remained active since he then wins the
object at a price strictly less than his value vi, obtaining a positive payoff. So, we have the
following.

THEOREM 9.4 English Auction Equilibrium

If N bidders have independent private values, then dropping out when the price reaches
one’s value is the unique weakly dominant bidding strategy for each bidder in an English
auction.8

Given this result, it is easy to see that the bidder with the highest value will win in an
English auction. But what price will he pay for the object? That, of course, depends on the
price at which his last remaining competitor drops out of the auction. But his last remaining
competitor will be the bidder with the second-highest value, and he will, like all bidders,
drop out when the price reaches his value. Consequently, the bidder with highest value
wins and pays a price equal to the second-highest value. Hence, we see that the outcome
of the English auction is identical to that of the second-price auction. In particular, the
English and second-price auctions earn exactly the same revenue for the seller, ex post.

8As in the second-price auction case, this weak dominance result does not rely on the independence of the
bidder’s values. It holds even if the values are correlated. However, it is important that the values are private.
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9.2.5 REVENUE COMPARISONS

Because the first-price and Dutch auctions raise the same ex post revenue and the second-
price and English auctions raise the same ex post revenue, it remains only to compare the
revenues generated by the first- and second-price auctions. Clearly, these auctions need
not raise the same revenue ex post. For example, when the highest value is quite high
and the second-highest is quite low, running a first-price auction will yield more revenue
than a second-price auction. On the other hand, when the first- and second-highest values
are close together, a second-price auction will yield higher revenues than will a first-price
auction.

Of course, when the seller must decide which of the two auction forms to employ,
he does not know the bidders’ values. However, knowing how the bidders bid as functions
of their values, and knowing the distribution of bidder values, the seller can calculate the
expected revenue associated with each auction. Thus, the question is, which auction yields
the highest expected revenue, a first- or a second-price auction? Because our analysis of the
first-price auction involved symmetric bidders, we must assume symmetry here to compare
the expected revenue generated by a first-price versus a second-price auction. So, in what
follows, f (·) will denote the common density of each bidder’s value and F(·) will denote
the associated distribution function.

Let us begin by considering the expected revenue, RFPA, generated by a first-price
auction (FPA). Because the highest bid wins a first-price auction and because the bidder
with the highest value submits the highest bid, if v is the highest value among the N bidder
values, then the seller’s revenue is b̂(v). So, if the highest value is distributed according to
the density g(v), the seller’s expected revenue can be written

RFPA =
∫ 1

0
b̂(v)g(v)dv.

Because the density, g, of the maximum of N independent random variables with
common density f and distribution F is NfFN−1,9 we have

RFPA = N
∫ 1

0
b̂(v)f (v)FN−1(v)dv. (9.6)

We have seen that in a second-price auction, because each bidder bids his value,
the seller receives as price the second-highest value among the N bidder values. So, if
h(v) is the density of the second-highest value, the seller’s expected revenue, RSPA, in a
second-price auction can be written

RSPA =
∫ 1

0
vh(v)dv.

9To see this, note that the highest value is less than or equal to v if and only if all N values are, and that this
occurs with probability FN(v). Hence, the distribution function of the highest value is FN . Because the density
function is the derivative of the distribution function the result follows.
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Because the density, h, of the second-highest of N independent random variables
with common density f and distribution function F is N(N − 1)FN−2f (1 − F),10 we have

RSPA = N(N − 1)
∫ 1

0
vFN−2(v)f (v)(1 − F(v))dv. (9.7)

We shall now compare the two. From (9.6) and (9.5) we have

RFPA = N
∫ 1

0

[
1

FN−1(v)

∫ v

0
xdFN−1(x)

]
f (v)FN−1(v)dv

= N(N − 1)
∫ 1

0

[∫ v

0
xFN−2(x)f (x)dx

]
f (v)dv

= N(N − 1)
∫ 1

0

∫ v

0
[xFN−2(x)f (x)f (v)]dxdv

= N(N − 1)
∫ 1

0

∫ 1

x
[xFN−2(x)f (x)f (v)]dvdx

= N(N − 1)
∫ 1

0
xFN−2(x)f (x)(1 − F(x))dx

= RSPA,

where the fourth equality follows from interchanging the order of integration (i.e., from
dxdv to dvdx), and the final equality follows from (9.7).

EXAMPLE 9.2 Consider the case in which each bidder’s value is uniform on [0, 1] so that
F(v) = v and f (v) = 1. The expected revenue generated in a first-price auction is

RFPA = N
∫ 1

0
b̂(v)f (v)FN−1(v)dv

= N
∫ 1

0

[
v − v

N

]
vN−1dv

= (N − 1)
∫ 1

0
vNdv

= N − 1

N + 1
.

10One way to see this is to treat probability density like probability. Then the probability (density) that some
particular bidder’s value is v is f (v) and the probability that exactly one of the remaining N − 1 other bidders’
values is above this is (N − 1)FN−2(v)(1 − F(v)).Consequently, the probability that this particular bidder’s value
is v and it is second-highest is (N − 1)f (v)FN−2(v)(1 − F(v)). Because there are N bidders, the probability (i.e.,
density) that the second-highest value is v is then N(N − 1)f (v)FN−2(v)(1 − F(v)).
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On the other hand, the expected revenue generated in a second-price auction is

RSPA = N(N − 1)
∫ 1

0
vFN−2(v)f (v)(1 − F(v))dv

= N(N − 1)
∫ 1

0
vN−1(1 − v)dv

= N(N − 1)

[
1

N
− 1

N + 1

]

= N − 1

N + 1
.

Remarkably, the first- and second-price auctions raise the same expected revenue,
regardless of the common distribution of bidder values! So, we may state the following:

If N bidders have independent private values drawn from the common distribution, F, then
all four standard auction forms (first-price, second-price, Dutch, and English) raise the
same expected revenue for the seller.

This revenue equivalence result may go some way towards explaining why we see
all four auction forms in practice. Were it the case that one of them raised more revenue
than the others on average, then we would expect that one to be used rather than any of
the others. But what is it that accounts for the coincidence of expected revenue in these
auctions? Our next objective is to gain some insight into why this is so.

9.3 THE REVENUE EQUIVALENCE THEOREM

To explain the equivalence of revenue in the four standard auction forms, we must first
find a way to fit all of these auctions into a single framework. With this in mind, we now
define the notion of a direct selling mechanism.11

DEFINITION 9.1 Direct Selling Mechanism

A direct selling mechanism is a collection of N probability assignment functions,

p1(v1, . . . , vN), . . . , pN(v1, . . . , vN),

and N cost functions

c1(v1, . . . , vN), . . . , cN(v1, . . . , vN).

For every vector of values (v1, . . . , vN) reported by the N bidders, pi(v1, . . . , vN) ∈
[0, 1] denotes the probability that bidder i receives the object and ci(v1, . . . , vN) ∈ R

11Our presentation is based upon Myerson (1981).


