
University of Utah
Mathematical Biology

theImagine 
Possibilities

Introduction to Mathematical Physiology
I - Biochemical Reactions

J. P. Keener

Mathematics Department

University of Utah

Math Physiology – p.1/28

http://www.math.utah.edu/~keener


University of Utah
Mathematical Biology

theImagine 
Possibilities

Introduction

The Dilemma of Modern Biology

• The amount of data being collected is staggering. Knowing
what to do with the data is in its infancy.

• The parts list is nearly complete. How the parts work
together to determine function is essentially unknown.

How can mathematics help?

• The search for general principles; organizing and describing
the data in more comprehensible ways.

• The search for emergent properties; identifying features of a
collection of components that is not a feature of the
individual components that make up the collection.

What can a Mathematician tell a Biologist she doesn’t already know? – p.2/28
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A few words about words

A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:

• to divide -

• to differentiate -

• a PDE -

Learning the Biology Vocabulary – p.3/28
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A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:

• to divide - find the ratio of two numbers (Mathematician)

• to differentiate -

• a PDE -

Learning the Biology Vocabulary – p.3/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

A few words about words

A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:

• to divide - replicate the contents of a cell and split into two
(Biologist)

• to differentiate -

• a PDE -

Learning the Biology Vocabulary – p.3/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

A few words about words

A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:

• to divide - replicate the contents of a cell and split into two
(Biologist)

• to differentiate -

• a PDE -

Learning the Biology Vocabulary – p.3/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

A few words about words

A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:

• to divide - replicate the contents of a cell and split into two
(Biologist)

• to differentiate - find the slope of a function (Mathematician)

• a PDE -
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A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:

• to divide - replicate the contents of a cell and split into two
(Biologist)

• to differentiate - change the function of a cell (Biologist)
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A few words about words

A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:

• to divide - replicate the contents of a cell and split into two
(Biologist)

• to differentiate - change the function of a cell (Biologist)

• a PDE - Phosphodiesterase (Biologist)

And so it goes with words like germs and fiber bundles (topologist or
microbiologist), cells (numerical analyst or physiologist), complex
(analysts or molecular biologists), domains (functional analysts or
biochemists), and rings (algebraists or protein structure chemists).

Learning the Biology Vocabulary – p.3/28
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Quick Overview of Biology

• The study of biological processes is over many space and
time scales (roughly 1016):

• Space scales: Genes→ proteins→ networks→ cells→
tissues and organs→ organism→ communities→
ecosystems

• Time scales: protein conformational changes→ protein
folding→ action potentials→ hormone secretion→ protein
translation→ cell cycle→ circadian rhythms→ human
disease processes→ population changes→ evolutionary
scale adaptation

Lots! I hope! – p.4/28
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Some Biological Challenges

• DNA -information content and information processing;

• Proteins - folding, enzyme function;

• Cell - How do cells move, contract, excrete, reproduce,
signal, make decisions, regulate energy consumption,
differentiate, etc.?

• Multicellularity - organs, tissues, organisms, morphogenesis

• Human physiology - health and medicine, drugs,
physiological systems (circulation, immunology, neural
systems).

• Populations and ecosystems- biodiversity, extinction,
invasions

Math Physiology – p.5/28
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Introduction

Biology is characterized by change. A major goal of modeling is
to quantify how things change.

Fundamental Conservation Law:
d
dt

(stuff in Ω) = rate of transport + rate of production

In math-speak:

d
dt

∫

Ω udV =
∫

∂Ω J · nds +
∫

Ω fdv

J
Flux

production

f(u)

Ω

where u is the density of the measured quantity, J is the flux of u

across the boundary of Ω, f is the production rate density, and Ω

is the domain under consideration (a cell, a room, a city, etc.)
Remark: Most of the work is determining J and f !

Math Physiology – p.6/28
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Basic Chemical Reactions

A
k
→ B

then
da
dt

= −ka = −db
dt

.

With back reactions,

A
→

← B

then
da
dt

= −k+a + k−b = −db
dt

.

At steady state,

a = a0
k−

k−+k+
.

Math Physiology – p.7/28
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Bimolecular Chemical Reactions

A + C
k
→ B

then
da
dt

= −kca = −db
dt

(the "law" of mass action).

With back reactions,

A + C
→

← B

da
dt

= −k+ca + k−b = −db
dt

.

