http://www.cts.cuni.cz/vesmir l VESMÍR 79, květen 2000 273 Genetická informace autonomních forem života je uložena v kyselině deoxyribonukleové a pouze výjimečně, u některých virů či viroidů, v kyselině ribonukleové. Jejich reprodukce však dnes není bez autonomních organizmů možná. Miliardy let evoluce způsobily, že k uložení genetické informace je potřeba DNA. Předpokládá se ale, že rané formy života obsahovaly samoreplikující se genomy tvořené molekulami RNA. Při formování prvních genomů DNA asi hrála roli reverzní transkripce. Tento evolučně starobylý proces se však na tvarování eukaryotických genomů podílí dodnes. Dokládá to existence genetických elementů – retroelementů – které reverzní transkriptázu používají k své reprodukci. Zkopíruj a vlož... Retroelementy jsou úseky DNA schopné vkládat své vlastní kopie do nových poloh v genomu (obr. 1). Jde tedy o mechanizmus „zkopíruj a vlož“, který známe z práce s počítačem. Původní element přitom není odstraněn, a tak se retroelementy výrazně podílejí na zvyšování velikosti a komplexity genomů. Vedle retroelementů existuje ještě jiný typ mobilních elementů, transpozony, u nichž jsou meziproduktem transpozice molekuly DNA. Transpozony používají jak mechanizmus „zkopíruj a vlož“, tak „vyjmi a vlož“. Řada studií dokládá, že retroelementy lze najít u většiny druhů eukaryont. Byla také zjištěna zajímavá souvztažnost mezi velikostí genomu a hojností retroelementů. Zatímco malé genomy primitivních eukaryont, jež jsou poměrně hustě zaplněny geny, obsahují málo retroelementů, u větších genomů podíl retroelementů prudce roste. Evoluční úspěšnost retroelementů můžeme demonstrovat na příkladu lidského genomu. Jeho velikost je tři miliardy párů bází, z čehož pouhá 3 % představují úseky DNA překládané do pořadí aminokyselin proteinů, zatímco zbytek tvoří nekódující sekvence DNA, regulační oblasti, a především repetitivní sekvence. Ty jsou buď v dlouhých řadách dosahujících často pozoruhodných délek, anebo jsou rozptýleny po celém genomu. A právě většinu rozptýlených repetic tvoří různé retroelementy (celkově asi 30 % lidského genomu). Gen kódující reverzní transkriptázu retroelementů tak se svými několika tisíci kopiemi představuje v lidském genomu nejhojnější sekvenci, která kóduje protein. Jsou však známy i genomy, jejichž kolonizace retroelementy a transpozony dosáhla ještě vyššího stupně – např. u kukuřice je to přibližně 50 % genomu. Rodiny retroelementů Existuje několik typů retroelementů lišících se svou délkou, komplexitou a organizací (obr. 2). Nejčastěji se dělí na autonomní, jež kódují reverzní transkriptázu potřebnou pro retropozici, a neautonomní, které gen pro reverzní transkriptázu nemají a musí si ji „půjčovat“. Z určitého hlediska lze za evolučně nejúspěšnější skupinu retroelementů považovat retroviry. Podařilo se jim totiž opustit buňku, kde bylo šíření omezeno jen na vertikální přenos (z rodičů na potomky), a využívají i horizontální genetický přenos (pohyb z genomu do genomu). Tento tok informace mezi vzdálenými druhy představuje „kanály“ spojující jednotlivé proudy Dawkinsovy „řeky z ráje“. Příkladem je nedávný přenos viru HIV z divokých primátů na člověka (viz Nature 391, 531 a 594, 1998). Kromě genu pro reverzní transkriptázu retroviry obsahují další dva geny pro tvorbu virové částice a specifické regulační sekvence (dlouhé koncové repetice), které se uplatňují při integraci retroviru do hostitelského genomu. Z evolučního hlediska jsou pozoruhodné i endogenní retroviry a podobné elementy. Retrovirům se tyto elementy podobají nejen přítomností dlouhých koncových repeticí (LTR), ale i dalšími sekvenčními prvky a celkovou genomovou organizací. V genomu hositele se však často nacházejí silně poškozené, neúplné kopie těchto retroelementů. Extrémním případem je přítomnost solitérních sekvencí LTR. Některé studie doZkopíruj a ulož Retroelementy – specializovaní genetičtí paraziti, nebo pozůstatky dávného světa RNA? EDUARD KEJNOVSKÝ xxx Eduard Kejnovský (*1966) vystudoval xxxxx V Biofyzikálním ústavu AV ČR v Brně se zabývá xxx -- prosím doplnit konce naznačují, že lidské endogenní retroviry a jejich fragmenty tak představují jakési otisky pradávných retrovirových infekcí starobylých primátů, k nimž došlo před 10–60 miliony let. 1. 2. 