Chapter 1: Sobolev Spaces

Introduction

In many problems of mathematical physics and variational calculus it is not
sufficient to deal with the classical solutions of differential equations. It is
necessary to introduce the notion of weak derivatives and to work in the so
called Sobolev spaces.

Let us consider the simplest example — the Dirichlet problem for the Laplace
equation in a bounded domain Q C R™:

Au =0, x €
w(@) = p(z), =€, } (+)

where ¢(z) is a given function on the boundary 9. It is known that the
Laplace equation is the Euler equation for the functional

l(u):/Q]Z:

We can consider (k) as a variational problem: to find the minimum of I(u)
on the set of functions satisfying condition u|y, = ¢. It is much easier to
minimize this functional not in C1(2), but in a larger class.

Namely, in the Sobolev class W3 (€2).

W3 () consists of all functions u € Ly(Q), having the weak derivatives

Oju € Ly(R), j=1,...,n. If the boundary 02 is smooth, then the trace of
u(x) on 0 is well defined and relation u|yq = ¢ makes sense. (This follows
from the so called ,,boundary trace theorem* for Sobolev spaces.)

If we consider [(u) on W3 (), it is easy to prove the existence and uniquen-
ess of solution of our variational problem.

The function u € W} (), that gives minimum to I(u) under the condition
Ulyn = ¢, is called the weak solution of the Dirichlet problem (x).

2

Ou dx.

Oz

We’ll study the Sobolev spaces, the extension theorems, the boundary trace
theorems and the embedding theorems.
Next, we’ll apply this theory to elliptic boundary value problems.



§1: Preliminaries

Let us recall some definitions and notation.

Definition
An open connected set 2 C R™ is called a domain.

By Q we denote the closure of ; 99 is the boundary.

Definition
We say that a domain ' C Q C R" is a strictly interior subdomain
of Q and write Q' CC Q, if ' C Q.

If Q' is bounded and Q' CC Q, then dist {Q', 00} > 0. We use the following
notation:

x = (x1,22,...,2,) € R", @uz%,
a=(ap,a,...,a,) € Z is a multi-index
o dlaly,
ol =a1 +as+ ...+ oy, 0u= 925 957 0

1/2

Next, Vu = (Qu,...,00u), |Vu|= Z |0;ul?
j=1

Definition

L,(2), 1<g< oo ,is the set of all measurable functions u(z) in

such that the norm
1/q
lull, o = ( / ru<x>\qu)

Ly(Q) is a Banach space. We'll use the following property:
Let u € Ly(2),1 < g < co. We denote

is finite.

J,(ui Ly) = sup (/ lulz + 2) — u(x)\qu> v

|z|<p

Here u(z) is extended by zero on R™\Q. J,(u; Lg) is called the modulus of
continuity of a function u in L4(2). Then

Jy(u; Lg) — 0 as p— 0.



Definition
Lg10c(£2),1 < g < 00, is the set of all measurable functions u(x) in £
such that [o, |u(z)|P dz < oo for any bounded strictly interior subdo-
main ' CC Q.

Lg10c(82) is a topological space (but not a Banach space).

We say that wuy "% win L t0c($2), if [Jug — ull, o "2 0 for any bounded

Q' cc

Definition

Lo () is the set of all bounded measurable functions in €2; the norm
is defined by
ullo o = es55up fu(z)|
€N
Definition
CY(€) is the Banach space of all functions in € such that u(z) and
0%u(x) with |a| <[ are uniformly continuous in € and the norm

llleigy = D sup|0®u()|
@) b

<t ™€
is finite. If | = 0, we denote C°(Q) = C(9Q).

Remark
If © is bounded, then ||ul| o g < oo follows from the uniform continui-
ty of u, 0%, |o| <l

Definition
C(Q) is the class of functions in € such that u(z) and 0%u, |a| < I,
are continuous in €.

Remark
Even if © is bounded, a function v € C*(Q) may be not bounded; it may
grow near the boundary.

Definition
C35°(Q) is the class of the functions u(z) in Q such that

a) u(x) is infinitely smooth, which means that 0%u is uniformly con-
tinuous in 2, Ve

b) wu(zx) is compactly supported: supp u is a compact subset of .



§2: Mollification of functions

1. Definition of mollification

The procedure of mollification allows us to approximate function u € L,(£2)
by smooth functions.
Let w(z),z € R™, be a function such that

weCPMR"), w(x)>0, wx)=0if |z[>1, and

/Rw(m)dm ~1 (1)

For example, we may take
1 .
—— f 1
() = c exp{ lf‘x‘Q} 1 lz| <
0 if |z >1

where constant ¢ is chosen so that condition (1) is satisfied.
For p > 0 we put

Then w, € C§°(R"), w,(x) >0,
wpl@) =0 it [zl > p, (3)
/ wp(x)dr = 1. (4)
Definition

w), is called a mollifier.

Let @ C R™ be a domain, and let u € Ly(Q2) with some 1 < g < co. We
extend u(x) by zero on R™\Q) and consider the convolution w, * u =: u,

un@) = [ o= g)ulw)iy ©)

In fact, the integral is over QN {y : |z — y| < p}.

Definition

up(z) is called a mollification or regularization of u(x).



2. Properties of mollification

1) u, € C*°(R"), and

0%up(7) = [gn Ogwp(@ — y)u(y)dy.

This follows from w, € C*°.
2) uy(x) =0 if dist {x;Q} > p, since wy(x —y) =0, y €.
3) Let u € Ly(2) with some ¢ € [1,00]. Then

[pll g < Mlullg - (6)
q7

In other words, the operator ), : u — wu,, is a linear continuous opera-
tor from Ly(€2) to Ly(R™) and

el q(mn) < 1-

Proof:

Let 1 4+ % = 1. By the Holder inequality and (4), we have

/R wp(x — Y)Y w,(z — y)l/q/U(y)dy‘

([ wote—) / (/oo wiutrar)”

=1

IN

> @)l < [ wle =)y

By (4), we obtain

| @i

IN

o [ o= lutldy

= [ vt ([ e yml

Case 2 : ¢ = co. We have

|up(2)]

IA A
= o5
— 3
8 €
i)
T~ 5
'S |
SIS
=
= =
& &




= [wplloe < Nlullog

Case 3 : q=1.
We integrate the inequality

@I < [ o=yl

and obtain:

/Rn fup(@)] do < /R de /R wplz = y)lu(y)ldy = /R July)ldy

|
Let u € Ly(),1 < g < oo. Then
lup —ull,gn — 0 as p—0. (7)
Consequently,
lup —ull, g =0 as p—0.
Proof

The proof is based on the following property: if u € Ly(2) (and u(x)
is extended by 0), then

1/q
sup </ lu(z + 2) — u(x)\qdac> = Jy(u;Ly) = 0 as p— 0.

lz|<p

(Jp(u; Lg) is called the modulus of continuity of v in L,.)

Case 1:1< g < o0.By (4) and (5) we have
up(o) @] < [ wplo = 9) (ulw) - ulw)) dy

= [ wple =) T ayla =)V (uly) ~ u(w) dy

Then, by the Holder inequality, it follows that

o) = o) = [ s = ) / ([ ot -l )

=1



Hence,

[ —vwra < [ [ o) @)

£ [ ) [ ) -ty
< sw [ fuly+ o) - )y [ & wl)
" z|<p

|z|<p

~~

=1
= (Jolus Lg))"

= |lup —ull,gn < Jp(u; Lg) =0 as p— 0.

Case 2 : ¢ = 1. We have

@) = (@) < [ pla =) luty) = u(a) dy

:,/ () — u()| da /ndx/nwpx— Vu(y) — ulz)| dy

v /|z|<pdz wp(z )/R fuly + =) — u(y)| dy
< Jp(u§L1)

— 0 as p—0.

Remark
If ¢ = oo, there is NO such property, since Ly,—limit of smooth
functions u,(z) must be a continuous function.
If u € C(Q) and we extend u(x) by zero, then we may loose
continuity.
In general, |ju, — UHC(ﬁ) -0 as p—0.

However, we have the following property:

5) Ifue C(Q), Y cc Qand Q is bounded, then

Hup—u|lc(ﬁ)—>0 as p—0



Proof
Let p < dist {Q;0Q}. Then

w() = ule) = [ wplo =) (al) - o) dy
[ ) (ule - ) - ula) dz

= sup fup(@) —u(z)| < sup sup u(z — 2) — u(x)
e eV |2[<p
— 0 as p—0

(since u(z) is continuous in Q).



§3: Class C§°(Q?)

By C§°(2) we denote the class of infinitely smooth functions in € with
compact support:

ueCP) & wuwelC™®( ) and supp u C .

Theorem 1

C3(Q) is dense in Ly(2),1 < g < o0

Proof
Let u € Ly(Q2) and € > 0. Let ©' be a bounded domain, ' CC Q, and

€
Hqu,Q\Q/ < 9

We put

if z € O\

Then |lu— u(E)HqQ < 5. Let u(pa)(x) be the mollification of u®)(x). By

property 4) of mollification, Hugf) —ul®
ugg) — uH o < ¢ for sufficiently small p.
q7

Note that u) € C(Q) if p < dist {Q, 99} .

N < § for sufficiently small p.
q7

Hence,

Theorem 2

Let u € L1 10.(£2), and suppose that

/Qu(x)n(x)dm =0, VYne Q). (8)
Then u(x) =0, a.e. z €.

Theorem 2 is an analog of the Main Lemma of variational calculus.

Proof

1) First, let us prove that

/Qu(x)n(x)dx =0



for any n € Loo(€2) with compact support supp n C €. Suppose that
supp 1 C £/, where Q' is a bounded domain and Q' CcC Q. Then

n, € C5°(Q) if p < dist {Q/;aﬁ} =: 2pg.
Let Q) = {x: dist {z;QY'} < po}, and let

1 ifze)
— PO
Xpo () { 0 otherwise

By (8),
[ w@miteriz =0, p<m. (9)

Since n € L1(Q2), by property 4) of mollification,

lmp — 77”1752 — 0as p—0.
Then there exists a sequence {p},cn, Pk — 0, pr < po, such that

N () hoop n(x) for almost every x € Q.

Then also 7, (z)u(x) hoop n(x)u(x) for a.e. x € Q.
Using property 3) (that ||n,||, < |[nlls), we have
(@), ()] < Xpo (@) ()] 1]l o (10)

and the right-hand side in (10) belongs to L;(€2).
Then, by the Lebesgue Theorem,

/ w(x)n,, (x)dx koo u(z)n(z)dz.
Q Q

By (9), the left-hand side is equal to zero.
Hence, [, u(z)n(z)dz = 0.

Now, let ' be a bounded domain such that ' cC Q. We put

oy ={ i Lo 0. e

0 , otherwise

Then

lu(z)| ,zed
wapo) ={ "1 Tl

Since 7(z) is Loo—function with compact support supp n C & C €,
then, by part 1),

0= / u(z)n(z)de = | |u(z)|dz.
Q Q
It follows that u(x) = 0 for a. e. x € Q. Since Q' is an arbitrary
bounded domain such that Q' cc Q, then

u(z) =0, ae xz€Q

10



84: Weak derivatives

1. Definition and properties of weak derivatives

Definition 1

Let a be a multi-index. Suppose that u,v € Ly j,.(£2), and

/ w(z)d%n(z)de = (—1)l / v(z)n(x)dz, Yne CE(Q).  (11)
Q Q

Then v is called the weak ( or distributional ) partial derivative of u
in 2, and is denoted by 0%u.

If u(z) is sufficiently smooth to have continuous derivative 0%u, we can
integrate by parts:

w(z)0%(z)dr = Dol gy (z)n(z)dz.
/Q()@n()d /Q< 1)1l g (z)d

Hence, the classical derivative 0%u is also the weak derivative. Of course,
0% may exist in the weak sense wihout existing in the classical sense.

Remark

1) To define the weak derivative 0%u, we don’t need the existence of
derivatives of the smaller order (like in the classical definition).

2) The weak derivative is defined as an element of Lj ;,.(2), so we
can change it on some set of measure zero.

Properties of 0“u

1) Uniqueness
Proof
Uniqueness of the weak derivative follows from Theorem 2. Suppose
that u € Ly 15.(©2) and v, w € Ly 10.(£2) are both weak derivatives of .
Then, by (11),

/Q (v(z) —w(z))n(x)de =0, Vne C(RQ).

By Theorem 2, ov(z)=w(x), a.e. x €.

11



2)

Linearity
If uy,u2 € L 1o.(€2) and there exist weak derivatives vi = 0%uq,
v = 0% € L 10c(€2), then there exists 0% (ciu1 + coug) and

0% (clul + CQUQ) =c10%u + CQ@OCUQ, c1,c0 € C.

