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ABSTRACT

Computer methods of accurate gene finding in DNA
sequences require models of protein coding and
non-coding regions derived either from experimen-
tally validated training sets or from large amounts of
anonymous DNA sequence. Here we propose a new,
heuristic method producing fairly accurate inhomo-
geneous Markov models of protein coding regions.
The new method needs such a small amount of DNA
sequence data that the model can be built ‘on the fly’
by a web server for any DNA sequence >400 nt. Tests
on 10 complete bacterial genomes performed with
the GeneMark.hmm program demonstrated the
ability of the new models to detect 93.1% of anno-
tated genes on average, while models built by
traditional training predict an average of 93.9% of
genes. Models built by the heuristic approach could
be used to find genes in small fragments of anony-
mous prokaryotic genomes and in genomes of
organelles, viruses, phages and plasmids, as well as
in highly inhomogeneous genomes where adjust-
ment of models to local DNA composition is needed.
The heuristic method also gives an insight into the
mechanism of codon usage pattern evolution.

INTRODUCTION

using the models of the genes of Class I, encompassing the
majority of E.coli genes (10). Secondly, the GeneMark.hmm
program (3) was able to detect a vast majority of genes of all
threeE.coli classes using second order Markov models trained
on the Class IlIE.coli genes, presumably horizontally trans-
ferred genes whode.coli-specific codon usage pattern was the
least pronounced. Having realized that practically useful
models of protein coding regions may be learned from a ratherg
small amount of genomic sequence, we attempted to avoid the
traditional training process. The proposed heuristic procedure%
for Markov model derivation used a fragment of genomic =
DNA just long enough to accurately estimate the nucleotide S
composition. This procedure also used linear functions thatg
related nucleotide frequencies in the three codon positions tox
the global nucleotide frequencies and linear functions that§
related amino acid residue frequencies to genome GC contents.
These functions were obtained by linear regression analysis o&
DNA sequence data of several completely sequenced prokaryg
otic genomes. Tests of the new approach were performed on 1@—
complete bacterial genomes. The heuristically derived modelsg
were used with the GeneMark.hmm and GeneMark programs.g,
The tests have shown that the heuristic models worked surpris£
ingly well. Particularly, when GeneMark.hmm was used an
average 93.1% of annotated genes were detected, while ir?c‘
comparison, models built by traditional training predicted an 3
average of 93.9% of genes. The heuristic approach to model2
building will be useful for dealing with prokaryotic species <
whose genomic sequence information is available in smallS
amounts and for small genomes of organelles, viruses, phage§

Computer-aided gene finding frequently employs statisticafind Plasmids, as well as for genomes with highly inhomogen-2
gene prediction methods based on Markov models (1-3§0us DNA composition, when models need adjustment to local*

Parameters of inhomogeneous Markov models for a proteiR NA composition.
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coding DNA sequence could be inferred from training sets of It should be noted that although we have not moved far
experimentally annotated DNA sequences (1) or from a largénough in this direction, the heuristic method produced an
enough set of anonymous DNA sequences (2,4-6). In thiiteresting by-product, a heuristic codon usage table. Compar-
paper we present a rather simple training procedure thagon of the experimental and heuristically defined codon
produces fairly efficient Markov models using a minimum frequencies revealed a strong correlation, especially for
amount of training data. The idea of the method is based ogpecies with a highly biased nucleotide composition. This
two observations made upon analysis of the performance of ttgorrelation indicates the presence of general factors related to
prokaryotic versions of the GeneMark and GeneMark.hmngenome and proteome composition at the levels of nucleotides
programs (1,3). First, for thEscherichia coligenome, whose and amino acids, respectively, that are involved in shaping the
genes have been divided into three classes that differ in cod@pecies-specific codon usage patterns. For the species with a
usage pattern (7-9), it was noticed that predicting genes dfalanced nucleotide composition, suchEasoli, the heuristic
each class by GeneMark did not require carefully tuned ugodon usage frequencies may help to single out ‘outliers’, the
class-specific Markov models. For instance, the genes of Classstances when codon frequencies deviate from expectation
Il, the highly expressed genes possessing the most biasdde to some other important factors that become hidden in
codon usage pattern, could be accurately predicted just lyenomes with a biased composition.
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MATERIALS AND METHODS and R, increased as the GC content of the genome increased
(Fig. 2A-D).

