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In this work, a dynamic system of investment game played by two firms with bounded rationality is proposed. It
is assumed that each firm in any period makes a strategy for investment and uses local knowledge to make in-
vestment strategy according to the marginal profit observed in the previous period. Theoretic work is done on
the existence of equilibrium solutions, the instability of the boundary equilibriums and the stability conditions
of the interior equilibrium. Numerical simulations are used to provide experimented evidence for the complicat-
ed behaviors of the system evolution. It is observed that the equilibrium of the system can loose stability via flip
bifurcation or Neimark–Sacher bifurcation and time-delayed feedback control can be used to stabilize the chaotic
behaviors of the system.
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1. Introduction

Cournot (1838) introduced earliest the mathematical model which
describes production competitions in an oligopolistic market. In a clas-
sical Cournot model each participant uses a naïve expectation to guess
that opponents' output remains at the same level as in the previous pe-
riod and adopts an output strategy which solves the corresponding
profit maximization problem. Since then, a great number of literatures
have been devoted to enrich and expand the Cournot oligopoly game
theory. Much work has paid attention to the stability and the complex
phenomena in a dynamical Cournot gamewith this kind of naïve expec-
tation [e.g., (Teocharis, 1960; Puu, 1991; Puu, 1996; Puu, 1998; Agiza,
1998; Kopel, 1996; Ahmed & Agiza, 1998; Agliari et al., 2000; Rosser,
2002)]. As a more sophisticated kind of learning rule with respect to
naïve expectations, adaptive expectations or adaptive adjustments
have been proposed in other dynamical models [e.g., (Okuguchi, 1970;
Bischi & Kopel, 2001; Agiza et al., 1999; Rassenti et al., 2000;
Szidarovszky & Okuguchi, 1988)]. In recent years, many researchers
have paid attention to a kind of bounded rationality, withwhich a player
(without complete information of the demand function) uses local
knowledge to update output by the marginal profit. Bischi and
Naimzada (1999) gave a general formula of the dynamical Cournot
model with this form of bounded rationality, assuming that producers
behave as local profit maximizers in a local adjustment process,
“where each firm increases its output if it perceives a positive marginal
profit and decreases its production if the perceived marginal profit is
negative (Bischi & Naimzada, 1999)”. Much work has been done on
the dynamical Cournot games performed by players with this kind of
marginal profit method. The models with homogeneous players (all
players are boundedly rational players and use the marginal profit
method to adjust strategies) are considered in Agiza et al. (2001),
Agiza et al. (2002), Ahmed et al. (2000), and Bischi and Naimzada
(1999). Some other work has focused onmodeling the systemwith het-
erogeneous expectations. Agiza and Elsadany (2003) and Zhang et al.
(2007) studied the dynamics of a Cournot duopoly game with one
bounded rationality player and one naïve player. Agiza and Elsadany
(2004) and Dubiel-Teleszynski (2011) considered a duopoly model in
which one player has bounded rationality and the other has adaptive ex-
pectation. In themodel by Fan et al. (2012), there is one player using the
marginal profit method and one player adjusting production in terms of
themarket price in the previous period. Ding et al. (2009) studied the dy-
namics of a two-team Cournot game with heterogeneous players.

In thesemodels for dynamical Cournot game, output is a key variable
and each player is able to take any needed output updating for the pur-
pose of local profitmaximization; thus it is based on an implicit assump-
tion that all players could provide sufficient quantity of products on the
market. However, this implicit assumption may be impractical in an
economy market where investment plays the most important role. For
instance, in an emerging industry with immature development (e.g., a
new energy market), it is unlikely for a firm to hold productivity large
enough due to its lack of investment accumulation. As a strategic
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behavior in these economic activities, investment accumulation plays a
significant role in achieving a good production level. Moreover, we
know that even in a mature industry, the production capacity of a firm
is greatly dependent on its large-scale investment stock. Only when
the investment comes up to a certain level can a firm provide as much
goods as the market demands. Therefore, during the developing period
of an infant industry, the competition among producers lies mainly in
their investment strategy. To obtain a competitive market share and
get superiority over opponents, producers must consider their invest-
ment strategies in successive periods.

