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Multiple alignment is a powerful integrative tool that addresses a variety of biological

problems, ranging from key functional residue detection to the evolution of a protein

family. Traditionally, a multiple alignment was generally constructed as a series of pairwise

alignments; however, the recent application of various new computational techniques to

the multiple alignment problem has led to a number of interesting new developments.

Introduction

Since its introduction in the early 1970s, multiple-
sequence alignment has become a fundamental tool in
a number of different domains in modern molecular
biology. Multiple alignments present a synthetic view
of the variability along the sequence and among
families of homologous sequences, thus providing a
reliable context in which to include and compare
distant homologs. Evolutionary studies based on
sequence data rely on multiple alignments to define
the phylogenetic relationships between organisms.
Multiple alignments are also invaluable for homology
structure modeling. Sequence similarity between pro-
teins usually indicates a structural resemblance, and
accurate sequence alignments provide a practical
approach for both two-dimensional (2D) and three-
dimensional (3D) structure modeling. The multiple
alignment also highlights conserved structural motifs
or key functional residues that characterize a family of
proteins. This is crucial for experimental biologists in
the determination of catalytic residues or residues
involved in interactions in a new family of proteins. It
is also vital in drug design to specifically target an
essential protein on the basis of biochemical properties
unique to a precise pathogen group. Traditionally,
most multiple-alignment programs were based on
dynamic programming algorithms, similar to those
used for pairwise sequence alignments. However, the
multiple alignment of the highly complex proteins
detected by today’s advanced database search methods
is a daunting task, and there has been renewed interest
in the application of novel computational techniques
to solve the multiple-alignment problem. The most
recent approaches have moved away from a single, all-
encompassing algorithm to a more cooperative strat-
egy, integrating different, complementary algorithms
and/or incorporating biological information other
than the sequence itself. (See Gene Feature Identifica-
tion; Protein Homology Modeling; Sequence Similarity.)

Progressive Multiple Alignment

The first formal algorithm for multiple-sequence
alignment (Sankoff, 1975) extended the basic pairwise
dynamic programming algorithm to multiple
sequences. However, the optimal, exact alignment of
more than a few sequences (more than 10) remained
impractical due to the intensive computer resources
required, despite some recent space and time improve-
ments. Heuristic approaches were required to reduce
the problem to a reasonable size. One of the first
heuristic methods, which is still in widespread use
today, exploits the fact that homologous sequences are
evolutionarily related. A multiple alignment is built
up progressively by a series of pairwise alignments,
following the branching order in a phylogenetic tree
(Feng and Doolittle, 1987). An example using five
immunoglobulin-like domains is shown in Figure 1.
(See Dynamic Programming; Sequence Alignment.)

This procedure works well when the sequences to be
aligned are of different degrees of divergence. Pairwise
alignment of closely related sequences can be per-
formed very accurately. By the time the more distantly
related sequences are aligned, important information
about the variability at each position is available from
those sequences already aligned. A number of different
alignment programs based on this method exist, using
either a global alignment method to construct an
alignment of the complete sequences or a local
algorithm to align only the most conserved
subsegments of the sequences. They differ mainly in
the method used to determine the order of alignment
of the sequences (Table 1). Since then, the sensitivity of
the progressive multiple-sequence alignment method
has been somewhat improved, with the introduction of
several important enhancements to the basic method.
For example, Treealign (Hein, 1990) extends the
progressive alignment process by adding a parsimony
step: an initial alignment is constructed and used to
build a parsimony tree, which in turn is used to direct
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the final alignment algorithm.CLUSTAL_X (Thompson
et al., 1997) reduces the problem of the overrepresen-
tation of certain sequences by incorporating a
sequence-weighting scheme that downweights near-
duplicate sequences and upweights the most divergent
ones. In addition, position-specific gap penalties
encourage the alignment of new gaps on existing
gaps introduced earlier in the multiple alignment.
Most of the alignment programs mentioned here use
one residue scoring matrix and two gap penalties (one
for opening a new gap and one for extending an
existing gap). When identities dominate an alignment,
almost any set of parameters will find approximately
the correct solution. With very divergent sequences,
however, the scores given to nonidentical residues will

become critically important. Also, the exact values of
the gap penalties become important for success. Thus,
the choice of alignment parameters remains a decisive
factor affecting the quality of the final alignment. (See
Global Alignment; Substitution Matrices.)

