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Spatially Extended Excitable Media

Neurons and axons
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Spatially Extended Excitable Media

Mechanically stimulated Calcium waves
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Conduction system of the heart

• Electrical signal originates in the SA node.

• The signal propagates across the atria (2D sheet), through
the AV node, along Purkinje fibers (1D cables), and
throughout the ventricles (3D tissue).
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Spatially Extended Excitable Media

The forest fire analogy Coupling and Propagation – p.5/33
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Spatial Coupling

Conservation Law:

d

dt
(stuff in Ω) = rate of transport + rate of production

d

dt

∫

Ω

udV =

∫

∂Ω

J · nds +

∫

Ω

fdv

becomes
∂u

∂t
= ∇ · (D∇u) + f(u)

J
Flux

production

f(u)

Ω
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Coupled Cells
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dφ1
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+ Iion(φ1, w) = −ii =

1

Re + Rg

(φ2 − φ1)

Cm

dφ2

dt
+ Iion(φ2, w) = ii =

1

Re + Rg

(φ1 − φ2)

Question: Can anything interesting happen with coupled cells that

does not happen with a single cell?

Take a wild guess. – p.7/33
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Coupled Cells

Normal cell and cell with slightly elevated potassium - uncoupled
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Coupled Cells

Normal cell and cell with slightly elevated potassium - coupled
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Coupled Cells

Normal cell and cell with moderately elevated potassium -
uncoupled
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Coupled Cells

Normal cell and cell with moderately elevated potassium -
coupled
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Coupled Cells

Normal cell and cell with greatly elevated potassium - uncoupled

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1
normal cell

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1
"ischemic" cell

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Who could have guessed? – p.8/33



University of Utah
Mathematical Biology

theImagine 
Possibilities

Coupled Cells

Normal cell and cell with greatly elevated potassium - coupled

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1
normal cell

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1
"ischemic" cell

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Who could have guessed? – p.8/33



University of Utah
Mathematical Biology

theImagine 
Possibilities

Axons and Fibers

Ve(x)

It dx

Cm dx
Iion dx

Vi (x)

Ie(x)

Ii(x)

It dx

Cm dx
Iion dx

Ve(x+dx)

Vi (x+dx)

Extracellular
space

Intracellular
space

Cell
membrane

re dx

ri dx

From Ohm’s law

Vi(x+dx)−Vi(x) = −Ii(x)ridx, Ve(x+dx)−Ve(x) = −Ie(x)redx,

In the limit as dx → 0,

Ii = − 1

ri

dVi

dx
, Ie = − 1

re

dVe

dx
.
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The Cable Equation

Ve(x)

It dx

Cm dx
Iion dx

Vi (x)
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It dx

Cm dx
Iion dx

Ve(x+dx)

Vi (x+dx)

Extracellular
space

Intracellular
space

Cell
membrane

re dx

ri dx

From Kirchhoff’s laws

Ii(x) − Ii(x + dx) = Itdx = Ie(x + dx) − Ie(x)

In the limit as dx → 0, this becomes

It = −∂Ii

∂x
=

∂Ie

∂x
.
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The Cable Equation

Combining these

It =
∂

∂x

(

1

ri + re

∂V

∂x

)

,

and, thus,

Cm

∂V

∂t
+ Iion = It =

∂

∂x

(

1

ri + re

∂V

∂x

)

.

This equation is referred to as the cable equation.

Coupling and Propagation – p.11/33
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Modelling Cardiac Tissue

Cardiac Tissue -
The Bidomain Model:

• At each point of the cardiac domain there are two comingled
regions, the extracellular and the intracellular domains with
potentials φe and φi, and transmembrane potential
φ = φi − φe.

• These potentials drive currents, ie = −σe∇φe, ii = −σi∇φi,
where σe and σi are conductivity tensors.

• Total current is

iT = ie + ii = −σe∇φe − σi∇φi.

Coupling and Propagation – p.12/33
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Kirchhoff’s laws:

• Total current is conserved: ∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

(+) =
e� �Extracellular Space

Intracellular Space

φ

φ

I
ion

i

e

Cm iφ = φ − φ

surface to volume ratio, capacitive current, ionic current,
and current from intracellular space.