The main purpose of our work is to formulate a novel model, which
puts investment decision as a substitute for output adjustment into the
dynamical Cournot game. In our model, all producers are also assumed
to have bounded rationality andmake their investment decisions in line
with themarginal profit in the previous period. That is to say, each firm
will increase its investment if it perceives a positive marginal profit and
decrease its investment if the perceived marginal profit is negative. It is
analyzed as to how this novel dynamical Cournot game, in a local ad-
justment process, evolves to equilibrium or exhibits complicated dy-
namic behaviors.

This article is organized as the following. In Section 2, we model the
dynamical investment game played by players with bounded rationali-
ty. In Section 3, we discuss the existence and local stability of the equi-
librium points for the system. In Section 4, we show the dynamic
features of this system with numerical simulations, including bifurca-
tion diagram, phase portrait, stable region and sensitive dependence
on initial conditions. In Section 5, time-delayed feedback control is
used to stabilize the chaotic behaviors of the system.

2. The model

Ourwork focuses on firms' investment competition rather than their
output competition. We pay attention to a duopoly investment game,
where producers' investment choices are substituted for their output
decisions discussed in classic Cournot games.

We consider a competition between two firms (players), labeled
by i = 1,2, producing homogeneous goods. The strategy of each
firm is to choose an investment in every period. Both players make
their decisions in discrete periods t = 0,1,2 ⋯. We write Ki(t − 1) for
firm i's capital stock in period t − 1, and xi(t) for its investment in
period t. We pay our attention mainly to relatively long economic
periods and assume that the previous accumulated capital Ki(t − 1),
after depreciating in a period, keeps a residual value θKi(t − 1)
(0 b θ b 1, identical for both firms). Then the capital stock Ki(t) for
firm i is formulated as

Ki tð Þ ¼ θKi t−1ð Þ þ xi tð Þ; i ¼ 1;2: ð1Þ

We suppose that for firm i, its totally accumulated capital Ki(t)
determines its potential production capacity in period t and it produces
at full capacity to make its output qi(t). Namely, qi(t) is assumed to be a
function of Ki(t). For simplicity, we consider a linear form of output func-
tion: qi(t) = BiKi(t), where Bi is a positive constant. From Eq. (1) we have

qi tð Þ ¼ Bi θKi t−1ð Þ þ xi tð Þð Þ; i ¼ 1;2: ð2Þ

For the price in themarket, we consider a linear inverse demand func-
tion (Agiza & Elsadany, 2003; Agiza & Elsadany, 2004; Agiza et al., 2001;
Bischi & Naimzada, 1999; Ding et al., 2009; Dubiel-Teleszynski, 2011;
Rassenti et al., 2000; Szidarovszky & Okuguchi, 1988; Zhang et al., 2007):

p tð Þ ¼ a−bQ tð Þ; ð3Þ

where a N 0,b N 0, and Q(t) = q1(t) + q2(t) is the total supply by both
firms. We also suppose that the production cost function of each firm
takes a linear form (Agiza & Elsadany, 2003; Agiza & Elsadany, 2004;
Agiza et al., 2002; Agliari et al., 2000; Ahmed et al., 2000; Bischi &
Naimzada, 1999; Rassenti et al., 2000):

Ci qi tð Þð Þ ¼ ciqi tð Þ; i ¼ 1;2; ð4Þ

where c1 and c2 are both positive.
With all the assumptions above, we get firm i's profit in period t as

follows:

πi x1 tð Þ; x2 tð Þð Þ ¼ qi tð Þp tð Þ−Ci qi tð Þð Þ−xi tð Þ
¼ aBi−Bicið Þ θKi t−1ð Þ þ xi tð Þð Þ−bB2

i θKi t−1ð Þ þ xi tð Þð Þ2
−bBiBj θKi t−1ð Þ þ xi tð Þð Þ θK j t−1ð Þ þ xj tð Þ

� �
−xi tð Þ

i≠ j; i; j ¼ 1;2:
ð5Þ

By differentiating πi(x1(t),x2(t)) (i=1, 2), we obtain firm i's marginal
profit with respect to its investment in period t(i= 1, 2, respectively):