Proof
Obviously,

/(clu1+62u2)6°‘nd:ﬂ = cl/ulaand:c—l—@/uQaandx
Q Q Q
= (—1)'0‘01/vmdw—i—(—l)'o‘@/vgndx
Q Q

= (—1)'0‘/ (c1v1 + covg) ndzx.
QO ~———

=0%(cru1+cau2)

If v =0% in Q , then v = 9%u in Q' for any ' C Q.
Obvious

Mollification of the weak derivative

,»,Derivative of mollification is equal to mollification of derivative“. This
is true in any bounded strictly interior domain ' CC Q.

Suppose that u,v € L1 10.(2) and v = 0%u. Then

vp(x) = 0%up(x) if p < dist{x,00}. (12)

The functions v, and v, are smooth; the derivative 0%u, in (12) is
understood in the classical sense.

Proof

Let p < dist {x,00}. We have

up(z) = /Q ol — y)uly)dy

Then  9%u,(z) = [ 0%w,(x — y)u(y)dy.
Note that 0fw,(z —y) = (—1)'0“65@,)(3: —y).
Hence,

0"uy(a) = (1)) [ Byl ~ y)uty)ay.

Since p < dist {x,00Q}, then for n(y) := wy(xr —y) we have n € C§°(£2).
By definition of the weak derivative 0%u = v, we obtain

O upla) = [ ol = u)o)dy = vy(o)

12



5) Suppose that v € Lj ,.(£2) and there exists the weak derivative 0%u
such that
0%u € Ly(2),1 < g < 0.
Then [[0%u, — 0%ul|, o, — 0 as p — 0, for any bounded strictly interi-
or domain €' cc .

Proof
This follows from property 4) of mollification and property 4) of weak
derivatives:

Ou=ve€ Ly(Q); 0%, =1v,inQ (for sufficiently small p);

lve = vll, 00 =0 as p—0.

Remark
If we extend u(x) by zero on R™\(Q, then, in general, the weak
derivative 0%u in R™ does not exist. Hence, we have convergence

0%u,, P~0 9oy in Ly(SY) only for bounded strictly interior domain
.

Exclusion:
if u(z) =0, if dist{x;00} < p,, and 0%u € Ly(Q),

then [|0%u, — 0%ul|, iy}

2. Another definition of the weak derivative

Definition 2

Suppose that u, v € Lj ;,.(€2) and there exists a sequence u,, € CcYQ),
m € N, such that u,, —> u and 0%, —> v in L1 1oc(S2).

Here o is a multi-index and |a| = I. Then v is called the weak deriva-
tive of w in © : 9%u = v.

Definition 1 < Definition 2
Proof

1) Definition 1 <« Definition 2.
Since up, € C(Q), then

/umao‘nd:ﬂ = (—1)lo / 0“umndz, Vn e C3°(Q). (13)
Q Q

13



For 1) fixed, the left-hand side of (13) tends to [, ud*ndx as m — oco:

< max |0%n)| [ty — u| dz =3 0.

suppmn

/ (U, — u) 0%ndx
Q

Similarly, the right-hand side of (13) tends to (—1)l! Jo vnda. Conse-
quently,

/u@o‘nd:c = (—1)'0“ / vndz, Vne C5(R).
Q Q

It means that v = 0%u in the sense of Definition 1.

Definition 1 = Definition 2.

Let u,v € L110.(£2), and let v = 0% in the sense of Definition 1.
We want to find a sequence u,, € C*(Q) such that u,, —> u and
0%y, =5 v in L1 1oc(S2).

Let {Q,},m € N, be a sequence of bounded domains such that

o, ccQ, Q,cQ, and [JQ,=0
meN

We put

u™ (@) { 0 otherwise

Then u(™ € L;(Q). Consider the mollification of (™ : uf)m) € C™(Q).
Let {pm},,en be a sequence of positive numbers such that p,, — 0 as
m — 0o.

We put

Um(x) = ul™(z), = €.

Then u,, € C*(Q) and uy, %% win L1,10c(€2). Prove this yourself,
using property 4) of mollification.

Next, by property 5) of 9%u, prove that 0%u,, — v in L1 10c(82).
Thus, v = 0% in the sense of Definition 2.

14



Theorem 3

m—00

Let U € Lijoc(Q) and up — w in Ly 1o.(£2). Suppose that there

exist weak derivatives 0%up, € L1 1o.(2) and 0%uyy, "2 vin L1 10c(S2).

Then v = 0%u.
In other words, the operator 9% is closed.

Proof
By Definition 1, for 9%u,,, we have

/umaandm = (—1)°‘|/3aumndx, Vn e C5°(82)
Q Q

lm— o0 lm-— oo
/ uwdnde = (=1)1 / vndz, Vne C5 ()
Q Q

= v = 0% in the sense of Definition 1.

Remark

The conclusion of Theorem 3 remains true under weaker assumptions
that

/ wnde " / undz and / O upyda "= / ondz, Ve C(Q).
Q (9] (9] (9]

(It means that u,, — u and 0%u,, — v in D'(Q).)

3. Weak derivatives of the product of functions

Proposition

If u, 0ju € Lgjoc(§2), and v,0;v € Ly 1o.(€2) with some
1< q< oo, % +4 =1orifu, Oju € L1 15.(2) and v, 0;v € C(Q2), then

0; (uwv) = (0ju) v + u (0;v) .
Proof

1) Case 1: 1<g< o
Let us fix n € C§°(Q2). Let €' be a bounded domain such that
suppn C ¥ cc Q. We put

u(z) ,xe () — v(z) ,x el
{ 9=

0 otherwise 0 otherwise

15



Then @ € Ly(Y), v € Ly(€Y). By property 4) of mollifications,
Hu~p — ﬁHq’Q/ — 0, Hf)p — ?NJHq/’Q/ —0 asp—0

Next, 0;0 = Oju in €', 0;0 = ;v in ' (it is clear from Definition 1).
So, ({9]‘21 S Lq(QI), 8j?~} S Lq/(QI).
By property 5) of weak derivatives,

10ty — 05l ; suppy — 05 a8 p— 0,

|00, — 057 0, asp—0.

/ —
q,suppT]

Since u,, 0, are smooth functions, we have

/ /ﬁpf}pajndx = - o 9; (p0p) ndax

= _// (9jtip) Dpndz —/Q/ Uy (050,) ndx. (14)
Let us show that
/ ﬁp@pajndmp;o/ ﬁﬁajndx:/uvajndx (15)
Q Q/ Q

We have
/ (a,0, — uv) Ojndx

IN

_|_

/ (@, — @) 0,05mdx / @ (0, — ) Ojndx

< lap = all o 19l o max |0jm] +
—_——— —

—0 bounded
+ lallg o 18, = 0ll s o max |8;n]
—_————

—0

— 0 as p—0
Similarly, we can show that

| @i a, i @nnie = [ (@05 +a ) i

= /Q ((05u) v+ u (0;v)) ndz (16)
From (14) - (16) it follows that

/qu(?jndx =— /Q ((Oju) v+ u (0;v)) ndx

This identity is proved for any n € C5°(€2). It means (by Definition 1)
that there exists the weak derivative d;(uv) and

0;(uv) = (Oju) v + u (0;v)

Case q=1.

Prove yourself

16



4. Change of variables

Suppose that u € LLlOC(Q) and there exist weak derivatives

Oju € L1 15.(Q),j =1,. )

Let y = f(x) be a dlﬁeomorphlsm of class C! and f(Q) = Q.

We put a(y) = u(f~'(y)). Then @ € Ly o.(Q). Let us show that there exist
weak derivatives aaﬂ k=1,...,n, and

Z 8’& 6%
8yk 835] OYx

Proof
Since there exist weak derivatives g—ggj € L110c(2),j = 1,...,n, then there

exists a sequence u,, € C'(Q) such that wu,, —> u and %“T”? T iy
J J

L1joc(2) forall  j=1,...,n

(We can construct this sequence like in the proof, that Definition 1 and
Definition 2 are equivalent ).

We denote @iy, (1) = um(f~'(y)). Then i, € C*(Q), and, by usual rule (for
classical derivatives),

Bﬁm Z O, (9:6]

ayk 8-%'] aym

Let us check that i, "2 4 in LUOC(Q). Indeed, for every bounded domain
Q' cc Q we have

| i) = aldy = [ Jun( @)~ uls ) dy

Here @' = f~Y(€/) and J(z) is the Jacobian of the transformation f(z)
<J(£C) = det {%})

Here the right-hand side tends to zero, since |J(x)| is bounded in €;

Q' is a bounded domain such that Q' CC Q; and uy, — w in L jo(9).

Similarly, using that %ﬁm mese % in L1 10.(£2), one can show that
J

Ol Oy, Oz m—0 Ou Oz . ~
Z—m L Q
8yk Z 3xj 8y,€ Z 8.%'] 8y,€ m 1,loc( )

Then, by Definition 2, there exist weak derivatives

@ Z ou 835]

and
Yk 8yk « Oz Oy

17



Thus, for weak derivatives we have the usual rule of change of variables. The
same is true for derivatives of higher order.

5.

For ordinary derivatives we have the following property:

if aaT“ =0in Q,57 = 1,...,n, then v = const. The same is true for weak
J

derivatives.

Theorem 4
Suppose that u € Lj 1,.(£2) and there exist weak derivatives 0%u for
any multi-index « such that || =1 (I € N) and 0%v = 0 in £,
|a| = 1. Then u(x) is a polynomial of order <1 —1 in €.

Proof

1) Let € be a bounded domain such that Q' CC Q. Let Q" be another
bounded domain such that Q' cc Q" cc Q. We put

_ { u(x) ,zeQ’

ifw) = 0  otherwise

Then @ € L1(2") , and 9% = 0%u =0, |a] =1, in Q”. Consider
the mollification u,(x). If p < dist {Q', 00"}, then, by property 4) of
0%u,

9%up(z) = (0%u),(z), =€ O, ol =1
Hence, 0“0, = 0 in Q. Thus, u,(z) is a smooth function in Q" and all
its derivatives of order 1 are equal to zero. It follows that
Up(r) = Pl(f)l (), z €, where Pl(f)l is a polynomial of order < [—1.
By property 4) of mollification,

p—0

li,—ull, g —0 as p—0,ie, PP 22 u in Ly(Q).

The set of all polynomials in € of order < [ —1 is a finite-dimensional
(and, so, closed!) subspace in L1('). Therefore, the limit u(x) must
be also a polynomial of order <[ — 1:

u(r) = P_q(z), ze.

2) Now it is easy to complete the proof by the standard procedure. Let
{9} ,en be a sequence of bounded domains such that

LCCQ QO and [JOp=0
keN

18



We have poved that for each domain €

u(w) = P (@), we
Then Pl(f;rl)(x) is continuation of Pl(fi (x), but continuation of a poly-
nomial is unique.
= There exists a polynomial P,_;(x) such that

u(z) = P_1(x), x€Q.

6. Absolute continuity property

The existence of the weak derivative is related to the absolute continuity
property. Recall the definition of absolute continuity for function of one
variable.

Definition

Function u : [a,b] — R is called absolutely continuous, if for any ¢ > 0
there exists § > 0 such that for any finite set of disjoint intervals

(z1,21), (22,2%), ..., (zm,2,) (Cla,b])

with  >707,

Tl — xj‘ < d, one has
m
Z |u(x;) —u(zj)| <e.
j=1

We’ll use the following facts:

1) w : [a,b] — R is absolutely continuous if and only if there exists a
function v € Ly(a,b) such that

u(z) = u(a) + /xv(t)dt, x € [a,b].

2) If u : [a,b] — R is absolutely continuous, then there ezists derivative
du for almost every x € (a,b) and % =v (€ Li(a,b)).

Theorem 5

Let n = 1. A measurable function u(z) is absolutely continuous on [a, ]
if and only if there exists the weak derivative Z—Z € Li(a,b). The weak
derivative coincides with the classical derivative almost everywhere.

19



Remark

When we speak about measurable functions, we mean not just one
function but a class of functions, that are equal to each other almost
everywhere. So, when we say that a measurable function u(x) is abso-
lutely continuous, it means that in the class of functions equivalent to
u, there exists an absolutely continuous representative.

Proof

1)

u(z) is absolutely continuous. = 3 weak derlvatlve = € Ly. Ifu(z) is a.
c., then there exists the classical derivative g—; =0 almost everywhere
and v € Li(a,b). Next, let n € C3°(a,b). Then the product nu is also
absolutely continuous. There exists the classical derivative % for
almost every x € (a,b). We have the usual rule:

d(nu) dn

=un+u—.

dz nE dz

Integrate this identity over (a,b). Then fb i "“ dzr = 0.

(Since n(z) = 0 near a and b). Hence,

b
d
/ (vn +u—n> dr = 0.
a dx

The obtained identity

b b
d
/ il _/ vndm, V77 € C(%)O(a’a b)a

dx

by Definition 1, means that v is the weak derivative 3—22

3 weak derivative v = d_ € Li(a,b) = u is a. c.