In steady state, −k+ca + k−b = 0 and a + b = a0, so that

a = k−a0

k+c+k−
=

Keqa0

Keq+c
.

Remark: c can be viewed as controlling the amount of a.

Math Physiology – p.8/28
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Dioxide Transport

Problem: If oxygen and carbon dioxide move into and out of the
blood by diffusion, their concentrations cannot be very high (and
no large organisms could exist.)

CO

COO CO2O222

O
2 2

In Tissue In Lungs

CO2 O2

Problem solved: Chemical reactions that help enormously:

CO2(+H2O)
→

← HCO+
3 + H− Hb + 4O2

→

← Hb(O2)
4

Hydrogen competes with oxygen for hemoglobin binding.

Math Physiology – p.9/28
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−
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→
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4
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Example II: Polymerization

monomern−mer

An + A1
→

← An+1

dan

dt
= k−an+1 − k+ana1 − k−an + k+an−1a1

Question: If the total amount of monomer is fixed, what is the
steady state distribution of polymer lengths?

Remark: Regulation of polymerization and depolymerization is

fundamental to many cell processes such as cell division, cell

motility, etc.

Math Physiology – p.10/28
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Enzyme Kinetics

S + E
→

← C
k2
→ P + E

ds
dt

= k−c− k+se
de
dt

= k−c− k+se + k2c = −dc
dt

dp
dt

= k2c

Use that e + c = e0, so that
ds
dt

= k−(e0 − e)− k+se
de
dt

= −k+se + (k− + k2)(e0 − e)

Math Physiology – p.11/28
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The QSS Approximation

Assume that the equation for e is "fast", and so in quasi-equilibrium. Then,

(k− + k2)(e0 − e) − k+se = 0

or

e =
(k
−

+k2)e0

k
−

+k2+k+s
= e0

Km

s+Km
(the qss approximation)

Furthermore, the "slow reaction" is

dp

dt
= −

ds
dt

= k2c = k2e0
s

Km+s

max

K s
m

V

This is called the Michaelis-Menten reaction rate, and is used routinely (without
checking the underlying hypotheses).

Remark: An understanding of how to do fast-slow reductions is crucial!

Math Physiology – p.12/28
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Enzyme Interactions

1) Enzyme activity can be inhibited (or poisoned). For example,

S + E
→

← C
k2
→ P + E I + E

→

← C2

Then,
dp
dt

= −ds
dt

= k2e0
s

s+Km(1+ i
Ki

)

2) Enzymes can have more than one binding site, and these can
"cooperate".

S + E
→

← C1
k2
→ P + E S + C1

→

← C2
k4
→ P + E

dp
dt

= −ds
dt

= Vmax
s2

K2
m+s2

max

K s
m

V

Math Physiology – p.13/28
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Introductory Biochemistry

• DNA, nucleotides, complementarity, codons, genes,
promoters, repressors, polymerase, PCR

• mRNA, tRNA, amino acids, proteins

• ATP, ATPase, hydrolysis, phosphorylation, kinase,
phosphatase

Math Physiology – p.14/28
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Biochemical Regulation

R
� � � � �� � � � �� � � � �� � � � �
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polymerase binding site

regulator region

gene

"start"

Repressor bound

Polymerase bound

trpEmRNADNA 

R* R

Of O
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The Tryptophan Repressor

f

trpEmRNADNA 

R* R

ORO

dM

dt
= kmOP − k−mM,

dOP

dt
= konOf − koffOP , Of + OP + OR = 1,

dOR

dt
= krR

∗Of − k−rOR,

dR∗

dt
= kRT 2R− k−RR∗, R + R∗ = R0

dE

dt
= keM − k−eE,

dT

dt
= kT E − k−T T − 2

dR∗

dt

(Santillan & Mackey, PNAS, 2001)

Math Physiology – p.16/28
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Steady State Analysis

E(T ) =
ke

k−e

km

k−m

1
kon

koff
R∗(T ) + 1

= k−T T,

R∗(T ) =
kRT 2R0

kRT 2 + k−R

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

E
(T

)

trp production

trp degradation

Simple example of Negative Feedback.
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The Lac Operon