ϕ1 tð Þ ¼ ∂π1 x1 tð Þ; x2 tð Þð Þ
∂x1 tð Þ

¼ aB1−1−B1c1−2bB2
1 θK1 t−1ð Þ þ x1 tð Þð Þ

−bB1B2 θK2 t−1ð Þ þ x2 tð Þð Þ;
ð6aÞ

ϕ2 tð Þ ¼ ∂π2 x1 tð Þ; x2 tð Þð Þ
∂x2 tð Þ

¼ aB2−1−B2c2−bB1B2 θK1 t−1ð Þ þ x1 tð Þð Þ
−2bB2

2 θK2 t−1ð Þ þ x2 tð Þð Þ:
ð6bÞ

We suppose both players have bounded rationality and use themar-
ginal profit method to update their investment strategy in the next pe-
riod, as supposed in the existingwork on the classical Cournot games for
output competition [e.g., (Agiza et al., 2001; Agiza et al., 2002; Agiza &
Elsadany, 2003; Agiza & Elsadany, 2004; Ahmed et al., 2000; Bischi &
Naimzada, 1999; Ding et al., 2009; Dubiel-Teleszynski, 2011; Fan et al.,
2012; Zhang et al., 2007)]. It means that each firm will increase its in-
vestmentflow in period t+1 if themarginal profit in the current period
t is positive; otherwise the firm will decrease its investment. Then the
investment adjustment mechanism for player i can be modeled as:

xi t þ 1ð Þ ¼ xi tð Þ þ αi xi tð Þð Þϕi tð Þ; i ¼ 1;2; ð7Þ

whereαi(xi(t)) is a positive functionwhich gives the extent offirm i's in-
vestment variation based on its marginal profit. For simplicity, we also
put the function αi(xi(t)) in a linear form (Agiza & Elsadany, 2003;
Agiza & Elsadany, 2004; Agiza et al., 2001; Agiza et al., 2002; Bischi &
Naimzada, 1999; Ding et al., 2009; Dubiel-Teleszynski, 2011; Fan et al.,
2012; Zhang et al., 2007): αi(xi(t)) = αixi(t), where αi is a positive con-
stant representing the relative adjustment speed. Then the dynamics
(7) takes its form as:

xi t þ 1ð Þ ¼ xi tð Þ þ αixi tð Þϕi tð Þ; i ¼ 1;2: ð8Þ

From Eqs. (1), (6a)–(6b) and (8), we obtain a four-dimensional dis-
crete dynamic system:

x1 t þ 1ð Þ ¼ x1 tð Þ þ α1x1 tð ÞðaB1−1−B1c1−2bB2
1ðθK1 t−1ð Þ

þ x1 tð ÞÞ−bB1B2 θK2 t−1ð Þ þ x2 tð Þð ÞÞ;
x2 t þ 1ð Þ ¼ x2 tð Þ þ α2x2 tð ÞðaB2−1−B2c2−bB1B2ðθK1 t−1ð Þ

þ x1 tð ÞÞ−2bB2
2 θK2 t−1ð Þ þ x2 tð Þð ÞÞ;

K1 tð Þ ¼ θK1 t−1ð Þ þ x1 tð Þ;
K2 tð Þ ¼ θK2 t−1ð Þ þ x2 tð Þ:

8>>>>>>><
>>>>>>>:

ð9Þ
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If we denote Ki(t− 1) by Ii(t) (and hence Ki(t) by Ii(t+ 1)), i= 1,2,
then we can rewrite system (9) as the following standard dynamics

x1 t þ 1ð Þ ¼ x1 tð Þ þ α1x1 tð ÞðaB1−1−B1c1−2bB2
1 θI1 tð Þ þ x1 tð Þð Þ

−bB1B2 θI2 tð Þ þ x2 tð Þð ÞÞ;
x2 t þ 1ð Þ ¼ x2 tð Þ þ α2x2 tð ÞðaB2−1−B2c2−2bB2

2 θI2 tð Þ þ x2 tð Þð Þ
−bB1B2 θI1 tð Þ þ x1 tð Þð ÞÞ;

I1 t þ 1ð Þ ¼ θI1 tð Þ þ x1 tð Þ;
I2 t þ 1ð Þ ¼ θI2 tð Þ þ x2 tð Þ:

8>>>>>>><
>>>>>>>:

ð10Þ

System (10) describes a duopoly game played by two boundedly ra-
tional players making decision in a process of dynamical investment. In
the following sections, we are to investigate the dynamical properties of
this model.