Five other amino acids whose frequencies significantly
To obtain the information necessary to generate the heuristithanged over the GC% range are coded for by WWN-type
models, we examined the 17 complete bacterial genomes avaffodons (W stands for A or T and designates weak Watson—
able in GenBank as of November 1998. The species used wefgick pairing): phenylalanine (F), isoleucine (1), lysine (K),
Aquifex aeolicug11), Archaeoglobus fulgidugl?2), Bacillus ~ asparagine (N) and tyrosine (Y). As could be expected, the
subtilis (13), Borrelia burgdorferi(14), Chlamydia trachom- frequency of each of these amino acids decreased as GC%
atis (15), E.coli (16), Haemophilus influenzaél7), Helico- ~ increased (Fig. 2E-I). Methionine, although technically a
bacter pylori (18), Methanobacterium thermoautotrophicum WWN-type amino acid, occurs very infrequently in bacterial
(19), Methanococcus jannaschi#), Mycobacterium tubercu- genomes (~1.8%) and changed the least of all 20 amino acids
losis (20), Mycoplasma genitaliurt21), Mycoplasma pneumo- over the GC% range examined.
niae (22), Pyrococcus horikoshi{23), Rickettsia prowazekii ~ Amino acids coded by combinations of strong and weak
(24), Synechocysti®CC6803 (25) andreponema pallidum nucleotides in the first two positions of a codon were considered
(26). Amino acid frequencies and positional nucleotideas neutral. Only one neutral amino acid, valine, had a frequency
frequencies were measured using genes annotated in thebat changed significantly as GC% changed and behaved like a
genomic sequences. For testing purposes, we used 10 of the ember of the SSN group (Fig. 2J). Valine belongs to the groupg
complete genomes mentioned above as well as the comple@éaliphatic amino acids, along with isoleucine and leucine. The 5
genomes for human immunodeficiency virus type | (27) andreguency of isoleucine, classified as a WWN-type amino acid, g
human T cell lymphotrophic virus type 1 (28). We also useddecreased as GC% increased (Fig. 2F). No significant change i
650 Pseudomonas aeruginosasequences and 385 the frequency of leucine, with four of its six codons being of

Materials

Chlamydomonas reinhardtiequences. neutral type and the other two of the WWN type, was observed.3
Perhaps some evolutionary pressure exists to hold near constait
The heuristic method of Markov model derivation the sum of the frequencies of the aliphatic amino acids at thex

. . . i 0 i
This method was designed to build the set of Markov modelEVe! Of the proteome. Thus, as genomic GC% increases, th%
using a minimal amount of sequence information. When usinﬁ"Crease in frequency of valine may be explained as compensag
this approach, only three independent parameters, three of t 8n_for aﬂefmlerl\acy of |s_o|eucme_. i f q d S
four nucleotide frequencies specific for the particular genomic Given these observations, amino acid frequency dependencé

sequence, are needed to generate the models necessary’! lobal GC% was taken into account only_for th? foura}mino o
utiﬁze gene-finding programg. }gcfgs of SSN type, A, G, P and R, for the five amino acids of §

. . WN type, F, I, K, N and Y, and for the one neutral amino g
Upon analysis of the 17 complete bacterial genomes we ha\%g(/:id, V. For all other amino acid frequencies, the values £

observed relationships between the positional nucleotid bserved in théE.coli proteome were used as constants. For

frequencies and the global nucleotide frequencies (Fig. 1A-D ycoplasma genomes, an additional constant was added to the

as well as relationships between the amino acid frequencieEs_CO” tryptophan frequency since the codon TGA, usually a S

and the global GC% of the bacterial genomes (Fig. ZA_J)stop codon, codes for tryptophan in these species.

These relationships were approximated by linear functions . Q@
using standard linear regression. Interestingly, the graphs forThe parameters of the set of Markov models, the three-peri-2

. . o
positional frequencies of T and G nucleotides (Fig. 1A and nglc models for coding sequence of orders zero, one and twog

show a ‘Z-pattern’ caused bv a noticeable difference i nd a single zero order model for non-coding sequence, wer
P y "Yerived as follows. Learning the global nucleotide frequencies S

;:gqﬂgnggz (z)aft éhzngri gggezﬁgggdatc?ﬁé)?irgtozlrglgnsséc;)rggom a given genomic sequence allowed us to determine nucle+
q tide frequencies in each of the three codon positions using the3

codon positions are close to each other and the “Z-pattern’ iIﬁ1ear relationships shown in Figure 1A-D. Then, the initial «
values of frequency of occurrence of each of the 61 codons,

absent from the graphs (Fig. 1B and D).