Consider w(z) = [ v(t)dt.

Then w(z) is absolutely continuous. There exists classical derivative
dv —y, ae. z € (a,b).

By statement 1) (already proved), there exists the weak derivative i—i’
which coincides with the classical one and with v.

Thus,
du  dw . d(u—w)
—=—, e ——==0.
de dz dx
(the weak derivative is equal to zero.)
By Theorem 4, u — w = const. Since w(z) is absolutely consinuous,
then u = ¢+ w s also absolutely continuous.

If x = a, we have u(a) = ¢+ w(a) = c¢. Thus,
——



u(zx) is absolutely continuous; it has classical derivative for a. e. x €
(a,b);
classical derivative = weak derivative = v € Lj(a,b).

Theorem 6

Let Q@ C R",n > 1. We denote 2/ = (x1,...,%j-1,%j41,...,%n) and
write z = {2/, z;}. Suppose that [a(z’),b(2’)] are some intervals such
that {2’} x [a(2),b(z")] C Q.

Let u € L110.(£2) and there exists the weak derivative aa—m“] € L1 10.(9).
Then for almost every 2’ the function u(z’, z;) is absolutely continuous
on interval [a(z),b(z)] (as a function of one variable z;).

Exercise: Prove Theorem 6.

7. Examples

1) Let Q = (0,1)? and u(z1, 22) = @(x1) + ¥ (x2), where ¢ and v are not
absolutely continuous on [0, 1], but ¢, € L1(0,1).
Then, by Theorem 6, u(x1,z2) does not have weak derivatives g—fl, 8‘9—1“2
in Q. (Since, if they exist, then u(z) must be also absolutely continuous
in z; for zo fixed, and in z9 for z; fixed.)

. . . 2
However, there exists the weak derivative =24 = ()

0x1012
Indeed, for V n € C§°(€2),

u8277dx // dxdac—l—//i/):c
q Ori10z9 Ozg TR 2
1

0
0% n 2
= d d d d
/O el ([ 500 o /O wm)( o)

=0 =0

dxldxg

= 0.

By Definition 1 of weak derivative, it means that there exists weak
o2 5o and 8‘9 5> =0. This example shows that functions
T10T2 r1012

may have derivative of higher order, not having derivatives of lower

order.

derivative e

2) Suppose that the domain @ C R” is devided by a smooth
(n-1)—dimensional surface I' into two parts 7 and 5. So, Q2 = Oy U
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Qo UT.
Let up € Cl(Q_l),UQ S 01(9_2),

ulz) = { w(x) oe

ug(x) € Qo

If wi|p # ualp, then, in general, weak derivatives do not exist.

Let 7i(xz) be the unit normal vector to I" exterior with respect to ;.
Since ug(z), k = 1,2, is a C'-function in Q, we can integrate by
parts in Q: for n € C§°(Q2) we have:

on / on / on
u—-dxr = ul—dx + Ug——dx

/Q 8.%']‘ o} 131‘j Qo 28.%']‘
3U1 8UQ

o} 31‘j Qs 8.%']‘

+ / (w1 (x) — ug(z)) peos (£L(11,0x;)) dS(z)
r

If uy = ug on I' (we have NO jump on I'), then the integral over I is

equal to zero. In this case, there exists the weak derivative % and
J

oui
24 in Q
ou { dx; 1

ST ) dwr
8x] o, in Q9

ndr +

Also, if cos (£(7,0z;)) = 0, then there exists aaT“j. For example, if I is
parallel to the axis Oz, then cos (£(7,0z;)) = 0.

= Even if u;|p # usl|p, the tangential derivative exists.

If [.(u1(z) —uz(x)) neos (L(7, 0x;5)) dS(x) # 0, then % does not

exist.

Exercise
Let Q ={z € R": |z| < 1}, and let u(z) = [z|*, a>-n+1.
Prove that there exist the weak derivatives

ou ou _9 .
%j and %j:axj\x]a , j=1,...,n

For this consider continuous functions

z|* x| >4
U((S)(x):{ ‘5“)‘ ,ixiéé

From the previous example we know that

0u® o am;le|*? |z >4

L1(2 L1(Q2 _
Check that u® "% 4 and ‘98”—;?) <y vj = axj |z|” 2,

Then, by Theorem 3, it follows that HgTuj = v;
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§5: The Sobolev spaces W)(Q2) and W/()

1. Definition of W)(Q) (1 <p<oo,leZy)

Definition
Suppose that u € L,(€2) and there exist weak derivatives 0%u for any
a with |a| <1 (all derivatives up to order 1), such that
0%u e Ly(Q), |af <L

Then we say that u € W}(Q2).
We introduce the (standard) norm in W}(€):

1/p

lullwyoy = | [ 3 l07up da

la|<I

Remark

1) The norm <, [[0%ul|,, o is equivalent to the standard norm.
2) W(Q) = Lp(Q).

Proposition

Wé(Q) is complete.
In other words, Wzﬂ(Q) is a Banach space.

Proof
Let {unm} be a fundamental sequence in W},(Q) It is equivalent to the fact
that all sequences {0%u,, } for |a| <[ are fundamental sequences in L,(€2).
Since the space L,(2) is complete , there exist functions u, v, € Lp(€2) such
that
Lp(Q) o L)

Uy — U, O%Uyy — Uy as m — 00.
Then also wy, — u, 0%y, — Vo 0 L1 15.(£2).
By Theorem 3, v, = 0“u. Hence,

Wi ()
Uy — U AS M — OO.

If p = 2, the space Wzl(Q) is a Hilbert space with the inner product

(UUWL :/ZBO‘ )0 (z)dz.

|| <1
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For W(2) another notation H'(9) is often used: Wi(Q) = H! ().

Using the properties of weak derivatives (see section 4 ,,Change of varia-
bles“ in § 4), we can show that the class Wé(Q) is invariant with respect to
smooth (C'-class) change of variables.
Theorem 7

Let f:Q— Qbea diffeomorphism of class C!, so that

feck), feck). i

Then, if u € W;(Q) ,then &t =uo f~1 € Wé(Q), and

e lullw) < lallwyay < e llullwe) - (17)
The constants c1, ¢z do not depend on u; they depend only on || f[|c1 g,
-1
and Hf Hcl(ﬁ)
Proof:

For simplicity, let us prove Theorem 7 in the case | = 1. We have

uwe Wy(Q), aly) =u(f(y))

By section 4 in §4, there exist the weak derivatives

Let us check that a“ € L,(Q):

ou |P 1/p "L du Ox; ! o
— | d = / — | | J(2)| dz
(/Q Oy y> Q ;5%‘ Oy /@)l
n p 1/17
< (max 0z |J(x )|1/p> </ gu dx)
e e Q 63:j
n ou P >1/p
< ¢ —| dx
- Z (/Q O

Here J(x) = det f’(z) and the constant ¢ := max; j (maXer

(2)'7)

depends only on the norms || f||c1 g, and [ 1"01(5)'
Also we have

/|u |pdy—/|u W IJ(z)| dz < (max |J(z /|u )P dx.

Thus, HUHWPI(Q) < ¢ HuHW;(Q) with the constant ¢y depending only on

| fllcr and Hf*IH(ﬂ. Prove the lower estimate in (17) yourself (for this
change the roles of u and @ in the argument).
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2. Definition of W/} (Q)

Definition

The closure of C3°(2) in the norm of Wé(Q) is denoted by W},(Q)
So, Wzﬂ(Q) is a subspace in the space W;(Q)
Proposition

Let u € WL(€), and let

v Julxr) xzef
) = { 0 zeR™Q.

Then @ € W;(Ql) for any Q7 such that Q C ©4. In particular,
e WHR™).

Proof

By definition of W}(€), there exists a sequence up, € C§°(€) such that

WEH(Q)
Uy — u as m — 0o. We put

- Um(z) x€Q
0 otherwise .

- L W)
Then @, € C§°(1) and 4y, — @ as m — 00

(since ||y, — ﬂ/HWé(QI) = [|um — UHWIQ(Q))'

Hence, 1 € Wlﬁ(Ql).

Theorem 8

Let u € WE(Q) and let

- u(z) €
) = { 0 zeR™Q

Then for mollifications wu,(x) we have u, =% win WE().

25



Proof
We have already proved that @ € Wé(R"). Then 0%a € Ly(R™), |a| <. By
property 4) and 5) of 9%u (mollification of the weak derivative),

01, =3 0% in Ly(Q), |af < L.
It means that 4, =04 in W},(Q) But, by definition of % and definition
of mollification, & = u in €, and @, = u,. So, u, 220 win Wé(Q)
|

Remark
If u(x) is an arbitrary function in W},(Q), and @(z) is defined as above,
then, in general, 4(x) does not have weak derivatives in R™. (See example 2

in Section 7 of §4). So, in general, W;(Q) # W;(Q)

3. Integration by parts

Proposition

Let u € Wlﬂ(Q) and v € Wé(Q), where % + 1% = 1. Then

/Bo‘uvdx = (—1)a|/u 0%vdzx, |a| <I. (18)
Q Q

Proof

Let vy, € C§°(2) and vy, — v as m — o0 in W;(Q) By Definition 1 of the
weak derivative 0“u, we have

/aauvmdx = (—1)°‘|/u 0% dx. (19)
Q Q

Let us show that

/ O%u vy, dz 57 / 0%u v dx,
Q Q

/ u 0%y, do =57 u 0% dz.
Q Q

1/p , 1/p'
</ |0%ul? dw) </ |V, — 0P dw)
Q Q

< ullwa gy llom = UHWIZ),(Q)

We have

IN

/Bo‘u (U, —v) dx
)

!

0 asm — oc;
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1/p , 1/p’
/u (0%, — 0%) dx| < (/ lul? dx> </ |0%y, — 0%v|P dx>
Q Q Q
< ullweqy llom = UHWZ),(Q)
— 0 asm — oo.

Tending to the limit in (19) as m — oo, we obtain (18).

4. Separability

By V}f(Q) we denote the linear space of all vector—valued functions
v = {Va}|y < such that va € Lp(Q), |o| < I. We introduce the norm in

l .
Vi Q):
ol = > Ivallpo-

laf<l

Then Y/;(Q) is the direct product of a finite number (equal to the number of
multi-indices a with |a| < 1) of L,(2). We know that L,(Q2) is a separable
Banach space if 1 < p < oo. Then so is V().
Now, consider the transformation J from W}(€) (equipped with the norm
||u||W;(Q) = > o<t [10%ull,, o, Which is equivalent to the standard norm) to
Vpl(Q):

J:WHQ) = Vi), Ju={0%} -

Then J is a linear operator; it preserves the norm: HJUHVZf(Q) = ||u||Wzﬁ(Q)§
and J is injective. Such an operator is called isometric.

The range Ran J = f/pl(Q) is a linear set in Vpl(Q) consisting of
vector-valued functions v of the form v = {90%u} <, u€ WE(S).
From Theorem 3 it follows that f/pl(Q) is a closed subspace of Vpl(Q) Hence,
f/pl(Q) is separable together with Vpl(Q) (Since any subspace of some sepa-
rable space is also separable.)

Since J is isometric, we can identify W}(€2) with VPI(Q) It follows that W}(Q2)
1s separable if 1 < p < oo.

5. The space W/(R")

Proposition

Wé(R") = Wé(R") . In other words, C§°(R") is dense in Wé(R").
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Proof
Let ¢ € C*°(R4) be such that

0<¢t) <1, (H)=1if0<t<1, (@H)=0ift>2.
Let u € W} (R™). We put uP (z) = u(z)¢ <‘—§> Then
u (2) = w(x) if |z] < R, u(z) =0 if |z| > 2R.

Note that derivatives 85 ¢ (‘—g) are uniformly bounded with respect to
R > 1. Calculating the derivatives of u(®)(z), we obtain the inequality

‘Bau(R)(m)‘ <c Z ‘8ﬁu(m)
1B1<la

, a.e.x €R™

Then for |a| <1 we have

| e = | L

N </x>R
1/p

c nes g T

- ﬁlgal </x>R‘a ( )‘ d)

— 0 as R— >

1/p

0y — gy

°u () — %u(x) ‘p dx

=0 for |z|<R

1/p
9°u' (z) — 8O‘u(ac)‘p dx)

This expression tends to zero as R — 00, since u € Wé(R"), and so,
|8ﬁu‘p € Ly. Thus, u® —yasR— oo in WE(R™).

Now, we consider mollification uE,R) (),

Then ugR) € C°(R™) and u(pR) —u® as p— 01in Wlﬁ(R”).