Iterative Strategies

While the above methods, based on dynamic pro-
gramming, have proved relatively successful in pro-
viding accurate multiple alignments of sequences that
are related over their entire lengths or contain relati-
vely well-conserved regions, the multiple-alignment
problem is becoming more complex. Global alignment
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1 HNF ----TNALETWGALGQDINLDIPSFQMSDDIDDIKWEKTSDKKKIAQFRKEKETFKEK
CD2_HORSE GAVSKKNITILGALERDINLDIPAFQMSEHVEDIQWSK--GKTKIAKFKNGSMTFQKD
CD2_RAT GADCRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWER--GSTLVAEFKRKMKPFLKS
MYPS_HUMAN ---LDADNTVTVIAGNKLRLEIP--ISGEPPPKAMWSR--GDKAIMGES-------GR
1WIT PKILTASRKIKIKSGFTHNLEVDFI--GAPDPTATWTV--GDSGAALA--------PE

1HNF DTYKLF-KNGTLKIKHLKTDDQDIYKVSIYDTKGKNVLEKIFDLKIQ
CD2_HORSE KTYEVL-KNGTLKIKHLERIHEGTYKVDAYDSDGKNVLEETFHLSLL
CD2_RAT GAFEIL-ANGDLKIKNLTRDDSGTYNVTVYSTNGTRILDKALDLRIL
MYPS_HUMAN IRTESYPDSSTLVIDIAERDDSGVYHINLKNEA--GEAHASIKVKV- 
1WIT LLVDAKSSTTSIFFPSAKRADSGNYKLKVKNEL--GEDEAIFEVIVQ

Figure 1 The basic progressive alignment procedure, exemplified by a set of five immunoglobulin-like domains. The sequence names are

from the SWISS-PROT or Protein Data Bank (PDB) databases: 1HNF, human cell adhesion (CD2) protein; CD2_HORSE, horse cell

adhesion protein; CD2_RAT, rat cell adhesion protein; MYPS_HUMAN, human myosin-binding protein; 1WIT, nematode twitchin

muscle protein. The first step involves aligning all possible pairs of sequences in order to determine the distances between them. A guide

tree is then created and is used to determine the order of the multiple alignment. First, the human and horse CD2 sequences are aligned.

These two sequences are then aligned with the rat CD2 sequence. Finally, the myosin-binding protein sequence is aligned with the

twitchin sequence, before being merged with the alignment of the three CD2 sequences. The secondary structure elements of the

immunoglobulin-like domains from the human CD2 (1HNF) and the nematode twitchin (1WIT) proteins are shown above and below

the alignment (right arrow, beta sheet; coil, alpha helix).
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of multidomain proteins, often containing large N-
and/or C-terminal extensions and/or internal inser-
tions is becoming a standard requirement. This has
aroused new interest in the multiple-alignment prob-
lem, and a number of interesting new developments
have recently been reported (Table 1). A common
point of interest has been the application of iterative
strategies to refine and improve the initial alignment.
The protein sequence information–basic local align-
ment search tool (PSI-BLAST) program builds mul-
tiple alignments by aligning the homologs detected by
a BLAST database search to the query sequence.
Hidden Markov models (HMMs) have been used in a
number of programs to build multiple alignments and
have been employed notably to create large reference
databases of sequence alignments such as Pfam and
PROSITE. The flexibility and efficiency of stochastic
techniques such as simulated annealing and genetic
algorithms (SAGA) have also been exploited in the
search for more accurate alignments. Iteration tech-
niques have also been used to refine an initial multiple
alignment built using the traditional progressive
alignment algorithm. An alternative to the
global alignment approach is the ‘segment-to-segment’
alignment method. Segments consisting of locally
conserved residue patterns or motifs, rather than
individual residues, are detected and then combined

to construct a local multiple alignment of only the
most conserved regions of the sequences. (See BLAST
Algorithm; Hidden Markov Models; Sequence Complex-
ity and Composition; Similarity Search.)

