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(10.5) generated by [§(¢), h(1)]7_, be denoted by Y. Since [§(t), A(1)]7_, does not maximize
(10.5), there exists [5(7), l;(r)],T=0 reaching a value of (10.5) Y>7. By the hypothesis that

[c(®), §(1), /:l(l‘)]fT:O is a solution to (10.1), the budget constraint (10.4) implies

T
/ exp(—rt)é(t)dt <Y.
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Let ¢ > 0 and consider [c(t), s(7), /1,(1‘)],T:0 such that c(t) = ¢(t) + &, s(t) =5(t), and h(t) =
fz(r) for all . We have that
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Since ¥ > f’, for ¢ sufficiently small, fOT exp(—rt)c(t) dt < Y, and thus [e(t), s(t), h(t)]rT=0 is
feasible. Since u(-) is strictly increasing, [c(t), s(t), h(t)]rT:0 is strictly preferred to
[E(1), §(t), h (t)]"_,. leading to a contradiction and proving the “only if” part.

The proof of the “if”” part is similar. Suppose that [§(z), fz(t)]rT=0 maximizes (10.5). Let the
maximum value be denoted by Y. Consider the maximization of (10.1) subject to the constraint
that fOT exp(—rt)c(t)dr < Y. Let [é(t)]szo be a solution. Thus if [E’(t)]rT=0 is strictly preferred
to [6(0)]T_. then f exp(—rt)&(r)dt > ¥. Then [é(t), §(1), h(#)I"_, must be a solution to the
original problem, because any other [s(t), h(’)]rT=o leads to a value of (10.5) equal to ¥ < )?,
and if [¢'(1)]!_, is strictly preferred to [é(1)]7_, then fOT exp(—rt)c/(t)dt > Y > Y forany Y

associated with any feasible [s(7), h(t)]fT:O. ]

The intuition for this theorem is straightforward: in the presence of perfect capital markets,
the best human capital accumulation decisions are those that maximize the lifetime budget set
of the individual. Exercise 10.2 shows that this theorem does not hold when there are imperfect
capital markets and also does not generalize to the case where leisure is also an argument of
the utility function.

10.2 Schooling Investments and Returns to Education

Let us next turn to the simplest model of schooling decisions in partial equilibrium, which
illustrate the main trade-offs in human capital investments. The model presented here is a
version of Mincer’s (1974) seminal contribution. This model also enables a simple mapping
from the theory of human capital investments to the large empirical literature on returns to
schooling.

Let us first assume that 7 = oo, which simplifies the expressions. The flow rate of death,
v, is positive, so that individuals have finite expected lives. Suppose that (10.2) is such that
the individual has to spend an interval S with s(¢) = 1—that is, in full-time schooling—and
5(t) = 0 thereafter. At the end of the schooling interval, the individual has a schooling level of

h(8) =n(S),
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where 7(-) is a continuous, increasing, differentiable, and concave function. For ¢ € [, 00),
human capital accumulates over time (as the individual works) according to the differential
equation

h(t) = gnh (1), (10.6)
for some gj, > 0. Suppose also that wages grow exponentially,
w (1) = gyw (), (10.7)
with initial value w(0) > 0. Suppose that
gwt & <TtV,

so that the net present discounted value of the individual is finite. Now using Theorem 10.1,
the optimal schooling decision must be a solution to the following maximization problem:

m?x/ exp(—(r + v)Hw(t)h(t)dt. (10.8)
S

Using (10.6) and (10.7), this equation is equivalent to (see Exercise 10.3):

max 1SwO exp(=(r +v —8u)5)

(10.9)
r+v—_g;— 8w

Since 7(S) is concave, the objective function in (10.9) is strictly concave. Therefore the
unique solution to this problem is characterized by the first-order condition

n'(8%)
n(S*)

Equation (10.10) shows that higher interest rates and higher values of v (corresponding
to shorter planning horizons) reduce human capital investments, while higher values of g,
increase the value of human capital and thus encourage further investments.

Integrating both sides of this equation with respect to S (or taking the antiderivative), we
obtain

=r+v—gyu (10.10)

log 1(5*) = constant + (r +v — guw)S*. (10.11)
Next, the wage earnings of the worker of age 7 = S* in the labor market at time ¢ are
W(S*, 1) = exp(g,t) exp(g;(t — SN (S).
Taking logs and using (10.11) implies that
log W(S*, 1) = constant + (r +v — gu)S* 4 gut + gut — 59,

where 7 — S* can be thought of as worker experience (time after schooling). If we make a
cross-sectional comparison across workers, the time trend term g,,! is also included in the
constant, so that we obtain the canonical Mincer equation, where, in the cross section, log
wage earnings are proportional to schooling and experience. Written differently, we have the
following cross-sectional equation:

log W; = constant + Y S;i+ Ve experience, (10.12)
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where j refers to individual j. However, there is so far no source of heterogeneity that can
generate different levels of schooling across individuals. Nevertheless (10.12) is important,
since it is the typical empirical model for the relationship between wages and schooling
estimated in labor economics.

The economic insight provided by this equation is quite important. It suggests that the
functional form of the Mincerian wage equation is not a mere coincidence, but has economic
content: the opportunity cost of one more year of schooling is foregone earnings. So the benefit
has to be commensurate with these foregone earnings, and thus should lead to a proportional
increase in earnings in the future. In particular, this proportional increase should be at the rate
& +v—gul)

As already discussed in Chapter 3, empirical work using equations of the form (10.12) leads
to estimates for the returns to schooling coefficient, y,, in the range of 0.06-0.10. Equation
(10.12) suggests that these returns to schooling are not unreasonable. For example, we can
think of the annual interest rate » as approximately 0.10, v as corresponding to 0.02 (which
gives an expected life of 50 years), and g,, corresponding to the rate of wage growth holding
the human capital level of the individual constant (which should be approximately 0.02). Thus
we should expect an estimate of y about 0.10, which is consistent with the upper range of the
empirical estimates.

.3 The Ben-Porath Model

The baseline Ben-Porath model enriches the model studied in the previous section by allowing
human capital investments and nontrivial labor supply decisions throughout the lifetime of
the individual. In particular, we now let s(¢) € [0, 1] for all # > 0. Together with the Mincer
equation (10.12) (and the model underlying this equation presented in the previous section),
the Ben-Porath model is the basis of much of labor economics. Here it is sufficient to consider
a simple version of this model in which the human capital accumulation equation (10.2) takes
the form

h(t) = p(s(Oh(1)) — 8,h (1), (10.13)

where §;, > 0 captures the depreciation of human capital, which comes about, for example,
because new machines and techniques are introduced that erode the existing human capital of
the worker. The individual starts with an initial value of human capital 4(0) > 0. The function
¢ :R, — R, isstrictly increasing, twice differentiable, and strictly concave. Furthermore, let
us simplify the analysis by assuming that this function satisfies the Inada-type conditions

lim ¢'(x) =00, and lim ¢'(x)=0.

x—0 x—h(0)
The latter condition removes the need to impose additional constraints to ensure s(t) € (0, 1)
(see Exercise 10.6). ‘

Let us also suppose that there is no non—-human capital component of labor, so that w () =0
for all #, T = oo, and there is a flow rate of death v > 0. Finally let us assume that the wage
per unit of human capital is constant at w and the interest rate is constant and equal to r. We
can also normalize w = 1 without loss of generality.

Again using Theorem 10.1, human capital investments can be determined as a solution to
the following problem:

max/ exp(—(r +v)t)(1 —s(2))h(z) dt,
0

subject to (10.13).
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