• Boundary conditions:
n · σi∇φi = 0, n · σe∇φe = I(t, x)

and
∫

∂Ω I(t, x)dx = 0 on ∂Ω. −+
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University of Utah
Mathematical Biology

theImagine 
Possibilities

Kirchhoff’s laws:

• Total current is conserved: ∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

χ ( Cm
∂φ
∂τ

+ Iion ) = ∇ · (σi∇φi) e� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �Extracellular Space

Intracellular Space

φ

φ

I
ion

i

e

Cm iφ = φ − φ

surface to volume ratio, capacitive current, ionic current,
and current from intracellular space.

• Boundary conditions:
n · σi∇φi = 0, n · σe∇φe = I(t, x)

and
∫

∂Ω I(t, x)dx = 0 on ∂Ω. −+

Coupling and Propagation – p.13/33



University of Utah
Mathematical Biology

theImagine 
Possibilities

Kirchhoff’s laws:

• Total current is conserved: ∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

χ ( Cm
∂φ
∂τ

+ Iion ) = ∇ · (σi∇φi) e� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �Extracellular Space

Intracellular Space

φ

φ

I
ion

i

e

Cm iφ = φ − φ

surface to volume ratio,

capacitive current, ionic current,
and current from intracellular space.

• Boundary conditions:
n · σi∇φi = 0, n · σe∇φe = I(t, x)

and
∫

∂Ω I(t, x)dx = 0 on ∂Ω. −+

Coupling and Propagation – p.13/33



University of Utah
Mathematical Biology

theImagine 
Possibilities

Kirchhoff’s laws:

• Total current is conserved: ∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

χ ( Cm
∂φ
∂τ

+ Iion ) = ∇ · (σi∇φi) e� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �Extracellular Space

Intracellular Space

φ

φ

I
ion

i

e

Cm iφ = φ − φ

surface to volume ratio, capacitive current,

ionic current,
and current from intracellular space.

• Boundary conditions:
n · σi∇φi = 0, n · σe∇φe = I(t, x)

and
∫

∂Ω I(t, x)dx = 0 on ∂Ω. −+

Coupling and Propagation – p.13/33



University of Utah
Mathematical Biology

theImagine 
Possibilities

Kirchhoff’s laws:

• Total current is conserved: ∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

χ ( Cm
∂φ
∂τ

+ Iion ) = ∇ · (σi∇φi) e� � � � � � � � � � � �� � � � � � � � � � � �	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	Extracellular Space

Intracellular Space

φ

φ

I
ion

i

e

Cm iφ = φ − φ

surface to volume ratio, capacitive current, ionic current,

and current from intracellular space.

• Boundary conditions:
n · σi∇φi = 0, n · σe∇φe = I(t, x)

and
∫

∂Ω I(t, x)dx = 0 on ∂Ω. −+

Coupling and Propagation – p.13/33



University of Utah
Mathematical Biology

theImagine 
Possibilities

Kirchhoff’s laws:

• Total current is conserved: ∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

χ ( Cm
∂φ
∂τ

+ Iion ) = ∇ · (σi∇φi) e
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
� � � � � � � � � � � �� � � � � � � � � � � �Extracellular Space

Intracellular Space

φ

φ

I
ion

i

e

Cm iφ = φ − φ

surface to volume ratio, capacitive current, ionic current,
and current from intracellular space.

• Boundary conditions:
n · σi∇φi = 0, n · σe∇φe = I(t, x)

and
∫

∂Ω I(t, x)dx = 0 on ∂Ω. −+

Coupling and Propagation – p.13/33



University of Utah
Mathematical Biology

theImagine 
Possibilities

Kirchhoff’s laws:

• Total current is conserved: ∇ · (σi∇φi + σe∇φe) = 0

• Transmembrane current is balanced:

χ ( Cm
∂φ
∂τ

+ Iion ) = ∇ · (σi∇φi) e� � � � � � � � � � � �� � � � � � � � � � � �
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Extracellular Space

Intracellular Space

φ

φ

I
ion

i

e

Cm iφ = φ − φ

surface to volume ratio, capacitive current, ionic current,
and current from intracellular space.

• Boundary conditions:
n · σi∇φi = 0, n · σe∇φe = I(t, x)

and
∫

∂Ω I(t, x)dx = 0 on ∂Ω. −+

Coupling and Propagation – p.13/33



University of Utah
Mathematical Biology

theImagine 
Possibilities Consequences of the Bidomain

Model-I:

With current applied at the boundary of the domain, there is
depolarization and hyperpolarization at the boundaries. For a
homogeneous medium, in the interior (several space constants
from the boundary), the transmembrane potential is unaffected.