Of the 20 amino acids, the frequency of only 10 weres xv7y were obtained as products of the three positional
observed to change significantly over the range of GC percenfycleotide frequencies of corresponding nucleotides. The

ages for the 17 complete genomes examined: 28.6% Gfequency of a particular amino acid was determined for a

(B.burgdorfer) to 65.6% GC M.tuberculosiy. Of these 10,  given GC content and was then used to modify the initial value

four amino acids are coded by SSN type codons (S stands f@f codon frequency. For example, the refined frequency of the

C or G and designates strong Watson—Crick pairing): alaning|anine codon GCT is defined by the formula

(A), glycine (G), proline (P) and arginine (R). Arginine,

though, is encoded not only by GCN codons, but also by AGARCCT = fuaind GC%,ona) X [HGCT/A(GCE) +i(GCA) +H(GCE) +#(GCT))] 1

and AGG. We conventionally considered arginine as an SSNn the case of alanine, encoded by four codons, we could have
type amino acid, since four of its six codons are of the SSNeached the same result by taking into account only the nucle-
type. Frequencies of all four SSN-type amino acids, A, G, Potide frequencies in the third codon position. Equatibn

SIBAIUN

Figure 1. (Opposite) A) Frequency of nucleotide T in three codon positions observed in 17 bacterial genomes shown as a function of global nucleotide T
frequency in a given genome. The equations of the lines approximating the observed data were obtained by linear regressioBabalpsisn((A) for
positional frequencies of nucleotides C, A and G, respectively.
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(B) Positional frequencies of Cytosine
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Figure 2. (A) Frequency of amino acid alanine shown as a function of GC content of the bacterial genome for 17 genomes. The equation of the line approximating
the observed data was obtained by linear regression anaBsi$).As (A) for glycine, proline, arginine, phenylalanine, isoleucine, lysine, asparagine, tyrosine an%
valine, respectively.

however, functioned properly independently of the number ofmatrices of transition probabilities out of three. To define the
synonymous codons, so all amino acids were handled in thealues of transition probabilities related to nucleotides
same manner. Obviously, this method guarantees that the swuncupying the third position of one codon and the first position
of the refined frequencies of codons is equal to the sum of thef the next codon it was assumed that occurrences of adjacent
frequencies of the amino acids. By completing this computaeodons are independent events. Indeed, a rather weak correla-
tion for all 61 codons, we produced the heuristically builttion exists between nucleotides of adjacent codons. Thus the
codon usage table for the input genomic sequence. probability of nucleotide Y in the first position of a codon
To construct the three-periodic zero order Markov model ofollowing a nucleotide X in the third position of the previous
a protein coding region the codon usage table is all that isodon,P(X - Y) for the (..X||Y..) configuration, is equal to the
needed. For example, to determine the probability of A in theprobability of nucleotide Y in the first position of a codon
first position of a codon, the probabilities of all codons thatdefined previously for the zero order Markov model.
start with A were added together. In the zero order model of For the second order Markov model, only the transition
non-coding sequence the global frequencies of the respectiypeobabilities for the nucleotide in the third codon position
nucleotides were used. could be produced from the codon usage table.
For the first order three-periodic Markov model, the codon To find the transition probabilities related to the first and
usage table provides enough data to calculate only tweecond codon positions, we used the same assumption of
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independence of adjacent codons. The second order transitiabove 10 genomes were closely predicted. At the same time,
probability P(XY - Z) for the (.XY]||Z..) configuration was 72.1% of annotated genes were predicted exactly. These
assumed to be equal to the probability of nucleotide Z in theesults compare favorably with the results obtained using
first codon position as defined in the zero order Markov model:native’ models derived from the genomic sequences by tradi-
The transition probability’(XY - Z) for the (..X||YZ.) config-  tional training (1). When native models were used in Gene-
uration was equal to the value of probability of Z in the secondviark.hmm, 93.9% of the annotated genes were closely
position fol_lowing Y in.the first position. This value was predicted and 77.4% of the genes were exactly predicted
already defined for the first order Markov model. (Table 1). This information is broken down into the 10 species
tested in Table 2, which shows the results using heuristic
_ o models for every species.