3. Equilibrium points and stability

Let xi(t + 1) = xi(t) and Ii(t + 1) = Ii(t) (i = 1,2) in system (10),
then we get

x1 tð Þ aB1−1−B1c1−2bB2
1 θI1 tð Þ þ x1 tð Þð Þ−bB1B2 θI2 tð Þ þ x2 tð Þð Þ

� �
¼ 0;

x2 tð Þ aB2−1−B2c2−2bB2
2 θI2 tð Þ þ x2 tð Þð Þ−bB1B2 θI1 tð Þ þ x1 tð Þð Þ

� �
¼ 0;

θ−1ð ÞI1 tð Þ þ x1 tð Þ ¼ 0;
θ−1ð ÞI2 tð Þ þ x2 tð Þ ¼ 0:

8>>>><
>>>>:

ð11Þ
Solving equations in Eq. (11), we obtain four equilibrium states of

dynamics (Eq. (10)), which are listed as follows:

E0 ¼ 0;0;0;0ð Þ;

E1 ¼ 0;
1−θð Þ aB2−1−B2c2ð Þ

2bB2
2

;0;
aB2−1−B2c2

2bB2
2

 !
;

E2 ¼ 1−θð Þ aB1−1−B1c1ð Þ
2bB2

1

;0;
aB1−1−B1c1

2bB2
1

;0

 !
;

E� ¼ x�1; x
�
2; I

�
1; I

�
2

� �
;

where

x�1 ¼ 1−θð Þ B1B2 aþ c2−2c1ð Þ þ B1−2B2ð Þ
3bB2

1B2
;

x�2 ¼ 1−θð Þ B1B2 aþ c1−2c2ð Þ þ B2−2B1ð Þ
3bB1B

2
2

;

I�1 ¼ B1B2 aþ c2−2c1ð Þ þ B1−2B2

3bB2
1B2

;

I�2 ¼ B1B2 aþ c1−2c2ð Þ þ B2−2B1

3bB1B
2
2

:

E0,E1 and E2 are all boundary equilibriums and E∗ is a unique interior
equilibrium. In order to make these equilibrium points have economic
meaning, we only consider the nonnegative cases. Since b, B1, B2 and θ
are positive parameters, E1,E2 and E∗ are all positive provided that

aB1−1−B1c1 N 0; ð12aÞ

aB2−1−B2c2 N 0; ð12bÞ

B1B2 aþ c2−2c1ð Þ þ B1−2B2 N 0; ð12cÞ

B1B2 aþ c1−2c2ð Þ þ B2−2B1N0: ð12dÞ
In the following, all the nonnegativity conditions (12a)–(12d) are
assumed.

3.1. Stability of the boundary equilibriums

To investigate the local stability of an equilibrium (x1,x2,I1,I2) of sys-
tem (10), we work out its Jacobian matrix J:

J x1; x2; I1; I2ð Þ

¼
A1 −bB1B2α1x1 −2θbB2

1α1x1 −θbB1B2α1x1
−bB1B2α2x2 A2 −θbB1B2α2x2 −2θbB2

2α2x2
1 0 θ 0
0 1 0 θ

0
BBB@

1
CCCA;

ð13Þ
where

A1 ¼ 1þ α1 aB1−1−B1c1ð Þ−2α1bB
2
1 θI1 þ 2x1ð Þ−bα1B1B2 θI2 þ x2ð Þ;

A2 ¼ 1þ α2 aB2−1−B2c2ð Þ−2α2bB
2
2 θI2 þ 2x2ð Þ−bα2B1B2 θI1 þ x1ð Þ:

An equilibrium (x1,x2,I1,I2) will be locally asymptotically stable if all
the eigenvalues (real or complex) of the Jacobian matrix J(x1,x2,I1,I2)
lie inside the unit disk, i.e. |λ| b 1 holds for any eigenvalue λ of J(x1,x2,
I1,I2). An equilibrium (x1,x2,I1,I2) will be unstable if there is an eigenval-
ue λ of J(x1,x2,I1,I2) such that |λ| N 1.