It follows that C5°(R"™) is dense in Wé(R"). Indeed, let u € Wé(R") and let

€ > 0. We find R so large that Hu(R)

of u

_UHWIQ(RTL) < 5. Next, we find p so

small that HugR) — B < 5. Then Hu(pR) _ UH

W) (R") W(R™)
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6. The Friedrichs inequality

Theorem 9

If Q is a bounded domain in R", then for any function v € W;(Q) we
have

Hquﬂ < (diamQ)l—u—pJﬂ. (20)
Here
1/p
—u—pro= | D 10%ullo | - (21)
la|=l
Proof

Since C§°(12) is dense in W)(€2), it suffices to prove (20) for u € C§(Q).

1) So, let uw € C§°(€2). Let @ be a cube with the edge d = diam(2, such

that Q@ C Q. We extend u(zx) by zero to Q\Q2. We can choose the
coordinate system so that Q = {z: 0 < z; <d,j=1,...n}.

Obviously,
Tnoou , ,
= — d .
u(z) ; 3%(% Y)dy, T €Q
Here x = (x1,...,2p-1,%,) = (2, 2n).
—— ——

xl
Then, by the Holder inequality,

, Tn | Hu P Tn p/p’ e d
lu(z)|P < 5 dy ldy <d
0 €z 0 0
|

8 / p
(xl,y) U(IE ,xn)
< gv/?’

Oz,

n

Here % + 1% =1
We integrate both sides of this inequality:

/' d ou p
|ulPdx = [ |u|Pdx < dr’p dx, —| dx
(¢} Q 0 Q axn
wi=r dp/ Ou. pdx

We have proved that

ou
< (di el
Hqu,Q < (diamS?) (/Q pr.

This is inequality (20) for [ = 1.

P 1/p
dx> < (diamQ)—u—p10. (22)

29




2) In order to prove (20) with [ > 1, we iterate (22):

ou P 0%u P
- < P - .
/Q oz, dr <d /Q o:2 dz, etc
O |
= /Q luPdz < d'P /Q oal dr < dP—u—"b .

Remark

Inequality (20) is not valid for all u € W(Q).
Example

If Q is a bounded domain and u(z) = P,_1(z)(# 0) is a polynomial of
order <1 —1, then —u—y ;0 = 0, but ||ull, o # 0.
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§6. Domains of star type

A natural question:

Can we approximate functions in Wé(Q) by smooth functions?

The answer depends on domain 2. We’ll consider the class of domains for

which the answer is ,, YES, we can®.

Definition
We say that a bounded domain 2 is of star type with respect to a
point 0, if any half-line starting at point 0 intersects 02 only in one
point.

Theorem 10

Let © be a bounded domain of star type with respect to a point 0.
Then C*°(Q) is dense in Wzﬂ(Q)

Proof

Let us use the coordinate system with origin 0. Consider a sequence of
domains Qj = {:U : %:ﬂ € Q}, ke N.

Then Q1 C Qf and Q C Q.

Let u € Wé(Q) We put ug(z) = u(k—;lx)

Clearly, uy, € WE(). Let us show that [luy — “HWZQ(Q) — 0 as k — oo.

We have
k-1

g = ull, g = ( /
0,8 o

This follows from the property of L,~functions: if u € L,(£2), then

P 1/p
dx> — 0 as k — oo.

sup / lu(z + z(x)) — u(z)|P do h=ee ),
l2(z)|<% /Q

T

(In our case z(z) = —% and |z| < diamQ = d = |z(z)| < £.)
Let « be a multi-index with || <. Then

10%us — %ull, o = (/Q <%>|a . (k;1x> et
(- () (5

—0 as k—o0 <—CHu”H’pl(Q)
Q

1/p
dx)

P 1/p
dx>

IN

+

- P 1/p
0%u (k ’ 1£U> — 0%(x) dx> .

~
—0 as k—o0
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Hence, uy "% win Wzﬂ(Q) Consider mollifications wuy, ,(z). Then

uy,, € C*(Q) and uy, , i ug in W;(Q) (since € is bounded and 2 CC Q).
We can choose a sequence {px}, so that pp — 0 as k — oo, and a sequence
Uk () := ug p, (v) tends to u(z) in Wé(Q):
i € C(Q) and
s, = ull i) = 0.

P

Remark

Let @ = {z:|z] < 1,z, > 0} be a half-ball. Q is of star type with
respect to any interior point 0'. Suppose that u € Wé(Q) and u(z) =0

if |z| > 1 —e. Then u}, € C*(Q) and d(x) = 0if [z| > 1 — § for
sufficiently large k.
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§7: Extension theorems

We can always extend a function u € Wlﬂ(Q) by zero and the extended
function € W},(Q) in Q (O Q). It is a natural question if we can extend
functions of class W}(2). We start with the case [ = 1.

Theorem 11
Suppose that Q C R” is a bounded domain such that Q is a compact
manifold of class C'. Let Q be a domain in R” such that Q c Q.
Then there exists a linear bounded eztension operator

IT: Wpl(Q) — WZ}(Q) such that (ITu) (z) = u(x), =z € Q.

Proof

We proceed in three steps:

Step 1

Let Q = Ky = {z : |2| < 1,2, > 0} be a half-ball, and let u € W} (K) and
u(z) =0 near ¥4 = {z € 9K, : |x| = 1}. We extend u to the left half-ball
K_={z:|z| <1,z, <0} as follows:

B u(x) e K
v(z) = { w@',—x,) x € KlL

Let us show that v € W} (K) and

1ol k) = 2!/7 lellws ey - (23)

Here K = {x:|z| < 1}. Using construction of Theorem 10 (and Remark
after Theorem 10), we can find a sequence u,(z) such that u,, € C*°(K,),
Um (x) = 0 near Xy, and [lup — ullyy1 g,y — 0 as m — oo. We put

P

U () = { um(z) v €Ky

Um (2!, —xy) x € K_.

Then v, € C(K), vp(x) = 0 near 0K, v, € C°(K), vy, € C°(K_). It

follows that v, € W) (K) (see §4, Subsection 7, Example 2). For the norm
of v, we have:

/ (om(@) P + (Vo (@)|P) da
K

~ /K (@) + V) do

P
HUMHWZ}(K)

2/P |

= vaHWZ}(K) = ’um”WZ}(K+)' (24)
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Next,

dop(z) Lo re K,
or; a%j (um (2, —2)) z€ K_.

Since u, —= wu in Wy (Ky), it follows that vy, "2 viin Ly(K) and

Gum "7 ;i in Ly(K), where

axj
Ou(x)
- xr € K+ .
’LU](I'): ou aq/jj K ) ]Zlaan_la
aTj(w ,—xn) € K_
wp(x) =
" _<<9(9sz1) (', —x,) x€ K_.
By Theorem 3, there exist weak derivatives 8‘97”]_ in K and 8‘97”]_ = w;. Thus,

U — v in Wpl(K ). Relation (23) follows from (24) by the limit procedure
(as m — 00).

Step 2

Suppose that u € Wpl(Q) and suppu C U, where U is a neighbourhood of
29 € 89, such that U ¢ Q and 3 diffeomorphism

fiU—K feC\U), fleCiR), f(U)=K

fUNQ) =Ky, f(UNIN)=0K\X,.

We consider the function a(y) = u(f~'(y)), y € Ky. Then a € Wy (K)
and 4(y) = 0 near .

We extend a(y) on K_ like in step 1:

i~ a(y) y €Ky
o(y) = { ﬁ(y’, _yn) yeK_.

(¢}
As it was proved in step 1, 0 € Wpl(K), and

—9l/p ‘

1ol () lallw () -

Consider the function v(x) = 0(f(x)), 2 € U. Then v € W (U). We extend
v(x) by zero on Q\U. Then v € Wpl(fl)7 v = u, and
[vllw ey = ol < e llvllwie) < 2P |l i,y < 212 Jlullyy ) -

The constant ¢ depends on || fl|-1 , Hf_lHCl and on p.
Step 3 (general case)
Let © be a bounded domain such that © is a compact manifold of class
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C! with boundary 92. Then (by definition of such manifolds) there exists
a finite number of open sets Ui,Us,...,Un such that either 7] C Q or
U; is a neighbourhood of some point 2 e 99, and 3 a diffeomorphism
fieClUy), fileCUK), fi(U)=K, [(U;nQ) =Ky,

£i(U; N09Q) = 0K\ Finally, Qc UY,U;.

We can choose the sets Uy, Us, ..., Uy so that Ujvzlﬁj c Q.

There exists a partition of unity {¢;(x)},_; 5 such that

¢ € C(R™), supp ¢; C Uj, z;vzl ¢i(z) =1, €.

Let u € Wpl(Q) We represent u(z) as u(z) = Zjvzl
uj(z) = Gj(@)u(x).

If U; C Q, then u; € W)}(Q) (since supp ¢; C U;) and we can extend u;(z)

by zero to Q\Q :
oy Jouie) zeQ
W“”‘{ 0 zeQ

If UNoQ # 0, then uj(z) satisfies assumptions of step 2. By the result

uj(x), where

[e]
of step 2, we can extend u;(z) to some function v; € Wpl(Q) such that
vj(z) = uj(x), x €, and HUJ'HWI}(Q) <g¢j ||uj||Wpl(Q)'

The constant ¢; depends on || ;| , Hfjﬁchl and on p. We put

N
Hu:v:Zvj.

J=1

Then v € WZ}(Q), v(z) = z;vzl vi(z) = SN uj(x) = u(z), z€Q,and

N N N
lollws@ < D Millwia < 3 ¢ il < e sl -
j=1 7j=1 7j=1
where ¢ = maxlSjSN {Cj}. Finally,

il = 152wy < &l

The constant ¢; depends on [|(;|| 1. Hence,

N
[l ey < céllulwiq . €= 216]
]:

Thus, we constructed the linear continuous extension operator

IT: WHQ) — WHQ).
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Remark

It is clear from the proof that for the constructed extension operator
II we have

ol < cllully, @, v=Tu

The constant ¢ depends on p,Q and Q.

2.

Similar extension theorem is true for unbounded domain  C R™ satisfy-
ing the following condition. Suppose that there exist bounded open sets
{U;},7 € N, such that Q C |J;2, U;. Here either U; C Q or Uj is a neigh-
bourhood of a point 29) € 99 and 3 a diffeomorphism f; € C*(T;),

fite CNE), [;(U) =K, [;(QNU)) =K., [;(02NU)) = 0K\,

are uniformly

Moreover, suppose that the norms HfjHCl(ﬁj) and Hfj_lucl(

bounded for all j € N. Suppose also that each point = € 2 belongs only to
a finite number N(z) of sets Uj, and that N(z) < N < oo, Vz €.
(This means that the multiplicity of covering is finite.)

Theorem 12

Under the above conditions on Q@ C R”, let Q be a domain in R”
such that U;’il U; C Q. Then there exists a linear bounded extension
operator

IT: W, (Q) — I/IZ}(Q)
such that (ITu) () = u(z), =z € Q.

We omit the proof.

3. Now we consider the case [ > 1

Theorem 13

Suppose that Q C R” is a bounded domain such that Qis a compact
manifold of class C'. Let © be a domain in R” such that Q ¢ Q. Then
there exists a linear bounded extension operator

P p
and. MMl ) < e llullwo)-
Besides, ||HuHLp(Q) < ¢ ||u||Lp(Q)’

The constants ¢1, cs depend on [, p, Q and Q.
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Proof

Like in the proof of Theorem 11, the question reduces to the case, where
= K and u(z) = 0 near .. Moreover, it suffices to consider smooth
functions u € C*°(K,). So, let u € C*(K,) and u(z) = 0 near ¥,. We
extend u(x) by zero to R \K,. We put

u(z) re Ky
U(&U) = -1 ’ j
Y06 u(@’,—2z,) x € K_.
The constants ¢;,j = 0,...,l — 1, are chosen so that

oM, , oMv,
0) = -0 =0,...,0—1.
8.%';7/”(3:’_{_) 8.%';?('1:’ )? m Y )

These conditions are equivalent to the following system of linear equations
for co,c1,...,¢-1:

-1
(=21)"¢; =1, m=0,1,...,1—1
=0

J

The determinant of this system is not zero.
Hence, such constants cg, ..., ¢_1 exist. It is easy to check that v € Wé(K),
and

10%V[l,, s < Ca [[0%ul] o] < 1.

P K4
(We use that v € C®(K,),v € C®°(K_) and v € C'"1(K).

Then v € Wzl,(K)) Hence , HUHW;(K) < HUHW]£(K+)-

Obviously, v(x) = 0 near K. So, v € W(K).

Next, for arbitrary domain €, we use the covering Q C U;VZI U; and the

partition of unity. The argument is the same as in proof of Theorem 11. The
only difference is that we consider diffeomorphisms of class C*.

Remark

1) The conclusion of Theorem 13 remains true under weaker assumptions
on the domain €. It suffices to assume that €2 is domain of class C*
(for arbitrary I!) or, even that 2 is Lipschitz domain (it means that
diffeomorphisms f;, f;l € Lipy).