CAP binding site

RNA-polmerase binding site

-operatorstart site
lac gene

operon off
(CAP not bound)

operon off
(repressor bound)
(CAP not bound)

operon off
(repressor bound)

operon on

repressor

CAP

RNA polymerase

+ glucose

+ lactose

+ glucose

- lactose

- glucose

- lactose

- glucose

+ lactose

Math Physiology – p.18/28
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The Lac Operon

lac operon

repressor CAP

outside the celllactose

lactose

lac

permease

allolactose

glucose

cAMP

+

+

+

+

-
-

-

R + 2A
k1
−→

←−

k
−1

RI, O + R
k2
−→

←−

k
−2

OI,

O → M → E, P, P → L
E

−→ A

Math Physiology – p.19/28
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Lac Operon

dM

dt
= αMO − γMM,

O =
1 + K1A

2

K + K1A2
(qss assumption) (-2)

dP

dt
= αP M − γP P,

dE

dt
= αEM − γEE,

dL

dt
= αLP

Le

KLe + Le
− αAE

L

KL + L
− γLL,

dA

dt
= αAE

L

KL + L
− βAE

A

KA + A
− γAA.

Math Physiology – p.20/28
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Lac Operon - Simplified System

( P and B is qss, L instantly converted to A)

dM

dt
= αM

1 + K1A
2

K + K1A2
− γMM,

dA

dt
= αL

αP

γP
M

Le

KLe + Le
− βA

αE

γE
M

A

KA + A
− γAA.

10−4 10−3 10−2 10−1 100 101 102
10−4

10−3

10−2

10−1

100

101

102

Allolactose

m
R

N
A

dM/dt = 0

dA/dt = 0
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Lac Operon - Simplified System

( P and B is qss, L instantly converted to A)

dM

dt
= αM

1 + K1A
2

K + K1A2
− γMM,

dA

dt
= αL

αP

γP
M

Le

KLe + Le
− βA

αE

γE
M

A

KA + A
− γAA.
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m
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Lac Operon - Simplified System

( P and B is qss, L instantly converted to A)

dM

dt
= αM

1 + K1A
2

K + K1A2
− γMM,

dA

dt
= αL

αP

γP
M

Le

KLe + Le
− βA

αE

γE
M

A

KA + A
− γAA.
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Lac Operon - Bifurcation Diagram
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Glycolysis

−

Glu Glu6−P

ATP ADP

F6−P F16−bisP

ATP ADP

PFK1

ATP ADP

+

γS2 + E
k3
−→

←−

k
−3

ESγ
2 , (S2 = ADP)

v1
−→ S1, (S1 = ATP)

S1 + ESγ
2

k1
−→

←−

k
−1

S1ESγ
2

k2
−→ESγ

2 + S2,

S2
v2
−→.

Math Physiology – p.23/28
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Glycolysis

γS2 + E
k3
−→

←−

k
−3

ESγ
2

v1
−→ S1

S1 + ESγ
2

k1
−→

←−

k
−1

S1ESγ
2

k2
−→ESγ

2 + S2,

S2
v2
−→.

Applying the law of mass action:

ds1

dt
= v1 − k1s1x1 + k−1x2,

ds2

dt
= k2x2 − γk3s

γ
2e + γk−3x1 − v2s2,

dx1

dt
= −k1s1x1 + (k−1 + k2)x2 + k3s

γ
2e − k−3x1,

dx2

dt
= k1s1x1 − (k−1 + k2)x2.

Math Physiology – p.24/28
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Glycolysis

Nondimensionalize and apply qss:

dσ1

dτ
= ν − f(σ1, σ2),

dσ2

dτ
= αf(σ1, σ2) − ησ2,

where

u1 =
σ

γ
2

σ
γ
2 σ1 + σ

γ
2 + 1

,

u2 =
σ1σ

γ
2

σ
γ
2 σ1 + σ

γ
2 + 1

= f(σ1, σ2).
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Circadian Rhythms

(Tyson, Hong, Thron, and Novak, Biophys J, 1999)
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Circadian Rhythms

dM

dt
=

vm

1 +
(

P2
A

)2 − kmM

dP

dt
= vpM −

k1P1 + 2k2P2

J + P
− k3P

where q = 2/(1 +
√

1 + 8KP ), P1 = qP , P2 = 1
2(1− q)P .
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Cell Cycle

M

G1

G2

S

Start

MPF

SPF

Cdk

DNA replication

Mitosis

Cyclin
degradation

G1 cyclinCyclin
degradation

Cdk

Mitotic
cyclin

Cell Cycle (K&S 1998)
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