To characterize the gene prediction accuracy of the models, p |imjtation of GeneMark.hmm is that a gene that overlaps
predictions made by the GeneMark and GeneMark.-nmmy jis 3-end with an adjacent gene in the opposite orientation
programs. were compared with the GenBank annotationo, e missed. To recover missing genes, the GeneMark
Although it may not always be true, the annotation Wa%rogram was also run on the sequence. The predictions made

Gene finding accuracy estimation

assumed to be precisely correct in terms of gene (ORF) loc Sy the two programs were then parsed and a single list of

redicted genes was produced. In the case where both GeneU-
ark.hmm and GeneMark predicted a gene with the same sto
regardless of whether the predicted start codon locatio dsition, the GeneMark.hmm prediction was selected as thes

matched the annotated start. The term ‘exact predictiodzepresentative one. Since we were specifically interested in&

describes the case when both the positions of the predicted stBf-overing rather long genes missed by GeneMark.hmm, wez
and start codons matched the annotation. Since almost none &y used the GeneMark predictions longer than 500 nt. 3
the annotated sequence was directly used in building the Using the combined approach, the heuristic models closelyZ
heuristic models, there was no need to use a cross-validatigiedicted 94.6% of the genes annotated in the 10 bacteriak
procedure, which is regularly used to assess the accuracy of tgenomes. Native models worked better, predicting on average?
models with a large number of parameters learned from 87.3% of the genes (Table 1). >
training set. When run with the native models, GeneMark.hmm predicted%
an average of 11.4% genes which were not present in the annos
tation for the 10 bacterial genomes. These predictions werej

denoted as potential new genes. The heuristic models predicte&

tion and position of the start codon. We use the term ‘close
prediction’ or mere ‘prediction’ for the case when the b
predicted stop codon of the ORF matched the annotated sto

RESULTS AND DISCUSSION

Testing on 10 complete bacterial genomes an average of 12.4% potential new genes over the same condiz
In order to gauge how well the matrices generated through tha 1S 7

heuristic approach performed when used in gene prediction Overall, the heuristic models performed similarly to native S

. . ~
they were tested on 10 complete bacterial genomes. One t d_els in terms of percentage of genes ”.“SS@d' exactlyg
was done with the GeneMark.hmm program only. Another tedp'edicted genes and percentage of potential new geneg
was performed using a combination of both GeneMark.hmnpredicted. Only minimal gains were made in terms of gene 2
and GeneMark. Note that the heuristic models could b@rediction accuracy by moving from heuristic models to native o
employed in any gene-finding program using Markov modelsmodels. This suggests that. heuristic models can be used ta
Prediction of the 5end of a gene was aided by the RBS modelaccurately predict genes in cases where the amount ofg
built from theE.coli sequence data (3). sequence data necessary for traditional training of higher orderj,:

The complete genomes of the following species werdative models is not yet available or cannot be obtained at all.xy
analyzed in the testsA.fulgidus B.subtilis E.coli, H.influ-  Possible applications include sequencing projects very nearw
enzae H.pylori, M.genitalium M.jannaschij M.pneumoniag  their beginning and prediction of genes in small genomes, such
M.thermoautotrophicumand SynechocystisPCC6803. By as organelles, viruses, phages and plasmids. Heuristic models
using GeneMark.hmm with heuristic models, an average ofnay also help in analyzing genomes with highly inhomogen-
93.1% of the genes present in the GenBank annotations of tlemus nucleotide composition.

Table 1. Average gene prediction performance of the heuristic and native models as defined in tests on 10 bacterial genomes

Gene prediction program Model type Annotated genes predicted (%) Annotated genes exactly predicted (%) Potential new genes (%)
GeneMark.hmm Native 93.9 77.4 11.4

GeneMark.hmm Heuristic 93.1 72.1 12.4

GeneMark.hmm and GeneMark Native 97.3 77.4 114

GeneMark.hmm and GeneMark Heuristic 94.6 73.4 134

The figures for annotated genes predicted give the percentage of annotated genes closely predicted (with possible misplacement of the Bt@rtoatmna-
tion of GeneMark.hmm with GeneMark described in Lukashin and Borodovsky (3) allows for a 3.4% improvement in the accuracy of native models and 1.5%

improvement in heuristic models.
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Table 2. Gene prediction accuracy of the GeneMark.hmm program using heuristic models for each of 10 bacterial genomes

Genes annotated Genes predicted Genes predicted (%) Genes exactly predicted (%) Potential new genes (%)

A.fulgidus 2407 2516 88.1 70.7 13.2
B.subtilis 4099 4384 96.5 66.4 10.8
E.coli 4289 4426 93.4 75.3 10.7