2) Extension theorems allow us to reduce the study of functions in Wé(Q)

[}
to the study of functions in Wé(Q) In particular, from the fact that

C5°(Q) is dense in Wé(fl) it follows that C*(Q) is dense in W},(Q), if
domain ) satisfies conditions of Theorem 13.
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Chapter 2: Embedding Theorems

Introduction

Embedding theorems give relations between different functional spaces.
Definition
Let B; and By be two Banach spaces. We say that By is embedded
into Bo and write By — Bs, if for any v € By we have u € By and
lullg, < cllullg,, where the constant ¢ does not depend on u € By.
We define the embedding operator J : By — Bs, which takes u € By
into the same element v considered as an element of Bs.

The fact that By — Bs is equivalent to the fact that the embedding operator
J : By — By is continuous linear operator.
If HuHB2 < cHuHB1 , Yue By, then HJHBlHB2 <e.

Definition

If B1 — B> and the embedding operator J : By — Bs is a compact
operator, then we say that By is compactly embedded into Bs.

The compactness of operator J is equivalent to the fact that any bounded
set in By is a compact set in Bs.

Some embeddings are obvious.

For example, it is obvious that Wél(Q) — WI? (Q), if Iy > ly. In particu-
lar, W)(Q) — Ly(€), 1 > 0. But the fact that for bounded domain €, these
embeddings are compact, is non—trivial. (This is the Rellich embedding theo-
rem.)

More general is the Sobolev embedding theorem : W},(Q) — W, (Q) under
some conditions on p,l,q,r (with ¢ > p and r < ).

Another embedding theorem is that, if pl > n, then a function u € Wé(Q)
is continuous (precisely, u(z) coincides with a continuous function for a. e.
z €Q).

The trace embedding theorems show that functions in W;(Q) have traces
on some surfaces of lower dimension.

The embedding theorems are very important for the modern analysis and
boundary value problems.
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§1: Integral operators in L,(2)

In order to prove embedding theorems, we need some auxiliary material
about integral operators.

1.

Let Q C R™ and D C R™ be some bounded domains. We consider the integral
operator

(Ku) () =v(x) = /QK(:c,y)u(y)dy, zeD, uwely() (1<p<oo).

We’ll show that under some conditions on the kernel K(x,y), the operator
KC is continuous or, even, compact from L,(2) to Lq(D), or from L,(Q2?) to
(D).

We always assume that K(z,y) is a measurable function on D x Q, and K
satisfies one or several of the following conditions:

a)
/ |K (x,y)|"dy < M for a. e. z € D, where t > 1.
Q

b)
/ |K(z,y)|"de < N for a. e y €, where s > 0.
D
c)
ess sup |K(z,y)| <L <oo (K isbounded).
xz€D,yeN
d)
sup sup |K(z,y) — K(2,y)] <e(p) = 0asp—0
z,z€D yEQ
lz—y|<p
(K is continuous in z).
Lemma 1
If K(z,y) satisfies conditions c) and d) , then K : L,(Q2) — C(D) is
compact operator. Here 1 < p < oc.
Proof

Let u € L,(Q) and v(z) = (Ku) (z). Then, by condition c),

el < [ s <2( [ ray) v ([ a) Ll e (1)
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where % + 1% = 1. (If p = 1 then (1) is also true with p’ = oo, Q|7 =1.)
Next, if [z — z| < p (x,z € D), then, by condition d),

(@) =@ = || (K@) - Kz ) uly)dy
< /!u )| dy
< (p)| U |lull,q (2)

From (1) and (2) it follows that, if u belongs to some bounded set in L, (€2):
|ull, o < ¢, then the set of functions {v} is uniformly bounded

(lllem) < LIQIY? ¢) and equicontinuous (Jv(z) — v(z)| < e(p)|Q'/* ¢,
if |z — 2| < p). _
By the Arzela Theorem, this set is compact in C(D). It means that the
operator K : L,(2) — C(D) is compact.
|

Lemma 2

1) If p > 1,% + I% = 1, and K(z,y) satisfies conditions a) and b) with
some t < p’ and 5+ 5 > 1, then v = Ku € Ly(D) (for u € L,y(Q)),

where g > p is defined from the relation g + I% =1.
We have

lollyp < MYPNYJull, g, u € Ly(Q). (3)

2) If p = 1, and K(x,y) satisfies condition b) with s = ¢ > 1. Then
v = Ku € Ly(D) and

lollyp < NV lull g, ue Li(Q). (4)

3) If p> 1, and K(x,y) satisfies condition a) with ¢ = p/, then
v =Ku € Ly(D) and

olloop < MYP Jlull,q, € Ly(%). (5)

4) If p =1, and K (x,y) satisfies condition ¢), then v = Ku € Lo (D) and

[llcop < Lllully g, v € L1(2). (6)
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Proof
1) Let p > 1. Using that g + 1% = 1, we obtain:

K (@, y)u)] = (1K @) @) ful) 1K @,9)]"”

We apply the Holder inequality for the product of three functions:

/ If1(y) f2(y) f3(y)| dy < </Q | f1 [Pt dy)p11 </Q | fo|?? dy>”12 (/Q|f3|p3 dy)”ls

Wlth + +

_pq_

We take b1=4qg, p2 = q—p’

p3 = p’. Then

w(@)| < /|ny y) dy
1

([ 1Kt |pdy> ([t an)™

1 1-2 5 g
MYl g ( [ i) |u<y>|pdy>

Note that in the case ¢ = p, we simply apply the ordinary Holder
inequality and obtain the same result. We have

o@)|? < MY |lulfg /!Kw I lu(y)” dy

- / p@|tde < MUt / dz / K (2,9)]* [u(y)P? dy
D b

— 2l t [ Juty \pdy(/ K (2, y)|° dx)

N( by cond b))

< |.—
=

IN

()

<M/v (by cond. a) )

IN

< NMY7
This gives estimate (3).

2) Let p=1and s =¢>1.If ¢ > 1, we have
| 1
K (@, p)ul)] = (K @)l [u)) " fu)[ 7 -4+ =1
Then, by the Holder inequality,

o) < [ 1Kl dy

([ 1o mora)” ([ woia) v
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= [ < ( [ e [ 1K uty >rdy) 28
= [ s (/ Kl de) ol
N( by cond b) with s=q)
< Nlultq

This implies (4) (in the case ¢ > 1).

If ¢ =1, then
o)l < [ 1K) )l dy
. /D o(@)| de < /D dz /Q K (2, y)] Ju(y)| dy
— /|u(y)|dy/ K (z,y)|dz
9] D
<N
< NHUHMZ

This implies (4) (in the case ¢ = 1).

3) Let p > 1, and condition a) is satisfied with ¢ = p’. Then, by the
Holder inequality,

o) < /|ny y)| dy

, 1/p' 1/p
< ( JLE dy) ( / |u<y>|p)
Q \Jao
S]\;rl/p’
S Ml/p/ ||u||p,ﬂ

This yields (5).

4) Let p =1 and K satisfies condition c). Then

lv(@)] < /Q (K (2, )| [uly)| dy < L/Q lu(y)ldy = Llullq

which gives (6).
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Remark

Statements 1) and 2) mean that the operator IC : L,(2) — L4(D) is
continuous, and

1K 2, )L, (D) MYPNYp > (7)
KL, @)—r,m) < NYi o p=1. (8)

IN

Under conditions of 3) and 4) the operator K : L,(Q) — L(D) is
continuous and

1N L) = Loo (D) MYP' >y 9)

KN L, @)— Lo (D)

2.

Now, we’ll show that under some additional assumptions on K(x,y), the
operator K is compact. We'll assume that K (x,y) can be approximated by
Kp(z,y) (as h — 0) and Kp(x,y) are bounded and continuous in x.

Lemma 3

Suppose that Kj(x,y), 0 < h < hy, satisfies conditions c¢) and d)
(where L = L(h) and e(p) = e(p; h) depend on h).

1) Suppose that K(z,y) and Kj(z,y), 0 < h < hg, satisfy conditions of
Lemma 2(1) with common ¢,s, M, N, and

/ Ky (z,y) — K(z,y)['dy < my h=0 0, for a. e. x € D; (11)

Q

/ |Kp(x,y) — K(z,y)]°de < ny "200, for a. e. y € Q. (12)
D

Then the operator K : L,(2) — L4(D) is compact.

2) Suppose that K(z,y), Kp(z,y), 0 < h < hg, satisfy conditions of
Lemma 2(2) with common s = ¢, N, and

/ |Kp(z,y) — K(z,y)|Tde < ny it 0, for a. e. y € Q. (13)
D

Then the operator K : L1(2) — Lg(D) is compact.

3) Suppose that K(z,y), Ki(x,y) satisty conditions of Lemma 2(3) with
common t = p', M, and condition (11) is satisfied with ¢ = p/. Then
the operator K : L,(Q) — C(D) is compact. (Here p > 1.)
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Proof
We denote

mwmw:mmzémem@@

By Lemma 1, the operator Kp, : Ly(€2) — C(D) is compact.
Obviously, the embedding C(D) — L4(D) (for a bounded domain D) is
continuous. Hence, the operator Ky, : L,(2) — Ly(D) is also compact.

1) From conditions (11), (12) and the estimate (7) it follows that
1h = Kl @) ymy < 3" 1T — 025 h = 0.

Thus, K is the limit in the operator norm of compact operators K.
Hence, K : L,(2) — Ly(D) is compact.

2) Similarly, if p = 1, from condition (13) and estimate (8) it follows that
1
1Kn = Kl (@y—roimy <7/ — 0 a5 h— 0.
It follows that /C: L1 (2) — Ly(D) is compact.
3) From condition (11) with ¢ = p’ and estimate (5), it follows that
1 /
lon =l < 3" Jully 0w € Ly(®).

Hence, |lvp — vl p — 0 as h — 0. Since (Kpu) (v) = vp(z) is uni-
formly continuous, then v(z) is also uniformly continuous: v € C (D).
Thus, the operator K maps L,(2) into C'(D), and

1 /
1Ch = Kl @)—c@) < my/? =0 as h — 0.

Since K, : Ly(2) — C(D) is compact and Kp, 220 K in the operator
norm, then K : L,(Q) — C(D) is also compact operator.

3.

Now we apply Lemmas 1-3 to the study of the operator

T — i '
Kiu) (x :/ J Lu(y)dy, j=1,...,n.

Here z € Q or x € Q,,, where (), is some section of 2 by m—dimensional
hyper—plane (m < n). So, either D = Q or D = Q,,. If m = n, we agree that
Q, =0
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Lemma 4
1) Suppose that 1 <p<n, n—p<m <n, quandl—%—i—% > 0.
Then the operator IC;j : L,(2) — Lg(2y,) is compact.
(If m = n, then Q,, = Q; if m < n, then Q,, is arbitrary section of {2
by m—dimensional hyper—plane.)
2) If p > n, then the operator K; : L,(Q) — C(Q,) is compact. In
particular, K; : L,(2) — C(f) is compact.

Proof
The proof is based on Lemmas 2 and 3.

1) Case 1 <p<n
Suppose that conditions 1) are satisfied and, moreover, that ¢ > p > 1.

We put
01 n+m . n n
-+ DR - — m
P q n—1+6 7T
m m t
= = . Th - _:1-
S P 1%4'% enq—i—p/

Since ¢ > p, then % + I% > 1.

Clearly, t < p’. Since m <n, ¢q > p, then 0§ < 1.

Hence, t > 1. Thus, the numbers ¢ and s satisfy conditions of Lemma
2(1). Let us check that Kj(z,y) = “ZJ:;/‘ZL satisfy conditions a) and b)
with these ¢ and s.