Proposition 1. The boundary equilibrium E0 is an unstable equilibrium.

Proof. Taking the expression of the equilibrium E0 into Eq. (13), we get
the Jacobian matrix at E0 as the following:

J E0ð Þ ¼
1þ α1 aB1−1−B1c1ð Þ 0 0 0

0 1þ α2 aB2−1−B2c2ð Þ 0 0
1 0 θ 0
0 1 0 θ

0
BB@

1
CCA;

which has four eigenvalues:

λ1 ¼ λ2 ¼ θ;λ3 ¼ 1þ α1 aB1−1−B1c1ð Þ;λ4 ¼ 1þ α2 aB2−1−B2c2ð Þ:

From thenonnegativity conditions (12a)–(12b) and the positivity of the
parameter αi, it follows that |λ3,4| N 1. So the equilibrium E0 is unstable.

Proposition 2. The boundary equilibriums E1 and E2 are both unstable.

Proof. At the boundary equilibrium point E1, the Jacobian matrix
(Eq. (13)) is given by

J E1ð Þ ¼

1þ U
2B2

0 0 0

θ−1ð Þα2B1V
2B2

1þ θ−1ð Þα2V
θ θ−1ð Þα2B1V

2B2
θ θ−1ð Þα2V

1 0 θ 0
0 1 0 θ

0
BBBBBB@

1
CCCCCCA
;

where U= α1(B1B2(a+ c2 − 2c1) + B1 − 2B2),V= aB2 − 1− B2c2. By
simple calculation, we get four eigenvalues of the matrix J(E1):

λ1 ¼ θ;

λ2 ¼ 1þ α1 B1B2 aþ c2−2c1ð Þ þ B1−2B2ð Þ
2B2

;

λ3;4 ¼ 1
2
ð1þ θþ α2 θ−1ð Þ aB2−1−B2c2ð Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4θþ 1þ θþ α2 θ−1ð Þ aB2−1−B2c2ð Þð Þ2Þ:

q

According to the inequality (Eq. (12c)) and the condition that B2 and
α1 are both positive, we see that λ2 N 1 and hence conclude that the equi-
librium E1 is unstable. A similar approach shows that E2 is unstable too.
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3.2. Stability of the interior equilibrium

Now we consider the asymptotical stability of the interior equilibri-
um E∗. The Jacobian matrix J at E∗ = (x1∗ ,x2∗ ,I1∗ ,I2∗) takes its form as

J E�
� � ¼

1þ 2 θ−1ð ÞU
3B2

θ−1ð ÞU
3B1

2θ θ−1ð ÞU
3B2

θ θ−1ð ÞU
3B1

θ−1ð ÞW
3B2

1þ 2 θ−1ð ÞW
3B1

θ θ−1ð ÞW
3B2

2θ θ−1ð ÞW
3B1

1 0 θ 0
0 1 0 θ

0
BBBBBB@

1
CCCCCCA
;

where U is the same one denoted in J(E1) and W = α2(B1B2(a + c1 −
2c2) − 2B1 + B2). If P(λ) denotes the characteristic polynomial of the
Jacobian matrix J(E∗), then

P λð Þ ¼ λ4 þ p1λ
3 þ p2λ

2 þ p3λþ p4:

By calculation, we get

p1 ¼ 2
3B1B2

½B2
1α1 1−θð ÞX þ B2

2α2 1−θð Þ
þ B1B2 −2α1 1−θð Þ þ α2 1−θð ÞY−3 θþ 1ð Þð Þ�;
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p2 ¼ 1
3B1B2

½2B2
2α2 α1 θ−1ð Þ−1−θð Þ 1−θð Þ

þ B2
1α1 1−θð ÞX α2 1−θð ÞY−2 θþ 1ð Þð Þ

þ B1B2 2α2 θ2−1
� �

Yþ
�

3 1þ 4θþ θ2
� �

þ α1 1−θð Þ α2 θ−1ð Þ aB2 þ 4B2c1−5B2c2−5ð Þ þ 4 1þ θð Þð ÞÞ�;

p3 ¼ 2θ
3B1B2

½B2
1α1 1−θð ÞX þ B2

2α2 1−θð Þ
þ B1B2 −2α1 1−θð Þ þ α2 1−θð ÞY−3 1þ θð Þð Þ�;

p4 ¼ θ2;

where X= aB2 + B2c2 − 2B2c1 + 1, Y = aB2 + B2c1 − 2B2c2 − 2.
For all the roots of the polynomial P(λ) (the eigenvalues of the