H.influenzae 1717 1840 95.9 84.9 10.7
H.pylori 1566 1612 93.7 76.8 9.6
M.genitalium 467 509 88.9 66.8 19.3
M.jannaschii 1680 1841 94.5 68.2 13.2
M.pneumoniae 678 734 91.9 65.6 17.0
M.thermoautotrophicum 1869 1944 93.9 65.8 6.9
Synechocystis 3169 3360 94.6 80.5 12.6
Average 93.1 72.1 12.4

The figures in the third column give the percentage of annotated genes closely predicted by the GeneMark.hmm program (with possible misplaeestaent of t
codon). Percentage of potential new genes (false positives) is defined with regard to the number of annotated genes.

Prediction of short genes 100

Approximately 25% of the 4289 genes found in thecoli =
genome are shorter than 500 nt in length. Typically, using &
computational methods these genes have been much m0§
difficult to accurately predict than longer genes. We have done £
an additional analysis to find out how efficient the models ~§’
generated through the heuristic approach are in predicting
genes of short length in comparison with native models. The&
percentages of genes that were closely predicted ifctbeli
genomic sequence using both types of models are shown i <500 <100 <20 | 4000
Figure 3A. In all length categories other than the shortest one (A) Length of annotated genes (nt)

(shorter than 100 nt), which includes 11 annotated genes out of

4289, the heuristic models and native models produced similal
results. Figure 3B shows a comparison of the percentage o
potential new genes predicted in tRecoli genome by both
native and heuristic models. The heuristic models and native
models predict similar numbers of potential new genes in all
length categories.

]
Native ‘

O Heuristic

@ Native 1
O Heuristic

i ’ il | —

<300 <400 <500 <1000 <2000 <4000

€102 ‘TT Yo N uo Aisieniun yAese e /610°seulnolploixo:feu//:dny woly papeo jumoq

Testing on bacterial genomes with inhomogeneous
composition

Percent potential new genes predict
N @

Genomic sequences &f.aeruginosawere used for this test
since they range fairly widely in GC content from 41.6 to (B) Length of genes (nt)
70.3%. Native Markov models based oR.aeruginosa )

sequence were generated using 650 records available 'I: ure 3. (A) Percentofgene_s predicted by the GeneMark.hmm program out
L . of those annotated in the.coli genome as a function of gene lengtB) @As
GenBank. The whole GC content range was divided into threg) for the percent of potential new genes.

bins and the native models were derived for each GC bin. A set

of 262 of these sequences was used as a test set for gene predic-

tion accuracy. The GeneMark.hmm program using native

models closely predicted 95% of the genes annotated iaumber of new predictions, 21%. Overall, better results were
P.aeruginosasequences and exactly predicted 71% of theachieved with heuristically derived models than with native
annotated genes. The GeneMark.hmm program using th®odels. Note that the need to use a cross-validation procedure
heuristic models, tested on the same 262 genes, also malfeestimate the accuracy of the heuristic model was virtually
close predictions for 95% of the annotated genes and exactBbolished since the number of the model parameters learned
predicted 75% of the annotated genes. The program usirfgpom the genomic sequences is so small. Using cross-
native models predicted 23% genes not present in the annotealidation for testing the native models could lead to a decrease
tion while using heuristic models produced a slightly smallerin the accuracy figure given above by several percentage points.
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Testing on the smallest genomes is quantified by a likelihood ratio value that determines which

Due to the small genome size of phages and viruses, there 39€ Of two models fits the particular DNA segment better. In
not enough sequence data to properly train the Markov mode[§2king this decision there are two types of possible errors,
in the traditional way. Since the heuristic approach eliminated2/S€ POsitive and false negative. The lower these errors are, the
the need for large amounts of DNA sequence for mode igher is 'ghe d|scr|m|_nat|on power_of the method._ The
building, genomes of phages and viruses were an ideal tes IIback—UebIer_(KL)d|stance pr_relatwe entrofy(P|Q), is
case for this method. The heuristic approach was tested on t measure Ofﬁffm'ty ﬁf two Zglt'sr:'calj (lMarkov_)_mo?@lland
complete genomes of human immunodeficiency virus type [ Rigorous theory shows (29) that false positive (false nega-
and human T cell lymphotropic virus type I. ive) error rates decrease exponentially with growth of the
The HIV type | genome is only 9719 nt long and contains,. oy <o fragment length, with the exponent value propor-
eight annotgtrt)ad ggenes, two of xhich containga single intro tional to -nD(PIQ) [-nD(QIIP)]. This means that the discrimi-