Note that t(n — 1) < n (since t(n — 1) < t(n — 14 60) = n) and
s(n—1) < m (since s(n — 1) < s(n — 1+ 0) = m). We have

‘] / dy
Kj(z,y)|"dy = / _
/’ ‘ Q|$ |t(n1

This integral converges since t(n — 1) < n. Let d = diamf2,
B(z) = {y € R" : |z — y| < d}. Obviously, Q C B(z). Then

dy
K;i(z,y)|' dy < / _
/Q| @) B l& =yl

ge:ég_:fiﬁ d = Ldr

- Kn 0 rt(n—1)
Kndn—t(n—l)

- n—tn—1)

where &, is the square of the unit sphere S*~! in R”.
Thus, condition a) is satisfied with

ﬂndnft(nfl)
Cn—tn-—1) =00
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Let us check condition b):

dz dz
K Sdx < - < S
/{;m| ]($,y)| T = /Qm |x_y|s(n71) >~ /S;m |$—y/|s(n71)’

where 3 is the projection of point y onto the hyper-plane II,,, (which
contains €y, : Q,, C II,, ). The integral is finite, since s(n — 1) < m.
Consider the m-dimensional ball B,,(y') = {z € II,;, : |[x — /| < d}.
Clearly, Q,, C By, (y'). Then

s dr Kmdm—s(n—l)
/ K (2, ) da < / D = .
O Bm(y) 17—V m —s(n—1)

Hence, condition b) is satisfied with

—s(n—1
N = M < 00.

m—s(n—1)
The constant N depends on m and on d = diamSf, but it does not
depend on €, (it is one and the same for all sections €, of dimen-
sion m). Thus, conditions of Lemma 2(1) are satisfied and, therefore,
ICj : Lp(Q2) — Ly(Q) is continuous. We want to prove that this ope-
rator is compact. For this, we want to find the operators K, satisfying
conditions of Lemma 3.
Let ¥(r), r € [0,00), be a smooth function such that ¥ € C*°([0, c0)),
U(r)=0if0<r<i ¥(r)=1ifr>1,and 0< ¥(r) <1, Vr.
We put ¥y (r) = U(%). Then ¥y (r) =0if 0 <r < &,
U, (r) = 1if r > h. Consider the kernels

T —yj
|z —y|™

Kjn(z,y) = Un(lz = yl).

Obviously, |Kn(x,y)| < |Kj(x,y)|, Vz,y. Hence, Kjj, satisfy conditi-
ons a) and b) together with K with the same constants ¢, s, M and N.
Clearly, Kjj(z,y) are bounded:

So, K}, satisfy condition c). And, finally, K, is uniformly continuous
in both variables. So, condition d) for K}, is also satisfied. Let us check
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condition (11):

t
Ti—Y;
[ inten) - Kstwltay = [ EEBE A wia -y dy
r—yY|<

L
o—y|<h |2 — y[t"—D

Knhnft(nfl)
n—tn-—1)
— 0 ash—0.

<1

IN

Thus, (11) is true. Next,

[ Kt - Kyeltae = [ o, BEB 0wy
Qm \

x—Qg;T<h ‘.%' - y‘sn

dx
S /|s(n—1)
{z€Qm:|z—y'|<h} |$ -y |s(n
H;mhmfs(nfl)

- m —s(n—1)
— 0 ash—0.

Thus, (12) is satisfied. Then all conditions of Lemma 3(1) are satisfied.
Hence, the operator KCj : L,(£2) — Lq(Qy,) is compact. (Recall that we
assumed ¢ > p > 1).

If 1 < ¢ < p, then we apply the result that K; : L,(2) — Lp(£y,) is
compact (i. e. , we apply 1) with p = ¢; condition 1 — % + % > 0 is
true, since m > n — p).

Since €, is a bounded domain, then L,(€,) — L4(Qy) (if ¢ < p),
and any compact set in L,(€,) is also compact in Ly (€,). It follows
that the operator KCj : L,(Q) — Lg(£hy,) is compact.

Case p=1

Condition n — p < m < n means that n — 1 < m <n. Then m = n,
so, now £, = Q. Next, condition 1 — 2 + ™ > (0 means that

1-n+ % >0 = 1<q< 5. Let us check that condition b) with
s = q is true:

. 9.9
[ ar= [0l < [
Q

ol —y™ o o —y|n=he
The integral is finite since (n — 1)g <n

Ky d—(n=1)

= Ki(z,y)|?de < ———.
A|J<yn T
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Also, condition (13) is satisfied:

k. hn—a(n—1)
Kip(z,y) — Ki(z,y)|?dr < —“——— —0as h— 0.
[ i) = Ko < s

By Lemma 3(2), the operator K; : L1(€2) — Lg(£2) is compact.

4) Case p { n
Let us check that conditions of Lemma 3(3) are satisfied. Indeed, the
kernels K;(z,y) (and Kjj(z,y) with it) satisfy condition a) with ¢ = p':

) dy K;ndnfp/(nfl)
K. P dy < < .
A‘ ](x7y)’ y—/ﬂ‘x_y‘p’(n—l) _n_p/(n—l) <

Sincep>n,them%<1 %:1—%>1—l:";_

no P
Hence n > p/(n — 1). Next,
Joste it
|z—y|<h |£C - y|p’(n—1)
o, i (n1)

3
3

IN

LJ&M%@-K%%wW@

n—pn—1)
— 0Oash — 0.

Thus, conditions of Lemma 3(3) are satisfied. It follows that the ope-

rator K; : Ly(Q2) — C(2) is compact.
|

Lemma 5

If 1 <p<n,n—p<m < n, then the operator K; : L,(2) — Lg= ()
is continuous (but not compact), where

1—2—%@*:0 <<:)q*: mp >
p q n—p

Without proof.
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§2: Embedding theorems for 1, (1)

1. The integral representation for functions in WI}(Q)

Lemma 6

Let 2 C R"™ be a bounded domain. Let u € Wpl(Q) Then

Yj ou
dy, for a.e. x €. 14
Z/Qm—yway] )

Proof

1) First, assume that v € C§°(2). Consider the fundamental solution of
the Poisson equation AE(z) = §(z):

n > 2
n=2.

Then for any v € C5°(€2) we have

r) = /Q E(x — y)(u) (y)dy.

The function £(z) has weak derivatives

06(z) 1 z
0z Tk |2
Then, B%J_E(x—y) = —é“?;ﬁil,j =1,...,n

By Definition 1 of weak derivatives, we have

0f(x—y
/5:6— Au Z/ yj a—yjdy

Then,

—dy, Yu € Cp°(92).
Z/ !w—y\” &)
2) Now, let u € W, (), and let u, € C§°(€2), ug "Z% uin W (Q). For
u, we have
/ —Yj 8uk
Z o
a lz —y|™ dy;

49




0
Thus, ug = Zj K (aZf)
By Lemma 4, each operator K; is compact from L,(£2) to L,(£2). We
know that u, "= u in L,(Q) and ?)Ly;? hoop g—;j in L,(€2). Then
p) k— .

K5 (225) "2 K (85) i L, (€).

(since ICj : L,(2) — Lpy(£2) is continuous operator.)

Hence, by the limit procedure as k — oo we obtain:

Ol
E:/Wx—yw__d% Vu € W, (9Q).

2. Embedding theorems for 1, (1)

Theorem 1

Let Q C R"™ be a bounded domain.

) f1<p<n, m>n—p, q<ooand 1-2+% ZO,theanl(Q)
is embedded into Lg(Qy,), where Q,, = Q (if m =n ) and €, is
any section of 2 by m—dimensional plane (if m < n). In the case
1-— % =+ % > 0, this embedding is compact.

2) If p > n, then Wpl(Q) is compactly embedded into C(£2).

Comments

1)

Let us distinguish the case m =n (£, = Q):

If1<p<mn,g<ooand q < n"—i) = ¢*, then W) (Q) — L,(Q). If
q < q*, then this embedding is compact.

What does it mean that W, (€) < Lq(€y,) in the case m < n ?

[e]
A function u € W} (Q2) is a measurable function in €2; it can be changed
on any set of measure zero; §2,, is a set of measure zero.
First we consider u € C§°(€2), and put Tu = ulg_.
Then T : C§°(2) — C§°(£2y,) is a linear operator. This linear operator
can be extended by continuity to a continuous operator

T : Wy (Q) = Lg(Qn).
We have the estimate

1Tully0,, < cllullwyq) . Yue G (6).
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k—o00

Let u € W} (Q). Then 3w, € C§°(Q), [lu — u”W,}(Q) — 0.

k,j—o0
Then ||Tu — TUqu’Qm <cllug - uj”W;(Q) — 0.

Hence {Tuy} is a Cauchy sequence in L,(€2,). There exists limit
Tup =% w in Ly(Qp). By definition, w = Tu.

Proof of Theorem 1

By D; we denote operators Dju = 597“ Then D; : Wpl(Q) — L,(Q) is
J

continuous operator, j = 1,...,n. Then representation (14) can be written
as
1 n
= — K;Dju. 1
u or Z g (15)
7j=1
1) Suppose that 1§p§n,m>n—p,q<ooand1—%+% > 0. Then

conditions of Lemma 4(1) are satisfied. So, operator
ICj + Lp(Q2) — Ly(y) is compact. Hence, the embedding operator

J =k, Y KiDj : W Q) = Lo(Qm)
7=1

is compact.

(We use the fact that if A} : By — Bs is continuous operator and
Ay : By — Bsg is compact operator, then AsAq : By — Bg is compact.
Here By, By, B3 are Banach spaces.)

Ifp>1and1-— % + % =0 (i. e., ¢ = ¢*), then, by Lemma 5, the
operator /C; : L,(2) — Lg(£,) is continuous. Hence, the embedding
operator

J =k, Y KiDj: W) — Lo(Qm)
7=1

is continuous.
For p = 1 — without proof.

Let p > n. Then, by Lemma 4(2), operators K; : L,(Q) — C(Q) are
compact. Hence, the embedding operator

J=r," Y K;D; : W) — C(Q)
j=1

is compact.
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Remark

1) Under conditions of Theorem 1(1), we have the estimate
n
-1
HUHq@m < Ky Z ||’C]'HLP(Q)HL(I(Qm) HDJ'UHLP(Q)
j=1

n
Y05l
j=1
[e]

¢ HUHWI}(Q) CAS Wpl(Q)' (16)

IN

IN

2) Under conditions of Theorem 1(2), we have

HUHC@) < HEIZ“,Cj”LP(Q)HC(ﬁ) 105ull,.0
j=1
< ¢ ojull,g
j=1
< cllullwyo) u € W, (Q). (17)

Using the estimates from Lemma 4 it is easy to see that the constants in
estimates (16), (17) depend only on diamf2, n, m, p, q, but they do not depend
on €, (they are one and the same for any section €,,).

3. Embedding theorems for 1, (1)

Theorem 2

Let Q C R™ be a bounded domain of class Ct. Then both statements
of Theorem 1 are true for W, ().

1) Iflgpgn,m>n—p,q<ooand1—%+%20,then
W} (Q) is embedded into Lq(Qy). In the case 1 — T2 >0, this
embedding is compact.

2) If p > n, then Wpl(Q) is compactly embedded into C(£2).

Proof

Let © C R™ be a bounded domain such that Q c Q. (For example, Qis a
ball of sufficiently large diameter.)

By Theorem 11 (Chapter 1), there exists a linear continuous extension ope-

rator IT : W) (Q) — Wpl(fl) If u € W) (), then v = Iu € W, (), and

HUHWZ}(Q) sc HuHWpl(Q) , o= |[Hf.
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1) Under conditions of part 1), by Theorem 1,WI}(Q) s Ly(Qn);
if 1— % + % > 0, this embedding is compact. (Here €, C II,,,, where

IL,, is m—dimensional plane, and €, is the section of Q by the same
I1,,.)
a) Let 1 — 2+ > 0. Let M be some bounded set in W (Q).

Then IIM = {v =1Ilu : u € M} is a bounded set in Wpl(Q). Then, by
Theorem 1, this set is compact in Lq(Qm). Then M is compact in

L,(,) (because functions in M are restrictions of functions in ITM
back to Q). Hence, W (Q) compactly embedded into Lqy(y,).

b) Let 1 — 7+ % = 0. In this case embedding Wl(Q) s Ly(Qn) is
continuous (b ut not Compact) By similar arguments, we show that
embedding W, () < Lg(€y,) is also continuous.

o

2) Under condition p > n, by Theorem 1(2), W}

ded into C (6) If M is a bounded set in W, (), then IIN is bounded

(Q) is compactly embed-

set in Wpl(fl), IIM is compact in C(ﬁ) Hence, M is compact in C(€Q).

[ |
Comments

1) Under conditions of Theorem2(1), let Jo : W, () — Lg(y) be

the embedding operator and let Jg : Wpl(Q) — Ly(Qm) be the em-

bedding operator; II : W) () — Wpl(Q) is the extension operator;
R: Ly(Qm) — Ly(Qyp) is the restriction operator. Then Jo = RJIL.
We have the estimate for all u € Wpl(Q)

lullgo,, = [[RIgMul|, g
< [Tt
< HJQHM Lq@m>”H”W1(g) FI Ml o
:‘gl =C2
= Julpo, < cllulwiq. YueWy(Q). (18)

e]
Compare (18) with estimate (16): in the case u € W}(Q2) we can
estimate [[ul[, o by the norms of derivatives -7 ; |9;ul|, . Now it is
impossible. (It is clear for u = const # 0 : ||ull, o, # 0, but d;u=0.)
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2) Similarly, under conditions of Theorem 2(2), we have the estimate
lullo@ < Clullwiay, YueWy(Q). (19)

The constants in estimates (18), (19) depend on ||II]| and, so, on the
properties of 9€2. (While constants in estimates (16), (17) depend only
on diam$) and on p, q,m,n.)