Jacobian matrix J(E∗)) to lie inside the unit disk, Schur–Cohn Criterion
[e.g., (Elaydi, 2005)] gives the necessary and sufficient conditions as:

(i) P(1) N 0;
(ii) (−1)4P(−1) N 0;
(iii) Thedeterminants of the 1×1matricesM1

± and the3×3matrices
M3

± are all positive, where

M�
1 ¼ 1� p4; M�

3 ¼
1 0 0
p1 1 0
p2 p1 1

0
@

1
A�

0 0 p4
0 p4 p3
p4 p3 p2

0
@

1
A:
In our model, we have

P 1ð Þ ¼ 1þ p1 þ p2 þ p3 þ p4

¼ α1α2 θ−1ð Þ2 B1B2 aþ c1−2c2ð Þ−2B1 þ B2ð Þ B1B2 aþ c2−2c1ð Þ þ B1−2B2ð Þ
3B1B2

:

Then from the nonnegativity conditions (12c)–(12d), we know that
the first condition P(1) N 0must hold. In addition,Det(M1

±)= 1± p4=
1± θ2 N 0 also holds since 0 b θ b 1. Consequently, we conclude that the
interior equilibriumpoint E∗ of system (10) is asymptotically locally sta-
ble if it meets the following conditions

P −1ð Þ ¼ 1−p1 þ p2−p3 þ p4N0; ð14aÞ

Det Mþ
3

� �
N0;Det M−

3ð ÞN0; ð14bÞ

where Det(M) represents the determinant of the matrix M.

4. Numerical simulation

In this section, we show by numerical simulations how the system
evolves under different levels of parameters, especially of the capital re-
sidual rate θ and the adjustment speed α. In all the numerical simula-
tions, the other parameters are fixed: a = 5, b = 1, c1 = 0.3, c2 = 0.5,
B1 = 0.6 and B2 = 0.8.

For three cases of the capital residual rate θ, Fig. 1 is about bifurcation
diagrams of system (10) with respect to the adjustment rate α1 while
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the other one is fixed as α2 = 2.2. Fig. 1(A) shows the bifurcation dia-
gram for θ = 0.35: period doubling bifurcation comes up at about
α1 = 0.285 and chaos occurs while α1 increases to about 1.85.
Fig. 1(B) is about the case θ = 0.5: period trebling bifurcation occurs
at about α1= 1.18 and period doubling bifurcation follows when α1 in-
creases, and chaos occurs in the end of the bifurcation process. In
Fig. 1(C) for θ = 0.69, more complicated dynamical behaviors can be
observed. The equilibrium is stable for α1 taking its value up to about
8.42, then it becomes unstable and bifurcates into two stable fixed
points; Neimark–Sacher bifurcation occurs at about α1 = 9.15, then a
period window follows after about α1 = 9.21; and such a complicated
process (period doubling bifurcation, Neimark–Sacher bifurcation, peri-
odic window, etc.) continues leading the system to chaos.

The observations from Fig. 1(A) and (B) tell that the Nash equilibrium
of the system can loose stability via flip bifurcations, and Fig. 1(C) shows
that the stability loss may also be due to Neimark–Sacker bifurcations.
So the system can drive to chaos either in a flip bifurcation process or in
a Neimark–Sacher bifurcation process. About the three cases in Fig. 1,
two-dimension phase portraits for some values of α1 are shown in
Fig. 2, which gives a more detailed description of the orbits of the system.
The phase portraits in Fig. 2(A) (θ= 0.35) are obviously related to a peri-
od doubling process leading to chaos. Fig. 2(B) (θ=0.5) also shows a flip
bifurcation process, where chaos occurs in the end after periods 3,6,12,⋯.
Fig. 2(C) (θ= 0.69) shows that there exits a Neimark–Sacker bifurcation
so that a couple of closed invariant curves is observed when the system
loses stability, and it also shows that multi-period orbit follows after the
Neimark–Sacker bifurcation and chaotic attractors occur in the end.