. L " ation power should increase as the sequence fragment
The intron for both genes is in exactly the same position, 6046 b 9 9

9378 althouah th have diff q I increases. As shown earlier, this trend was indeed observed in
)378, although the two genes have different start and stop l0Cgsq ests of gene finding as the longer genes were detected with
tions. The prokaryotic version of GeneMark.hmm used her‘ﬁigher accuracy

was unable to accurately predict genes with introns. Therefore, 71,0 k| distan'ce as a single parameter, has proven to be a

we ignored the two genes that contain introns. GeneMark-nmMMqof| characteristic for comparative analysis of performance

: 8t gene-finding methods using high order Markov models
were not annotated. The gene that was not predicted was 237§§scribed by a large number of parameters. Some rathe

in length and overlapped the preceding gene. The GeneMag, ising résults could be explained in terms of the KL
program recovered this annotated gene. However, GeneMaff(iance (5). Particularly, it was observed that Markov models
also predicted the existence of five other short genes in thigzined on the set oE.coli Class | genes provided higher
sequence that were not present in the annotation. Four of theggcrimination power for detecting thg.coli Class Il genes
five predictions were located in the long terminal repeat (LTR}nan for genes from Class | itself (4). This observation agrees
region of the genome as |ndlcqteq by the annotation. A BLASTiipy the fact that the effective KL distancBe(P||Q), between
search on these four predictions revealed that all foupne model (thé.coli Class Il geneP) and another (th&.coli
sequences coded for the HIV typedfprotein. Thenefprotein  on_coding sequence)), defined by the formulDe(P||Q) =
has been shown to play a role in virus replication and it hagp|(Q) — D(P||P*), whereP* is the model of theE.coli Class |
recently been suggested that it may be related to pathogemc(?éne, is larger than the regular KL distand¢P*(|Q), between
as well (30). The other prediction, interestingly, was locateghe g coli Class | gene model and the non-coding sequence
inside the annotated intron. A BLAST search on this sequencgodel (M.Borodovsky, unpublished data).
revealed that it coded for the Vpu protein. Therefore, all the

intronless predictions made by heuristically derived modelS,pe 3. values of the Kullback—Liebler distance
were supported by either nucleotide sequence annotation in

GenBank or by already existing entries in protein sequence

[pJoyxo* feu//:dny wouy papedumoq

0S[euIno

Models Class 1 Class 2 Class 3 Heuristic Non-coding
databases. Cl. 1 0.060 0.063 0.083 0.148
The GenBank record for the human T cell lymphotropic : : : :
virus type I, 9068 nt, contains only three annotated genes ciass2 0.059 0.145 0.154 0.244
Using GeneMark.hmm with heuristic models, all three anno-
Class 3 0.069 0.183 0.056 0.063

tated genes were closely predicted. In addition, four gene:
were predicted that were not present in the annotation. Usin(Heuristic 0.097 0.193 0.053 0.083
GeneMark, another potential new gene was predicted. Of th
five potential new genes, two were exactly identical and were
found in the LTR regions. Although there were no BLAST hits
for this duplicated putative gene, a similarity search against thehe KL distance values defined by equatare given for bottD(P||Q) and
SCOP database produced a number of matches to knoviiQIIP), the values related to false positive and false negative error rates (see
protein structural domains (31). BLAST searches on the othegxt).

three predicted proteins revealed that two of them were already

annotated proteins for this virus. The Slmllal’lty search for one In our Computations we used the standard formula for the KL

Non-coding 0.112 0.247 0.024 0.055

€TOZ ‘TT Uoe|N uo Aisieniun sArese N e /61

remaining protein produced no significant homology. distance (29) modified to deal with the periodic Markov
Ir)terpretation of the results in terms of Kullback-Liebler modelsP andQ:
distance D(PIIQ) = 1/333.3 43 4 40 P%PCik 109x(PC/ %) 2

A gene-finding method exploiting the maximum likelihood Here indexc represents the three codon positions and indices
concept, such as GeneMark.hmm (3), attempts to fit each orjeandk represent the four types of nucleotides. We computed
of the set of initially defined Markov models, such as modelsthe KL distance values between several second order models:
of coding or non-coding regions, to a given DNA sequencehe three three-periodic Markov models for theoligenes of
eventually parsed into segments where one or another modglasses I, 1l and Ill; the heuristic model & coli genes; the

fits best. Essentially, the algorithm implements ‘competition’ordinary Markov model of th&.colinon-coding region (Table
among the models for the best fit for each given DNA segment3). It is seen that in terms of KL distance tkecoli heuristic