Intracellular Space

Extracellular Space
+ −
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Model-II:

Resistive inhomogeneities lead to sources and sinks of
transmembrane current (virtual electrodes) in the interior of the
tissue domain:

Coupling and Propagation – p.15/33
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Model-III:

Response to a point stimulus in tissue with unequal anisotropy
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Traveling Waves

∂u

∂t
= D

∂2u

∂x2
+ f(u)

with f(0) = f(a) = f(1) = 0, 0 < a < 1.

• There is a unique traveling wave solution u = U(x − ct),

• The solution is stable up to phase shifts,

• The speed scales as c = c0

√
D,

• U is a homoclinic trajectory of DU ′′ + cU ′ + f(U) = 0
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Discreteness

Cardiac Cells

gap junctions

Gap junctional coupling

Cardiac Cell

Calcium release sites

Calcium Release through CICR Receptors

Coupling and Propagation – p.18/33
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Discrete Effects

Discrete Cells

dvn

dt
= f(vn) + d(vn−1 − 2vn + vn−1)

Discrete Calcium Release

Discrete Release Sites

∂u

∂t
= D

∂2u

∂x2
+ g(x)f(u)
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Fire-Diffuse-Fire Model

L

Suppose a diffusible chemical u is released from

• a long line of evenly spaced release sites;

• Release of full contents C occurs when concentration u

reaches threshold θ.

∂u

∂t
= D

∂2u

∂x2
+

∑

n

Source(x − nh)δ(t − tn)
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Fire-Diffuse-Fire-II

Recall that the solution of the heat equation with δ-function initial

data at x = x0 and at t = t0 is

u(x, t) =
1

√

4π(t − t0)
exp(− (x − x0)

2

4D(t − t0)
)
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Fire-Diffuse-Fire-III

Suppose known firing times are tj at position xj = jh,
j = −∞, · · · , n − 1. Find tn. At x = xn = nh,

u(nh, t) =

n−1
X

j=−∞

C
p

4π(t − tj)
exp(−

(nh − jh)2

4D(t − tj)
)

≈
C

p
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exp(−
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C
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Fire-Diffuse-Fire-IV

Solve the equation
θh

C
= f(

D∆t

h2
)

This is easy to do graphically:
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Conclusion: Propagation fails for θh
C

> θ∗ ≈ 0.25 (i.e. if h is too
large, θ is too large, or C is too small.)
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With Recovery

Including recovery variables

∂v

∂t
= D

∂2v

∂x2
+ f(v, w),

∂w

∂t
= g(v, w)

Solitary Pulse
Periodic Waves
Skipped Beats
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Periodic Ring
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The APD Instability in 1D

Stable Pulse on a Ring

Unstable Pulse on a Ring

Collapse of Unstable Pulse

Coupling and Propagation – p.26/33
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The APD Instability in 1D

Stable Pulse on a Ring

Unstable Pulse on a Ring

Collapse of Unstable Pulse
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Dimension 2: Spirals

Atrial Flutter

Spiral instability - Meander:
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Torsade de Pointe
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Dimension 2: Spirals

Atrial Flutter

Spiral instability - Meander:
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The APD Instability in 2D

Spiral Breakup
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Activity

Ventricular Monomorphic Tachycardia
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Dimension 3: Cardiac Scroll Wave

3 D structure of a single scroll wave
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Ventricular Fibrillation

Ventricular Fibrillation

Surface View Movie
3D View Movie

Still unresolved: What is the mechanism for maintenance of fibril-

lation? (APD instability? Mother rotor hypothesis?)
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Initiation of Reentrant Activity

How is a dynamical system moved from one state (the normal
heartbeat) to another (reentry)? Remark: This is a
spatio-temporal system; Single cell explanations are not
sufficient.

• Anatomical - One way block
on a closed 1D loop. (movie)

• Vulnerable Period - Winfree (S1-S2) mechanism (1D) (2D)

• Early After Depolarizations during Vulnerable Period.

• Dispersion (i.e. spatial/temporal inhomogeneity) of
refractoriness.
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More Unresolved Issues

• Why is calcium overload arrhythmogenic?

• Why is long QT syndrome arrhythmogenic?

• Why are most anti-arrhythmic drugs actually proarrhythmic?

• What is the mechanism of EAD’s and are they truly
proarrhythmic?
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