Besides different bifurcation processes leading to chaos, Fig. 1 also
shows that the point that the system begins to lose stability will be
much different when the residual rate θ changes. In Fig. 1(A), (B) and
(C) for θ= 0.35, θ=0.5 and θ= 0.69, the equilibriumstability loss begins
about at, respectively,α1= 0.285, 1.18 and 8.42. It tells that if the residual
rate θ is higher (i.e. the depreciation rate is lower), the equilibrium insta-
bilitywill be delayedmuchmore and the systemwill be led to chaosmuch
later. That is, a larger residual rate (or a smaller depreciation rate) has
a stronger stabilization effect on the system's dynamical evolution. This
conclusion can be also drawn from another kind of simulation as shown
in Fig. 3. By computer work on the stability conditions (18a)–(18b) for
three cases (θ = 0.35, 0.5, 0.69), stable regions in the (α1,α2)-plane are
numerically obtained and are plotted in Fig. 3. Comparing Fig. 3(A), (B)
and (C), we see that an increasing θ expands the stability region rapidly.

Fig. 4 shows the sensitivity of system (when loosing stability) to
initial conditions, with θ = 0.5, α1 = 1.426, α2 = 2.2, x2(1) = 0.72,
I1(1) = 1.56 and I2(1) = 1.44. Fig. 4(A) plots the orbits of firms' invest-
ment: the blue ones take an initial value x1(1) = 0.78 and the red ones
take a slightly deviated value x11(1)= 0.78001. Fig. 4(B) is about the or-
bits of firms' capital stock under the same initial conditions as Fig. 4(A).
Fig. 4(A) and (B) shows that the difference between the orbits with
slightly deviated initial values builds up rapidly after a number of itera-
tions, although their initial states are indistinguishable.

In Fig. 5(A) and (B), the bifurcation diagrams are plotted for the capital
residual rate θ when α2 is fixed as 2.2. Fig. 5(A) is for α1 = 1.98 and
Fig. 5(B) is forα1= 9.305. Fig. 5(A) showsa reverseperiod-doublingbifur-
cation, while Fig. 5(B) combines reverse period-doubling bifurcation and
reverseNeimark–Sacher bifurcation. The twofigures show that the system
trends towards stability with the residual rate increased, which also tells
that a high residual rate has a positive effect on the system stability.

5. Chaos control

From the numerical simulations above, we see that the adjustment
rate and the capital residual rate have great influence on the stability
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of system (10). If the model parameters fail to locate into the stable
region required, the behaviors of the dynamics will be much com-
plicated. In a real economic system, chaos is not desirable and will
be not expected, and it is needed to be avoided or controlled so
that the dynamic system would work better. In this section, we
use the time-delayed feedback control [e.g., (Elabbasy et al.,
2009; Ding et al., 2011; Holyst & Urbanowicz, 2000)] to control
system chaos. We modify the first equation of system (10) by in-
tercalating a controller k(xt − xt + 1) as a small perturbation,
where k N 0 is a controlling coefficient. Then the controlled system
is given by

x1 t þ 1ð Þ ¼ x1 tð Þ þ α1x1 tð ÞðaB1−1−B1c1−2bB2
1 θI1 tð Þ þ x1 tð Þð Þ

−bB1B2 θI2 tð Þ þ x2 tð Þð ÞÞ þ k x tð Þ−x t þ 1ð Þð Þ;
x2 t þ 1ð Þ ¼ x2 tð Þ þ α2x2 tð ÞðaB2−1−B2c2−2bB2

2 θI2 tð Þ þ x2 tð Þð Þ
−bB1B2 θI1 tð Þ þ x1 tð Þð ÞÞ;

I1 t þ 1ð Þ ¼ θI1 tð Þ þ x1 tð Þ;
I2 t þ 1ð Þ ¼ θI2 tð Þ þ x2 tð Þ:

8>>>>>>><
>>>>>>>:

