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Before starting

Let

x ∈ Rm, x = [x1, . . . , xm]

µ ∈ Rm be the mean (or sample average, depending on the
context) vector

X =


x1
...

xn

 and Xµ =


x1 − µ
...

xn − µ


Σ = E[(x − µ)t (x − µ)] the covariance matrix

Σ̂ = 1
n−1Xt

µXµ the sample-based unbiased estimator of the
covariance

load data: load 'artificial_data.mat' and
load 'genexpr_data.mat'
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Mahalanobis distance

Let N(µ,Σ) be a m-dimensional Gaussian (normal) distribution
with mean µ and covariance Σ. Then,

Mahalanobis distance

d2(x,N(µ,Σ)) = (x − µ)Σ−1(x − µ)t
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Exercise

Write the Matlab functions for computing the Mahalanobis distance
from each of the observations (rows) in X under a Gaussian
distribution:

mhdist0(X) for N(0, I) (Euclidean distance to 0!)

mhdist1(X, mu, sigma) for N(µ,Σ) with µ and Σ provided
by the user

mhdist(X, Z) for N(µ̂, Σ̂) with µ̂ and Σ̂ estimated from Z

Vlad Bi7740: Scientific computing



Mahalanobis distance
Principal component analysis

Data sphering

Outline

1 Mahalanobis distance

2 Principal component analysis

3 Data sphering

Vlad Bi7740: Scientific computing



Mahalanobis distance
Principal component analysis

Data sphering

PCA

Z = X ∗W

an orthogonal transformation such that the new axes align
with the directions of lagest variation

the resulting variables are linearly uncorrelated

one interpretation: finds the axes (linear combinations of
original variables) that minimize the squared-error of
approximating the original data (linear regression)

other perspective: spectral analysis of the covariance matrix

W: has the columns the eigenvectors of the covariance matrix
of vectors in X
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Exercise

Write Matlab functions

prcomp_naive(X, npc): computes the principal vectors
and corresponding coefficients by eigendecomposition of the
covariance matrix

what happens when trying to find all the eigenvectors for
m > n? What if m >> n?

remember that SVD decomposition of X is mathematically
equivalent to eigendecomposition of XtX. Implement
prcomp(X) to find all principal vectors and corresponding
coefficients, by using the SVD decomposition.
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Data sphering

PCA can be used to uncorrelated variables

by proper scaling of the result, the resulting variables have
identity covariance matrix:

Z = X
(
VΛ−

1
2

)
where Var has the eigenvectors of covariance matrix as
columns and Λ is the diagonal matrix of corresponding
eigenvalues.

it is also called data whitening because the spectrum of
eigenvalues of the transformed (distribution) uniform
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Exercise

Implement in Matlab the data sphering (DO NOT USE inv()):

[Z, W, IW] = sphere(X) transforms the data X −→ Z ,
and returns the transformation matrix W and its inverse IW

try it!

[Z,W] = sphere2(X) for matrices with m >> n: use the
following math:

XXtu = λu⇔ (XtX)(Xtu) = λXtu

so the eigenvectors vi of the covariance matrix of interest (of
the form XtX) can be obtained from the eigenvectors ui of XXt

by vi = X′ui followed by proper scaling (for normalization)
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