In the simplest case of two competing models, this competitiomodel lies close to th&.coli Class Ill model. Both of these
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models are closer to the model of the non-coding region thamight help understand why the heuristic model is efficient for <
the model oft.coli Class | and, especially, the model®toli  gene finding. In Figure 4A-B both sets of codon frequencies =
Class Il genes. Let us assume thatEheoli Class Ill model or  are shown for the wholE.coligenome (Fig. 4A) and thg.coli

the E.coli heuristic model is used in the gene-finding algo-Class IIl genes (Fig. 4B). These sets are also shown for th
rithm. The effective KL distance between thecoliClass | or  genomes oB.burgdorferiandM.tuberculosigFig. 4C and D)
Class Il gene and non-coding models is then large enough (séaving, respectively, the lowest and the highest GC% content
5) and the genes of these classes should be predicted with suifi-the sample of 17 complete genomes. The correlation coeffi-Z
cient accuracy. This expectation was confirmed to be a reasooient, R, between the experimental codon frequencies and the,
able one for both the heuristic model (current paper) and foheuristic codon frequencies were calculated. Rhelues for g
the Class Ill model (M.Borodovsky and A.V.Lukashin, unpub-the E.coli whole genome and thE.coli Class Il genes were
lished data). Th&.coliheuristic model was also able to predict equal to 0.58 and 0.48, respectively. Faburgdorferiand
E.coliClass Ill genes, as would be expected from the closenesd.tuberculosisthe R values were equal to 0.94 and 0.87,

of these two models in terms of KL distance. However, inrespectively. TheR values indicate that the pattern of codon
comparison with the Class Ill model the heuristic model has ansage frequency was captured by the heuristic procedure to
advantage in that it could be built in a regular way from a smalkome extent for the case of tiecoli genome, with medium
portion of DNA sequence data without dealing with clusteriza-GC content. This correlation, as indicated earlier, turned out to
tion of the whole gene pool of a given species (5,6,10). Thusve sufficient to generate models providing reasonably accurate
we conclude that th&.coli heuristic model is able to predict gene-finding ability. For the genomes with highly biased GC
genes of allE.coli classes, while also being easy to build. A content the high level of correlation indicates that the codon
similar analysis could be conducted for genomes of otheuisage pattern is modeled by the heuristic procedure in great
bacterial species with the gene pools divided, if necessary, ini@etail. This observation raises the question of to what extent
sets of typical and atypical genes (5). does the simple principle of the heuristic method explain the
diversity of codon usage patterns in bacterial and perhaps in
higher species. The basic parameters of the method, the global
nucleotide frequencies, appear to be the fundamental variables
The comparison of actual codon usage frequencies with theéefined by the complex structure of the species-specific
codon frequencies defined by the heuristic codon usage tabldochemical pathways producing the building blocks of the

u

N uoﬂhgs;a

Why the method works? Implications for evolution of
codon usage
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Figure 4. (Opposite and abovep( Frequencies of 61 codons as observeH.oli protein coding regions are shown along with the codon frequencies defined by
the heuristic codon usage table. The order of codons follows the order accepted in the table of genetic code with the exception of serine andanginine
Although a correlation between natural and model frequencies is seen in general, some significant differences exist in frequencies of panzAarépCCG,
CGT and CGC, as well as CTA, ATA, AAG, GAG, AGA and AG@)(As in (A) with observed codon frequencies taken from 158 gené&sarfli Class I11. Again,
a general correlation is observed with the noticeable exception of CTC, CTA, AAG, GAC, GAG and AGG, as well as AAT andCAAA.ig (A) for B.burg-
dorferi. A clear periodic pattern is seen in codon frequencies. This pattern relates to the type of nucleotide occupying the third codon poBitimgdbeeri
genome is AT-rich. The codon frequencies for codons ending with A/T are greater in most cases than the frequencies of those ending with C/G.artk natu
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heuristic frequencies are in good correlatioB) @As in (A) for M.tuberculosis Here the periodic pattern similar to that observed in (C) is reversed since theS

M.tuberculosiggenome is GC-rich. The natural and heuristic frequencies correlate reasonably well.