Cooperative Strategies

The complexity of the multiple-alignment problem has
led to the combination of different alignment
algorithms and the incorporation of biological infor-
mation other than the sequence itself. ComAlign
(Bucka-Lassen et al., 1999) extracts qualitatively
good subalignments from a set of multiple alignments
and combines these into a new, often improved
alignment. T-Coffee (Notredame et al., 2000) incor-
porates information from heterogeneous data sources
such as local and global alignments, structure
alignments or known motifs in a progressive multiple
alignment. In the case of the DbClustal program
(Thompson et al., 2000), locally conserved segments
are mined from the sequence databases and are then
used to guide the global multiple alignment. Methods
have also been developed that combine primary
sequence and 2D or 3D structure information to
produce a single multiple alignment, for example
Heringa (1999). Thus, information other than the

Table 1 Some of the most widely used multiple-sequence alignment programs

Program Authors Algorithm Local/global
Alignment
orderinga

Msa Gupta SK, Kececioglu JD and
Schaffer AA (1995)

Optimal dynamic programming Global N/A

Dca Stoye J (1998) Optimal dynamic programming Global N/A

Pima Smith RF and Smith TF (1992) Progressive Local SB, ML

Multalign Barton GJ and Sternberg JE (1987) Progressive, iterative refinement Global SB

Pileup Wisconsin Package, Genetics
Computer Group, Madison, WI,
USA

Progressive Global UPGMA

CLUSTAL_X Thompson JD, Gibson TJ,
Plewniak F, Jeanmougin F and
Higgins DG (1997)

Progressive Global NJ

Prrp Gotoh O (1996) Iterative refinement Global N/A

Sam-T98 Karplus K, Barrett C and Hughey
R (1998)

HMM Local N/A

Hmmer Eddy SR (1998) HMM Global N/A

Saga/Raga Notredame C and Higgins DG
(1996)

Genetic algorithm Global N/A

MACAW Schuler GD, Altschul SF and
Lipman DJ (1991)

Local N/A

Probe Neuwald AF, Liu JS, Lipman DJ
and Lawrence CE (1997)

Simulated annealing Local N/A

Dialign Morgenstern B (1999) Segment-to-segment Local N/A

aThe method used to determine the order of the progressive multiple alignment: SB, sequential branching; ML, maximum likelihood;
UPGMA, unweighted pair grouping method; NJ, neighbor joining; N/A, not applicable.
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sequences themselves is now being incorporated into
the multiple alignment in an effort to improve
alignment accuracy. (See Protein Structure.)

Assessing Multiple Alignment Quality

Although significant improvement in alignment
quality has been reported for many of these new
programs, the lack of a standard benchmarking
system has hindered an objective evaluation of the
diverse algorithms. However, some progress is
now being made in this area. Starting in 1994, 12
different multiple-alignment programs were compared
(McClure et al., 1994), using an alignment benchmark
consisting of four different sets of protein sequences,
and it was concluded that global alignment algorithms
generally performed better than local methods. Then,
with the growth of the protein structure databases, it
became standard practice to compare the results of
multiple-alignment programs to ‘standard-of-truth’
alignments based on 3D structural superpositions. A
recent study (Thompson et al., 1999) of many of the
programs mentioned above, using a benchmark
alignment database that was specifically designed for
the evaluation of multiple-alignment programs, iden-
tified a number of characteristic features of the various
algorithms. The comparison showed that, while global
alignment methods in general performed better for sets
of sequences that were of similar length, local
algorithms were more successful at identifying the
most conserved motifs in sequences containing large
extensions and insertions. The same study also showed
that the new iterative algorithms often produced
more accurate alignments, although at the expense of
a heavy time penalty. (See Protein Structure Prediction
and Databases.)