ð15Þ
It is easy to see that the new system (15) has the same equilibriums
as system (10) and it takes the following equivalent form:

x1 t þ 1ð Þ ¼ x1 tð Þ þ 1
1þ k

α1x1 tð ÞðaB1−1−B1c1−2bB2
1 θI1 tð Þ þ x1 tð Þð Þ

−bB1B2 θI2 tð Þ þ x2 tð Þð ÞÞ;
x2 t þ 1ð Þ ¼ x2 tð Þ þ α2x2 tð ÞðaB2−1−B2c2−2bB2

2 θI2 tð Þ þ x2 tð Þð Þ
−bB1B2 θI1 tð Þ þ x1 tð Þð ÞÞ;

I1 t þ 1ð Þ ¼ θI1 tð Þ þ x1 tð Þ;
I2 t þ 1ð Þ ¼ θI2 tð Þ þ x2 tð Þ:

8>>>>>>>><
>>>>>>>>:

ð16Þ
The Jacobian matrix of the controlled system (16) is given by

J x1; x2; I1; I2ð Þ

¼
1þ α1

1þ k
A1 −bB1B2α1x1

1þ k
−2θbB2

1α1x1
1þ k

− θbB1B2α1x1
1þ k

−bB1B2α2x2 1þ α2A2 −θbB1B2α2x2 −2θbB2
2α2x2

1 0 θ 0
0 1 0 θ

0
BBBB@

1
CCCCA;

ð17Þ
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where A1 = aB1 − 1 − B1c1 − 2bB12(θI1 + 2x1) − bB1B2(θI2 + x2) and
A2 = aB2 − 1 − B2c2 − 2bB22(θI2 + 2x2) − bB1B2(θI1 + x1).

As has been shown in Fig. 1(B), chaotic behavior of system (10) oc-
curs when all the model parameters take their values as

a; b;B1;B2; c1; c2;α1;α2; θð Þ ¼ 5;1;0:6;0:8;0:3;0:5;1:426;2:2;0:5ð Þ:

Using this group of parameters values, we obtain the Jacobianmatrix
(Eq. (17)) at the interior equilibrium as the following

J x1; x2; I1; I2ð Þ

¼
1−1:22408

1þ k
−0:643411

1þ k
−0:482558

1þ k
−0:321706

1þ k
−0:91872 −2:02368 −0:45936 −1:22496

1 0 0:5 0
0 1 0 0:5

0
BBB@

1
CCCA: ð18Þ

From the stability conditions (14a)–(14b), we get that all the eigen-
values of the matrix (18) will lie inside the unit disk provided that
k N 0.2005. That is, when k N 0.2005 the controlled system (16) will
be asymptotically locally stable.
In Fig. 6, it is actually observed that with the control coefficient k in-
creasing, the system gradually gets out of chaos and periodic windows
and achieves to stability when k N 0.2005. For k = 0.25, Fig. 7 shows
the stable behaviors of the orbits of the controlled system beginning
from the initial state (x1(0),x2(0),I1(0),I2(0)) = (0.94,0.87,1.56.1.44).

6. Conclusion

In this work we have taken into consideration firms' investment de-
cisions as substitute for the output choices considered by the existing
work on classic Cournot games. We have formulated a novel Cournot
form of investment game played by two players with bounded rational-
ity. The main idea in our model is that each firm's decision is to choose
its investment in each period according to the marginal profit observed
from the previous period. We have established a corresponding
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dynamics of players' investment adjustment and done a detailed dy-
namic analysis for it. There are three boundary equilibriums and a
unique interior equilibrium in this system.We have shown the instabil-
ity of the boundary equilibriums and found the conditions for local sta-
bility of the interior equilibrium by Schur–Cohn Criterion. We have
made similar numerical simulations for the system evolution as done
in other existingwork on classic Cournot games for output competition,
including bifurcation diagrams, phase portraits, stable regions and sen-
sitivity to initial state. It is shown that a relatively high residual rate (or
lowdepreciation rate) can strengthen the system stability. It is observed
that the equilibriumof the systemmay loose stability via different bifur-
cations, either flip bifurcation or Neimark–Sacker bifurcation. It is also
shown that time-delayed feedback control can be used to stabilize the
chaotic behaviors of the system.
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