Molekulární ekologie (Molecular Ecology) mravenec DNA Msat paternita - barvy Fig1 J. Bryja, M. Macholán – MU, P. Munclinger - UK Co je molekulární ekologie? Uměle vytvořený obor vymezený technickým přístupem. Na ekologické a evoluční problémy hledá odpověď pomocí molekulárních metod. (Zoologové a botanici nakoupili cyklery a sekvenátory, snažili se je využít i k něčemu jinému než je taxonomie => vznikla molekulární ekologie) Pracuje na různých úrovních variability DNA (genom, jedinec, populace, skupina populací, max. skupina blízce příbuzných druhů) Je to vlastně aplikovaná populační genetika – analyzuje a interpretuje získaná molekulárně-genetická data HM00363_ HM00361_ Klasické problémy a metody evoluční ekologie + Molekulárně-genetická data Její význam vzrůstá ... •Je překvapivě kompaktní •Je populární - Molecular Ecology (od 1992) – dnes 24 čísel za rok •další časopisy – Molecular Ecology Resources, Evolutionary Applications, aj. •ISI Journal Citation Reports® Ranking - 2012: 10/136 in Ecology; 6/47 in Evolutionary Biology; 38/290 in Biochemistry & Molecular Biology; Impact Factor: 6.275 •Vyšly i její učebnice •Na řešení velmi odlišných problémů používá obdobné metody •Snad se dá tedy i přednášet ... • • Proč používat molekulární metody v ekologii? • •Často nelze jinak •paternita – páření často skryté a nemusí vést k oplození • •identifikace z trusu, chlupů - pohyb jedinců skrytě žijících druhů • •izolace populací – nemusí být zřejmá •počet migrantů – nelze sledovat naráz všechny jedince • •adaptace – nejsou zřejmé na první pohled (např. imunitní geny) • •DNA sequence-based trophic ecology •microbial diversity within multicellular organisms •model-based phylogeography •community phylogeography •landscape genomics •ecological genomics and molecular adaptation •experimental and genomic studies on speciation and hybridization •multitool and multitrait analyses of kinship, parentage and behaviour • • http://www.confersense.ca/Evolution2012/_images/logo.jpg Definice předpokládaného vývoje molekulární ekologie Vychází z populační genetiky •Slavní zakladatelé moderní syntézy, třicátá léta •Matematické modely spojující genetiku a evoluční teorii • • wright-sewall9 Hypothetical adaptive landscape Ronald Fisher Sir Ronald Fisher photo of Haldane addressing a political rally Ronald Fisher John B. S. Haldane Sewall Wright adaptivní krajina JBS Haldane Různé otázky – různé přístupy •Příbuznost (neutrální znaky) –identita (stopy stejného jedince, klony) –paternita, vzdálenější příbuzní –vztah populací (izolovanost, výměna migrantů) –fylogeografie (historie šíření) –hybridizace, hybridní zóny – •Geny pod selekcí –MHC, MUP, ABP, reprodukční proteiny –geny pro zbarvení –detekce selekce – • • •Ochranářská genetika ? vrány vydra face Technické výlety (omezeně) Analýza dat Msat paternita - barvy http://t2.gstatic.com/images?q=tbn:ANd9GcT14HnvwAl7s9VzBRcX_Fg9Q-aetmYhuwJz-JYALZ6u3O6ilDXZ Organismy üDiploidní s pohlavním rozmnožováním ü üVětšinou obratlovci ü üBudou ale i někteří bezobratlí ü üRostliny fungují často jinak! Ale občas i o nich bude řeč. [USEMAP] Příbuzné přednášky, tj. co se zde objeví jen okrajově? •M. Macholán - Evoluční biologie • •M. Macholán, J. Bryja - Genetické metody v zoologii • •J. Zukal – Behaviorální ekologie • •S. Pekár – Ekologie populací • •aj. (molekulární ekologie „prorůstá