Let us formulate the analog of Theorem 2 for unbounded domain.
Theorem 3

Suppose that @ C R" is unbounded domain satisfying conditions of
Theorem 12 (Chapter 1). Then

HIfp>1, m>n—p p<gqg<ooandl-—
Wpl(Q) — Lqg(Q).
2) If p > n, then Wpl(Q) — C(Q).

_l’_

=3

% > 0, then

Remark

1) In Theorem 3 embeddings are continuous, but not compact.

2) In part 1) we have condition ¢ > p (we don’t need this condition in
Theorem 2.).

3) If Q is bounded and p > n, then 1) follows from 2). Now 1) does not
follow from 2).

4. Comments. Examples.

All conditions in Theorems 2, 3 are precise.

1) If1— 24+ <0, then Wy(Q) # Lg(Qm)-
Example.
Let O = {z € R": |z| < 1}. Let u(z) = |z|* with 1 — <A< T
Then u € W)(Q), but u ¢ Ly(9).
Indeed, |Vu| < c|z|*?,

u|” ax & x|V dx
VulPd PO=Dg
Q Q
1
= cnn/ P11 g
0

IN

< 00, sincen—l—i—p()\—l)>—1<:>)\>1—2.
p
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Also, [q |u[Pdz < co. However,

/ )i dy = /Q ™ dy
m m 1
= /-cm/ pmtaA gy
0

= 00, sincem—1+gl< -1 A< —E).
q

Here €2,, is a section of €2 by some m—dimensional plane II,, such that
point 0 € II,,.

For unbounded domains, if p < ¢, then Wpl(Q) o Ly(Q).

Example

Let Q = {z € R": |z| > 1}, u(z) = |z|*. Let -4 <A< -2 Then
u e W, (), but u ¢ Ly(€). Check yourself.

The ,, critical exponent” q* is defined by the relation 1 — % + qm* =0.

(¢" = anI;)). Here p < n. We have ¢* > p, since m >n — p.

%égg; :LL%(QQ,g)fi(;raﬁ < q*, b}lt n?t for ¢ > ¢*. If p > n, then
» (i q < oo (if © is bounded) and all p < ¢ < 00

(if © is unbounded). If p > n, then W} (Q) — C(Q).

But for p=n > 1, W(Q) & C(Q) and even WL(Q) £ Loo(9) .

(Here ¢* = o0.)

Example

Let Q= {z € R": |z| < 1}. Consider u(z) = In|In|z||.

Then u € W(Q), but u ¢ Loo(Q). Indeed, |Vu(x)| <

d
/\Vu(m)]"dx < /7x
Q o |z[*|n |z[|?
/1/6 L r
_= [{/n _—
o r*llnr®

Ve g
- I{n/o r|Inr|®

< o©o0.

Then

1
||| In ]|~

Also, [q, |u(z)|"dz < co. Then u € W, ().

Ifp=n=1,0Q = (a,b), then any function u € W} () is absolutely
continuous. This follows from Theorem 5 (Chapter 1).

For unbounded domains embeddings from Theorem 3 are not compact.
Example
Let u € C§°(R™) and let {x(k)} be a sequence of points z(¥) € R™ such
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that ‘x(k)‘ — o0 as k — co. We put uy(x) = u(x — z*)). Then the set
{ur} is bounded in W} (R™). Here p > n. (Obviously, ||uk||Wp1(Rn) =
HUHWPI(Rn) = const.) But the set {uy} is not compact in C(R™). Indeed,

. —00 .
suppose that there exists a subsequence uy; such that uy, 2% wp in

C(R™). Since ug, 20 in C(Q) for any bounded domain € (simply
ug; = 0 in Q for sufficiently large j), then ug(z) = 0. But Hukj HC(R") =
|ull ¢gny # 0. Contradication.

Example

Let u € C§°(R™), and vi(z) = kv (%). Then vy € W, (R™) and {uv}
is bounded in W, (R"). But {v;} is not compact in L,(R™). Thus, the
embedding WI}(R") — Ly(R"™) is not compact.

6) For bounded domains €2 and ¢ = ¢* embedding Wpl(Q) — Lg(Q) is
not compact.
Example
Q= {z:|z| <1}, v e CFR"), wp(z) = k:%_lu(k:x), p < n. Then
{wy} is bounded in W} (), but {wy} is not compact in Lg-(€2).
Check this yourself.

5. Embeddings on submanifolds

Instead of the section of 2 by m—dimensional planes we can consider sections
of 2 by some m—dimensional manifolds.
Theorem 4

Let © C R” be a bounded domain of class C!. Let 1 < p < n, m >
n—p 1 <qg< ooandl—%—i—% > 0. Let I' € R™ be a manifold
of class C*, dimI' = m. Let Qp = I'N Q. Then W, (Q) — Lg(Qp). If
1-— % + % > 0, then this embedding is compact.

Without proof
(The proof is based on Theorem 2 and using of covering | J U;, diffemorphisms
fj and patition of unity.)

Important case

I' = 092 (then also Qr = 909). dimI’ =n — 1.

Conditions: m=n—1>n—p=p > 1, 1—%—1—"7_1 >0 q< (’j;lgp = q*.
If ¢ < oo (1 <p<mn), then Wpl(Q) — Lg(09Q), Vg <g¢*.

For g < ¢* this embedding is compact. If n = p > 1, then ¢* = oo,

W(Q) — L, (0%), Vq < oo.
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§3: Embedding theorems for /()

Theorem 5
Let © € R™ be a bounded domain of class C*.

1)pr21,1§q<oo,0§r<l,l—r—%—|—%ZO,then

1 r n n s : s

Wp(Q) = Wy (Q). If I —r — 2 + 2 > 0, then this embedding is
compact.

2) If p(l — r) > n, then W)(Q) — C"(Q) and this embedding is
compact.

Proof

1) We put s =1 —r and fix the numbers qo, g1, ..., ¢s such that ¢; > 1,

g = p, gs = q and 1 — qﬂj + qj% > 0. Such numbers exist due to
condition s—%—i—% > 0. Ifl—r—%—i—% =0, then qq, . .., gs are defined
uniquely from the equations 1 — qﬂj + qujrl =0, 7=0,...,s — 1. If
0=s— % + % > 0, such numbers exist (but they are not unique).

By Theorem 2(1), quj(Q) — Lg; ., (92).

It follows that Wi/ (Q) < Wg 7'(Q). Indeed, let u € Wy, 7 (Q).
Then 0%u € quj(Q) for |a| <1 —j — 1. Since qu](Q) — Lg; 1, (),
then 0%u € L la| <1—j—1,and

7;+1(22)»
[0l 0 < 0%l oy < &l

for all o with |o| <l—j—1.

I—j—1
=u € ij+]1 (©2) and HuHWé;jfl(Q) S cHuHWé;j(Q) ’

We denote the embedding operator by Jj,

Jj W l(Q) = WmHQ), j=0,1,...,5— 1.

qj+1
J; is a continuous operator. We have:

J _ J - J. Js— _
WHQ) = WL (Q) 2 WL Q) S W) 2.5 W) = wi Q).
= The embedding operator J : W;(Q) — W () is represented as
J = Js_1...J1Jo. Each operator J; is continuous , then J is also
continuous. If # > 0, then at least one of J; is compact (at least for
one index j we have 1 — q% + qj% > 0). In this case J is also compact.
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2) Let pl—r)>n&l—r—2>0
Casea) r=10-1
l-1+1-73 > 0<% p > n By Theorem 2(2), the embedding
W} () — C(Q) is compact. It follows that W},(Q) < C'~1(Q) and this
embedding is compact. (If u € W)(€2), then 0%u € W (Q) — C(Q) for
la| <1-1.)
Caseb) r<il—-1
Then there exists a number ¢ such that ¢ > nand [—(r+1)—2+7 > 0.
(Indeed,l—r—%::€>0. We can find ¢ > n such that 1—%<€,
ie,n<qg<qi%)
Then we can represent the embedding operator J : W;,(Q) — C"(Q)
as J = JoJy, where Jp : W},(Q) — WrtHQ) (J1 is compact by part
1) of Theorem 5) and Jy : W/ < C"(Q) (J2 is compact by case a),
since ¢ > n).
Hence, J : W},(Q) — C"(f2) is compact.

Particular cases

1) Let r =0, pl < n. The critical exponent ¢* is defined from the conditi-

onl—2+%=0&q"= n"TI;p . Since pl < n, then ¢* < co. Embedding

Wé(Q) — L4(€) is compact for ¢ < ¢*, and continuous for ¢ = ¢*.

2) If pl = n, then ¢* = oo. In this case W(Q) — Lg(€2) Vg < oo (and
this embedding is compact).
But Wlﬂ(Q) 4 Loo(Q).

3) If pl > n, then Wé(Q) — C(2) and this embedding is compact.
4) Let ¢ = p, r < [. Then embedding Wé(Q) — W, (£2) is compact. In
particular, embedding W},(Q) — L,(Q) (for I > 1) is compact.

Remarks

1) The embedding theorem for €y, with m < n (W () < Lg(Qp)) can
be also generalized for Wlﬂ(Q) However, for the proof we need another

integral representation for u € W;,(Q) (including derivatives of higher
order).

2) The embedding theorems for Wé(Q) can be also generalized for the
case of unbounded domains.
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Equivalent norms in Sobolev spaces Wé(Q)

(lecture by prof. M. Birman)

1. Finitedimensional linear spaces and norms in these spaces

Let X be a linear space, dim X = N < oco. It means that there exists a

system of linear independent elements x1,...,zxy € X, such that any z € X
can be represented as a linear combination of x1,...,zyN:
N
x:ZSkxk, heC ,k=1,...N. (1)
k=1

There is a one—to—one correspondence of elements x € X and coordinates

€= {gk}fj:l We denote ||z|| = <Z]kvz1 |£k‘2) 1/2. Check yourself, that this
functional has all properties of the norm. X is a Banach space with respect
to this norm (i. e., the space X with this norm is complete).
The mapping x — ¢ is an isometric isomorphism of X and CV (with the
standard norm).
Proposition

Any other norm (x) on X is equivalent to ||z||. Therefore, all norms

on X are equivalent to each other.
Proof
From (1) it follows that

/2 , N 1/2

<X < (S]] ) ()

k=1

N 1/2
ie., (2) <7l w=<§xmf> > 0. (2)

k=1
Now, let us prove the opposite inequality. Let us check that the function
(x) is continuous on X with respect to ||z||. From (2) and from the triangle
inequality it follows that

[(2) = ()| < (@ =) <7z =]

Now we restrict the continuous function (x) to the unit sphere ||z|| = 1. Then
(x) is a continuous function of £ on the closed bounded set {¢ € CV : [¢] = 1}
in CV. Since (z) > 0, then by the Weierstrass Theorem, (x) > 3 > 0 for
|z|| = 1. Then

=l () = 8lyll. Yy X, T, (&)=lal, YaeX. @)
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2. ,,Trivial“ equivalent norms in Wé(Q)

The standard norm in Wlﬁ(Q), leN,1<p<o0o,is

1/p

lullwi@) = > lloulf () , QCRL (4)

la|<I

Let N be the number of all multi-indices a with |o| < 1. In CV we introduce
the norm of /,~type by the formula

N
lilge =D In*", e CN. (5)
s=1
Then we can rewrite (4) as
el g = Nl (6)

where 77 = { [0ul (g } lol < 1.

If we replace the norm (5) in relation (6) by any other (equivalent!) norm
of vector 77 in CV, then (6) will automatically define some norm in W(€),
which is equivalent to the standard one. Such new norms in Wé(Q) are
trivial.

Example

The norm |[ul|, () + maxi<ja)<i [0%ul|f, () is equivalent to the standard
norm in Wlﬂ(Q) lee yourself several examples of new ,trivial* norms in

WL(S).

3. The notion of seminorm.

Definition

A functional ¢ on a linear space X is called a seminorm on X, if

1) 0<p(z)<oo, VzelX,
2) o(cx) =|ce(x), VzelX, VceC,
3) p(x1 + x2) < p(1) + p(22).
Thus, a seminorm ¢ has all properties of the norm besides one: from ¢(z) = 0

it does not follow = = 0.
Example

X = Wl( ‘ Jo ul dx‘. This functional is equal to zero for any
u € Wlﬂ(Q) Wlth zero mean value.
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4. General theorem about equivalent norms in W}(Q).

Assume that Q C R” is bounded and 0Q € C'. By P, we denote the class
of all polynomials in R™ of order < I — 1. Let ¢ be a seminorm on W}(€2)
which satisfies properties:

4) p(u) <c HuHWé(Q) (It means that ¢ is bounded, and, therefore, conti-
nuous in Wlﬁ(Q))

5) If u € P; and p(u) = 0, then u = 0 (¢ is non-degenerate on the
subspace P; C Wi(Q)).