2. Vkládání kopií do nových poloh v genomu 274 VESMÍR 79, květen 2000 l http://www.cts.cuni.cz/vesmir Nejjednodušší strukturou se vyznačují neautonomní retroelementy. Nekódují ani vlastní reverzní transkriptázu, musí využívat reverzní transkriptázu autonomních elementů. Často jde o úseky DNA vzniklé reverzní transkripcí mRNA (retropseudogeny). Dominantní rodinou retroelementů této skupiny jsou u člověka a ostatních primátů Alu-elementy, jež se svými 750 000 členy o délce 280 bází představují nejhojnější sekvenci našeho genomu (tvoří 10 % celkové DNA). Pasažéři provázející hostitelský genom Jakou roli hrají retroelementy v našem genomu a v genomech jiných organizmů? Většina vědců považuje retroelementy za vysoce specializované genetické parazity, „replikátory“, jejichž ekologickou nikou se stal genom hostitele, který se jim podařilo v průběhu času více či méně úspěšně osídlit. Většinou však představují neškodné, ale pro genom nepoužitelné pasažéry, kteří hostitelský genom dočasně anebo trvale provázejí na cestě prostorem a časem. Pouze v některých případech je jejich přítomnost v genomech pro organizmus škodlivá. Svědčí o tom řada lidských chorob, jejichž příčinou je inzerce takového retroelementu do některého důležitého funkčního genu či do jeho blízkosti. Příkladem je hemofilie A,1) neurofibromatóza,2) či některé případy rakoviny prsu a tlustého střeva. Některé organizmy si dokonce vyvinuly obranné systémy chránící jejich genomy před retroelementy. Používají k tomu různé mechanizmy, mimo jiné i možnost selektivně vystřihnout a degradovat nežádoucí mobilní element. Rozhodujícím obranným mechanizmem je zřejmě metylace cytozinů nacházejících se v retrotranspozonech, což znemožní jejich pohyb po genomu. Ztráta kontroly nad transpozony Nedávné studie naznačují, že metylace DNA, která je důležitým mechanizmem regulace genové exprese u eukaryont, se původně vyvinula právě jako nástroj obrany organizmu proti šíření parazitických sekvenčních elementů. Ukázalo se totiž, že drtivá většina metylovaných cytozinů v genomové DNA se nachází právě v mobilních elementech. Pozoruhodné je i zjištění, že příčinou genomové nestability, charakteristické pro nádorové buňky, je často ztráta kontroly nad transpozony způsobená jejich demetylací. Organizmy, které nemají metylační aparát, jako například octomilka, jsou proto k poškození svého genomu transpozony mimořádně citlivé. Retroelement prospěšný hostiteli Retroelementy by však stěží byly evolučně úspěšné, kdyby svému hostiteli neposkytovaly výhody. Je totiž pozoruhodné, že si organizmy tyto sekvence zachovaly, přestože jsou tak vysoce mutagenní. Někteří autoři dokonce tvrdí, že se organizmy staly v průběhu evoluce na mobilních elementech přímo závislými. Přibývá důkazů svědčících o roli retroelementů ve fungování a evoluci eukaryontních geno- mů. Retroelementy například, podobně jako i jiné repetice, podporují duplikaci genů v genomech, což je důležitý proces při vývoji celých genových rodin, v nichž mohou jednotliví členové v důsledku rozrůznění nabývat nových funkcí. Samotný proces retrotranspozice vede k přibývání repetic v genomu, neboť původní element není z DNA odstraněn. Bylo prokázáno, že některé retroelementy hrají pozitivní úlohu také při organizaci chromozomální struktury. Dlouhé koncové repetice (LTR), jež jsou součástí mnoha retroelementů, představují regulační oblasti, které mohou ovlivňovat regulaci přilehlých genů i ve prospěch hos- titele. Pozoruhodný příklad prospěšnosti retroelementu pro hostitelský genom byl popsán u octomilky (Drosophila melanogaster), kdy retrotranspozony nahradily činnost telomerázy. Telomeráza je enzym připojující ke koncům chromozomů (telomerám) specifické nukleotidové sekvence a zabraňuje tím zkracování chromozomů, k němuž dochází při každé jejich replikaci (viz Vesmír 75, 155, 1996/3). V případě octomilky retrotranspozony převzaly tuto životně důležitou funkci telomerázy tak, že místo ní přidávají své kopie na konce chromozomů. O evoluční blízkosti telomerázy a některých reverzních transkriptáz kódovaných retroelementy svědčí i podobnost jejich aminokyselinových sekvencí. Zatím není jasné, zda se vyvinuly telomerázy z reverzních transkriptáz, či naopak. Jde však o další případ toho, jak oportunisticky pracující evoluce použila k vytvoření nové buněčné funkce genetický materiál, který již v buňce byl k dispozici. Možná dokonce bez ohledu na to, že tímto genetickým materiálem byli buněční paraziti – transpozony. Někteří badatelé dokonce poukazují na možnost, že některé mobilní elementy stály u zrodu imunitního systému obratlovců. Nedílnou součástí jak tvorby imunoglobulinových (Ig) molekul, tak diferenciace T-buněk, zajišťujících imunitu organizmu, jsou totiž přestavby DNA. Jejich mechanizmus je podobný retrotranspozici retrovirů a zřejmě se vyvinul ze starobylých mobilních elementů. Lze to nějak využít? Uvedené příklady měly za cíl poukázat na to, jak velký vliv retrotranspozony měly a mají na tvarování struktury, na funkci a evoluci eukaryontních genomů. Některé práce naznačují, že člověk bude možná schopen využít některých výhodných vlastností těchto mobilních elementů i k svému užitku, např. jako nástrojů k cílenému vnášení požadovaných genů do genomů zemědělských plodin, hospodářských zvířat anebo i do lidského genomu při léčbě některých chorob. Prozatím si od těchto kolonizátorů našeho genomu půjčujeme alespoň enzym reverzní transkriptázu, používanou ve většině molekulárněbiologických laboratoří. 1) Dědičné onemocnění charakterizované poruchou srážlivosti krve. 2) Četný výskyt neurofibromů – nezhoubných nádorů – v různých oblastech periferních nervů; projevuje se typickými světle hnědými svrnami na kůži.