všude“) • Získání genetických dat – viz Genetické metody v zoologii Genotypizace – analýza genotypu •stanovení formy určitého úseku DNA (alely, haplotypu) - výběr daného znaku (= markeru) souvisí s úrovní genetické variability • 1)izolace celkové DNA z tkání 2)amplifikace požadovaného úseku DNA (u PCR-based metod) 3)studium variability daného úseku (lokus) 4) Způsoby získání DNA z volně žijících živočichů 1.destrukční – živočich je usmrcen kvůli získání tkání potřebných na genetické analýzy 1. 2. nedestrukční (invazivní) – živočich je odchycen a je mu odebrán vzorek tkáně nebo krve n 3. neinvazivní – zdroj DNA je „zanechán za živočichem“ a je získán bez potřeby odchytu, manipulace či dokonce pozorování Izolace DNA •rozmanitý biologický materiál – musí obsahovat buněčná jádra nebo mitochondrie s nedegradovanou DNA •dnes většinou komerční kity •velký vliv fixace vzorků • • • Genetické markery •Kódující DNA (geny) •Přepisované sekvence •Genetický kód •Ovlivňují fenotyp •Podléhají přírodnímu výběru •Narůstající význam v molekulární ekologii (transkriptomika) •Nekódující DNA •Nefunkční (neznámá funkce) •Neutrální k přírodnímu výběru – větší variabilita •Většina DNA u eukaryot •Pseudogeny •Repetitivní DNA Typy genetických markerů •sekvence jaderné nebo organelové (mt, cp) DNA – Sangerovo sekvenování nebo „next-generation sequencing“ • •jaderné znaky • - dominantní (AFLP) – multi-locus markery • - kodominantní (mikrosatelity, SNPs) – single locus markery PCR •Z celkové DNA si namnožíme jen úsek, který nás zajímá. • •Co se bude množit? To určí primery. • •Primery – krátké oligonukleotidy komplementární k úsekům ohraničujícím místo našeho zájmu. • primer AGGGGACGTACACTCAGCTTT templát TCCCCTGCATGTGAGTCGAAA primer primer DNA templátu tento úsek se bude množit PCR Příklad programu 95°C 3 min 95°C 30 s 60°C 30 s 72°C 1 min 35x zpět 72°C 10 min Cykly (obvykle 20-40): denaturace (95°C ) nasednutí primerů (50-65°C ) elongace=polymerizace (72°C ) Nejprve však často prodlužená denaturace celkové DNA Nakonec prodloužená elongace • pcr Cycler MJ Research Cycler Eppendorf RoboCycler Stratagene „Molekulárně-genetické“ metody •analýza polymorfismu DNA •délkový polymorfismus (princip mikrosatelitů) CGCACATCTCTAGCTTCGATTCAGGAA CGCATCTCTAGCTTTGATTCAGGAA Rozdělení fragmentů DNA podle velikosti •Agarosa - Hrubé rozdělení (do rozdílu 15 bp) • •Polyakrylamid – Přesnější rozdělení (4 bp) • •Sekvenátor, fragmentační analýza – nejpřesnější (fluorescenčně značené PCR fragmenty, např. značené primery) tools_1a 3LOKCELE detektor laserový paprsek - + „Molekulárně-genetické“ metody •analýza polymorfismu DNA •sekvenční polymorfismus (princip SNPs): CGCATCTCTAGCTTCGATTCAGGAA CGCATCTCTAGCTTTGATTCAGGAA genotyp diploidního jedince: C/T Studium variability nasyntetizovaného úseku •sekvencování (velmi dobré pro mtDNA, u nDNA problém s odlišením alel u heterozygotů) •SNP („single nucleotide polymorphism“) analýza – např. RFLP, SSCP, microarrays – chips, atd. CCGATCAATGCGGCAA CCGATCACTGCGGCAA T G Typy získaných dat – kodominantní znaky počet lokusů počet jedinců počet populací počet vzorků v 1. populaci počet vzorků v 2. populaci, atd. genotypy, tj. velikosti fragmentů v populaci geografické koordináty pop1 pop2 formát GenAlex http://www.anu.edu.au/BoZo/GenAlEx/ Typy získaných dat - sekvence Fig1 Tak, a co teď s těmi daty ...