Objective functions

In the absence of an accurate reference alignment, such
as those based on 3D structures, it is still necessary to
estimate the quality or reliability of an alignment.
Most multiple-alignment methods define a scoring
function that assigns a numerical value to each
possible alignment and attempts to maximize this
score. However, the ‘optimal’ alignment defined by a
multiple-alignment method is not necessarily the same
as the ‘biologically correct’ alignment. The correctness
of an alignment has often been evaluated manually by
an expert, taking into account the conservation of
motifs or secondary structure elements. But, for high-
throughput biology such as genome annotation and
analysis projects, a reliable and automatic scoring
method that accurately reflects the biological quality
of an alignment is essential. One of the first, and most

popular, scoring schemes for multiple alignments was
the sum-of-pairs (SP) score (Carrillo and Lipman,
1988), where the score for a multiple alignment is
simply the sum of the scores for all pairwise
alignments. A number of variations on the original
SP score exist, including the use of sequence weights
and various gap penalty schemes. More recent work
has concentrated on column statistics, for example
minimum entropy, maximum likelihood scores and the
mean distance scores introduced in ClustalX. These
measures, also known as objective functions, are
currently used to evaluate and compare multiple
alignments from different sources. They are also used
in iterative alignment methods to improve the align-
ment by seeking to maximize the objective function.
However, the search for a reliable function that
genuinely reflects the biological significance of an
alignment could be compared to the search for the
Holy Grail. (See Alignment: Statistical Significance.)

Perspectives

A more recent application of sequence alignments has
been in genome annotation projects. As the number of
completely sequenced genomes rapidly increases, the
number of proteins in the sequence databases with no
functional or structural annotation is becoming a
serious problem. Sensitive methods of sequence
analysis are crucial in order to extract as much
functional information as possible from the genomic
sequence data. The classic approach consists of
searching the databases to derive functional and
structural information from previously annotated
homologs. Global multiple alignment of the detected
homologs constitutes a complementary step in func-
tional assignment where quality control can take place.
The application of multiple alignments at the genome
level also opens the way to the phylogenetic analysis of
complete proteomes and to the study of the coevolu-
tion of sets of proteins. Further, global multiple
alignments permit more detailed sequence analysis,
such as verification of the reading frame lengths and
determination of the domain organization of a protein
family. Unfortunately, multiple alignments have often
been considered unsuitable for high-throughput anal-
ysis of genomic sequences because of their unreliability
in the face of complex, often noncollinear proteins.
Despite the recent advances resulting from the new
multiple-alignment techniques, a number of problems
remain to be solved. Large multidomain proteins are
becoming more and more prevalent, in particular with
the arrival of a number of genome sequences from
eukaryotic organisms. Proteins with nonlinear ele-
ments such as repeats, inversions and circular
permutations, or low-complexity regions such as
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transmembrane proteins or coiled coils, cause partic-
ular problems for multiple-alignment programs.
Clearly, an accurate multiple alignment can no longer
be constructed from the primary sequence data alone.
No single algorithm currently exists that can cope with
the highly complex proteins detected by today’s
database search programs. The way forward is
undoubtedly an integrated system that will bring
together knowledge-based or text-mining systems
and prediction methods, with their inherent unreli-
ability. The incorporation of heterogeneous, often
inconsistent data will require major changes to the
fundamental alignment algorithms used to date. Now
that public access to the wealth of biological data is
possible due to the widespread adoption of the internet
network as a standard research tool, such integration
has become a realistic objective. However, all this must
still be achieved within the timescale exacted by the
high-throughput genome projects. (See Multidomain
Proteins; Protein Databases; Protein Families: Evolution;
Protein Sequence Databases.)

See also
Alignment: Statistical Significance
Global Alignment
Sequence Alignment
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