DNA double helix. The amino acid composition of a speciesreasons to try this approach for eukaryotic DNA sequences a:
proteome represents other fundamental variables that are eveell. The advantage of the heuristic model is the ability of

TTWenN

e1de

more conserved among species and vary slightly as the GC#eing produced ‘on the fly’ and of being adjusted to local
of the whole genome changes. Therefore, the observationsequence composition. Thus, the heuristic models under
though limited, suggest that a significant component of theertain circumstances may replace a native protein coding
codon usage pattern in evolution may be the result of anodel, which is part of a whole set of models needed for
compromise between restrictions on the nucleotide and amireukaryotic gene prediction. This whole set, as used in the
acid compositions, achieved mainly using elasticity of theeukaryotic version of GeneMark.hmm (M.Borodovsky and
silent codon positions. This mechanism of developing theA.V.Lukashin, unpublished data), includes contextual models
codon usage pattern seems to be more pronounced in tfer start codons, stop codons and splice sites as well as models
species with highly biased nucleotide composition, such afor length distributions for coding and non-coding regions
B.burgdorferiandM.tuberculosisIn species such ds.colithe
pressure of compositional restrictions is weaker and othgsarameters for these additional models from a set of 350
factors come more freely into play to form the codon usagec.reinhardtii sequences available in GenBank. Parameters of

pattern (8,9,32).

Testing on eukaryotic genomes

(exons, introns and intergenic regions). We have estimated the

the ‘local’ heuristic models for protein coding regions were
derived using nucleotide frequencies counted in DNA frag-
ments of ~1000 nt. Although we used the linear functions

Although the heuristic approach to model building wasderived for bacterial genomes, a separate analysis has provided
designed with bacterial gene prediction in mind, we hacevidence that similar linear functions are valid for the
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eukaryotic case (data not shown). When GeneMark.hmm usingfL. Deckert,G., Warren,P.V., Gaasterland,T., Young,W.G., Lenox,A.L.,
native models (of order five) was run on a randomly selected GrahampD.E., Overbeek,R., Snead,M.A., Keller,M., Aujayg¥ial

test set of 5&8.reinhardtii sequences, 88.5% of the annotated
exons and 65% of the annotated genes were exactly predicted. etchum,K.A.. Dodson,R.J., Gwinn. M., Hickey,E.K., Peterson,at@l.
Using heuristic models of up to only order two, 82% of the
exons and 52% of the genes were predicted exactly. Thes- KunstF., Ogasawara,N., Moszer,I., Albertini,A.M., Alloni,G.,

results suggest that a heuristic approach aimed at eukaryotic

(1998)Nature 392, 353-358.
12. Klenk,H.P., Clayton,R.A., Tomb,J., White,O., Nelson,K.E.,

(1997)Nature 390, 364—-370.

Azevedo,V., Bertero,M.G., Bessieres,P., Bolotin,A., Borche#etal.
(1997)Science390, 249-256.

genomes has some potential and requires further study. It coulgh rraserc.m., Casjens,S., Huang,W.M., Sutton,G.G., Clayton,R.A.,
be especially useful for genomes with a highly inhomogeneous Lathigra,R., White,0., Ketchum,K.A., Dodson,R., Hickey,Eekal.
composition.

Gene finding with heuristic models via a web server

(1997)Nature 390, 580-586.

15. Stephens,R.S., Kalman,S., Lammel,C.J., Fan,J., Marathe,R., Aravind,L.,
Mitchell,W.P., Olinger,L., Tatusov,R.L., Zhao,@&t al. (1998)Science
282 754-759.

The software program that builds the heuristic model for inputie. Blattner,F.R., Plunkett,G., Bloch,C.A., Perna,N.T., Burland,V., Riley,M.,
sequences is accessible via the Internet at http:// Collado-VidesJ., Glasner,J.D., Rode,C K., Mayhew,6tfl (1997)
dixie.biology.gatech.edu/GeneMark/heuristic.cgi . This program _ Science277, 1453-1462.

produces heuristic models for a sequence longer than 400 nt’
The models are then applied to the analysis of the input (1995)science269 496-512.

sequence by the GeneMark and GeneMark.hmm programss. Tomb,J.-F., White,O., Kerlavage,A.R., Clayton,R.A., Sutton,G.G.,
Output of the web server includes a list of predicted genes in  Fleischmann,R.D., Ketchum,K.A., Klenk,H.P., Gill,S., Dougherty,B.A.

text format and, optionally, a list of predicted protein
sequences and a graph of protein coding potentials.
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