Theorem

Let ¢ be a functional on W} () satisfying conditions 1) — 5). Then the
functional

1/p
ey = | 3107l o + plu)? (7)

|af=l

defines the norm in Wlﬂ(Q), which is equivalent to the standard norm.

Proof

Obviously, functional (7) is homogeneous and satisfies the triangle inequality.
Next, if —u—y1(q) = 0, then 0% = 0 for V a with |a| = [. Then it follows
that u € P. Besides, ¢(u) = 0, and, by property 5), u=0. Thus, functional
(7) is a norm on Wé(Q)

Taking account of property 4), it suffices to check that

lullwiq) < C—u—wi)y u€ Wy(Q). (8)

Suppose the opposite. Then for any C' > 0, (8) is not true. Then there exists
a sequence {Upy,}, un € W,(R) such that
M—Um™—w}(Q) < HUmHWZg(Q)- (9)

We put v, = —#=——. Then, by (9),

|IUm||WI€(Q)

Fomllwye) = 1, (10)
1

—Um—wi@) < . 0 as m — oo. (11)

Since the embedding W},(Q) — Wzl,_l(Q) is compact it follows from (10)
that there exists a subsequence {vm]. }, which converges in Wé‘l(Q) to some

Vo € Wéfl(Q):

va]. - UOHWZlfl(Q) —0asj— o0 (12)
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From (11) it follows that

J—o0

H(?avmj HLP(Q) — 0 for V a with |a| = 1. (13)
Since the operator 0% is closed in L,(€2), 0%y = 0 for V a with |a| = [.
Then by (12) and (13), we have

Wk(Q
U L) vg as j — oo, vy € Py (14)

From (11) it follows that ¢(vm,;) — 0 as j — oo. By (14) and property
4), ¢(vm;) — @(vo) as j — oo. Thus, p(vg) = 0, vo € P;. By property 5),
vo = 0. Together with (14) this contradicts to (10).

Mention that, in the proof of inequality (8), we did not use any explicit
construction and we did not obtain any upper bound for the constant C.
However, we have proved rather general theorem, which in particular cases
implies a number of concrete inequalities (proved before by special tricks).
Control question

Where did we use that € is bounded and 9Q € C1?

5. Examples. Additions.

1.
Let | > 2 and ¢(u) = ||ull, (q)- Conditions 1) - 2) are obviously satisfies. By
Theorem, the norm

1/p

—UTwiQ) T Z H(:)aquzp(m + HUHIEP(Q) (15)

|af=l

is equivalent to the standard one. It follows that [[0%ul|, (g, 0 < |af <, is
estimated by the norm (15).

Exercise

In the case p = 2, [ = 2, prove this estimate using Fourier transform.

2.

Let ] = 1, w C ), w is a measurable set such that mes,w > 0. Now P,
consists of constants. Let ¢(u) = | [ u(z)dz|. Clearly, conditions 1) — 5)

are satisfied. Then the Theorem implies that
P
lull} ) < C (/Q \Vul? do + /wu(a:)dx > :

For w = ) and p = 2 this is the classical Poincare inequality.
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3.
Let 1 =1,T C 09, mesq_1I" > 0. We put ¢(u |frud5|
Properties 1) — 5) are satisfied. Condition 4) follows from the estimate

| ulras < Clulfyy .

e., from the trace embedding theorem. By Theorem (on equivalent norms)

we obtain )
HUHZ(Q) <C (/ﬂ |Vul? de + ‘/FudS > )

This generalizes and strengthens the Friedrichs inequality

/ ]u\Qdm <C </ \Vu]Qdm +/ ]u\2d5> .
Q Q o0
4.

Let [ = 2. Py consists of linear functions, i. e. , of linear combinations of the
basis funcrtions 1,z',...,2". Let w C Q be a measurable set, mesqw > 0.

We put
‘ / x)dx

We have to check condition 5).

Consider Ps as a finite-dimensional subspace in La(w). If ¢(u) = 0, then u
is orthogonal in La(w) to the basis in Py. Then, if u € Pa, it follows that
u = 0. Thus, the norm (7) with [ = 2 and such ¢(u) is equivalent to the
standard norm in W3 (Q).

5.

Let I =2, T C 99, mesyg_1I" > 0. We put

(16)

- /F luldS. (17)

Condition 4) follows from the trace embedding theorem. Let us check 5):
o(u) =04 ul|, =0.

If u € Py (u(x) is a linear function), then condition u|, = 0 and u # 0 is
equivalent to the fact that I" is a plane part of the boundary, and u(z) =0
is equation of this plane. In the case where I' does not lie in some plane,
from u € Py, u| = 0, it follows that u = 0. Then the norm (7) with | = 2
and ¢(u) given by (17) is equivalent to the standard norm in W2(2). In
particular, it is always so, if I' = 0f2.
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6.

In conclusion, we discuss one example, which does not follow from Theorem.

The norm
P 1/p
+ullf, o
L) »(€)
is equivalent to the standard one.

For example, in WZ(R?) = H?(RY), this fact follows from the inequality
2167¢k| < |¢7 + I€FP.

o'y

8(1‘k)l

TUTwhe) T (Z

k=1
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Chapter 3: Sobolev spaces H*(R")

§1: Classes S(R") and S’(R"). Fourier transform.

Definition
S(R™) is a class of functions ¢ € C°°(R"™) such that for any multi-index
« and any k € N,

sup (1 + \x\)k |0%p(x)] < oo.
reR?

S(R™) is called the Schwartz class.

For ¢ € S(R™) all derivatives 0%p(z) are rapidly decreasing as |z| — co. We
can introduce topology in S(R").
Definition

We say that ¢, —> ¢ in S(R™), if

sup (1 + ]w\)k |0%pm (z) — 0%p(z)| 590, Vo, VE.
rER?

S(R™) is a topological space, but not Banach space.
Definition

Let f € S(R™). We define the transformation F : f — 2

~

fO=0m7 | fla) *de.
F is called the Fourier transformation.

It is known that f € S(R"), if f € S(R"). So, F : S(R") — S(R") is a linear

operator. The inverse transformation F~! is given by the formula
@)= @m3 | Je)ede,

F~1:S(R") — S(R™).
It is known that the Fourier transform F can be extended by continuity to
Ly(R™), and F is unitary operator in Lo(R™):

f : LQ(R”) — LQ(R”),

| s@la= |

Fo)| de. fe Lo,
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Definition

By S’(R™) we denote the dual space to S(R™) (i. e., the space of linear
continuous functionals on S(R"™)).

Sometimes, S’(R™) is called the space of slowly increasing distributions.

If v € S'(R™), p € S(R"™), by (v, ) we denote the meaning of functional v
on function .

The Fourier transformation is extended to the class S’(R™).

Definition

Let f € §'(R™). A functional f € §/(R™) is called the Fourier image
of f, if

(Fo) = (£,0), VoeSE.

It is known that F : §'(R") 22 §/(R™), F~1: §/(R") — §'(R™).
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§2: Spaces H*(R")

1. Definition of H*(R")

We know that the spaces Wi(Q2) (I € N) are Hilbert spaces : Wi(Q) = H!(Q).
Let © = R™. We can use the Fourier transform and express the norm in
WR™) = H'(R™) in terms of the Fourier image. Let u € H'(R™). Consider
the Fourier image

ue) = (2m) 2 / ) u(z)e " da.

Then
u(w) = (2m)F / a(e)eiEde.

n

For the derivatives 0%u(x), we have
0 u(e) = (i€)" () = ie"u(¢).
Then
e = 3 [ louldn= [ | 3 16| @) de.
jof<t 7R R \Jal<t

Since ¢ (1 + [¢2)! < Zla\él €27 < ea(1 + [€]2)! (prove this!), then
1+ €2 a(e))? de < ||ul|3gny < L+ €12 a(e))? de.
o [ QI RIOR dE < Nulfngany < 2 [ (1 16 (6D de

1/2
Thus, the norm (f]Rn(l + 1) ace)|? df) is equivalent to the standard

norm in WE(R™). We introduce the space with this norm; now we consider
arbitrary [ (not only [ € N).
Definition

H®") = {u € S(R™): o1+ P [a(§)Pd < o}, s R
The inner product in H*(R") is defined by

() gy = [ (1 I (T

Theorem 1

H?*(R") is the closure of C§°(R"™) with respect to the norm ||ul| .
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Proof

1) Let us show that any u € H*(R™) can be approximated by functions
in Cg°(R™). If uw € H5(R™), then u. (&) = a(&)(1 + |£]7)%/? € Ly(R™).
Since C§°(R™) is dense in Ly (R™), there exists a sequence v, € C§°(R™)
such that vk (&) hoop u.(€) in Ly(R™). We put v (€)(1 + [£2)75/% =
wi(€). Then wy € CP(R™) and wy,(€)(1 + |€]7)%/? — . (€) in La(R™).
Obviously, wy € S(R™). We put uy, = Flwy. Then also u € S(R")
and wy = . Since @ (€)(1+ [6)*/2 =F u(€) = AE)(1 +[¢)*/? in
Ly(R™), then uj, "= w in H(R).

It remains to approximate functions u; € S(R™) by functions

ur; € CS°(R™) (in the H®norm). For this, we fix h € C§°(R"™) such
that h(x) = 1 for [z] < 1. We put uyj(x) = ug(x)h (%) Then uy; €
C°(R™) and

lug —wll. = /\%(&)—ak<s>r2(1+\§r2)sdf
R?’L

[>s,leN

2 / s (6) — T(©) (1 + )" de
Rn
= g — iy

For [ € N we can use another norm (which is equivalent to the standard

i (1-1(2)

one):

2
g — wel| 3 < Cz dx

jaj<t VR

x
< ¢ / O%uy ()| da (since h <—> =1 for |z| < j.)
> |m|>j| ()] - |z

1BI<!
— 0Qasj— oo.

It follows that wuy; ooy ug in H5(R™).

2) Let us show that each element of the closure of C{°(R™) in H*-
norm belongs to H*(R™). Suppose that u,, € C§°(R") and {u;}
is the Cauchy sequence in H*(R"), i. e. , [[um — wlgsgn) — 0 as
m,l — oo. It means that @, (€)(1 + |£[2)%/2 =: u*,(€) is a fundamen-
tal sequence in Lo(R™). Since Ly(R™) is complete, there exists a limit
w’, (€) 57 U, (€) in La(R™). We put w(€) = us(€)(1+ |€]%)7%/2. Then

m

w € S'(R"), and, therefore, F~lw = u € S'(R™). We have:
w(€) =(§), unl&) =UE)A+ )7 € Lo(R),

T (€) (L + [€17)°2 =37 0(€) (L + [€1)*/? in Ly(R™).
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It means that u, —s win H* (R™). Thus, each element of the closure
of C§°(R™) in ||-|| s belongs to H*(R™).

2. Duality of H® and H°.

Theorem 2
Let u € HS(R"), v € H-5(R"), and let u;,v; € C(R™), u; == w in
H*(R™), v; "% v in H5(R™). Then there exists the limit

lim uj(x)v;(x)de.
j—oo Jrn

We denote this limit by [p, u(z)v(z)dz. We have

‘ / uvdr
R?’L

< lull g 1o/l - -

Proof
We have

/ ,wleos()dr = / ;(€)v5(6)dg
= /Rnﬁj(ﬁ)(lﬂé“\ )2 @) (1 + |€]2) "/ 2de. (1)

Since u; 2%y in H* (R™), it follows that
() (1+ [P = A€ (1 + [¢2)*72 = (Agu) (€) in Lo(R").
The fact that v; =% yin H ~*(R™) means that

() (1 + €)= T+ €272 = (A_v) (€) in La(R™).
Then, by (1), we have

[ wiin@iae == [ (A @U@ = [ @i

R

It is clear that the limit lim;_ fRn u;v;dr does not depend on the choice
of the sequences {u;} and {v;}. We have:

/numg = '/ (Asu) (€)(A_0) dg‘

”ASUHLQ R™) HA—SUHLQ(R”)

[l s N[0l s -

IN
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Theorem 3
If v e H*(R™), then

Jren wTdz:
[ollg-s = sup oo v
0#uc Hs (R™) llwll s

_ sup U]Rn uvdz | ‘

0A4u€Cse (R™) [l s

Proof

1) The mapping A, : H*(R") — Lo(R"), (Au)(€) = a(¢) (1+ &)
is a one-to-one isometric mapping. Indeed, |[Asull;, = [lullgs. The
inverse mapping A;! : Lo(R") — H*(R") is defined as follows: for

%, and put u = F~lw.

Then 4(§) = w(€) and u,(§) = a(€)(1+ [€]*)*/* = (Au)(©).
Thus, A;'u, = F 1w = u. The mapping A_, : H~* — Ly is defined
similarly.

ux € Ly consider w(§) =

2) Let v € H™® and v, (§) = (A_sv)(€). Then v, € Ly. It is known that
in Ly we have

o IRYIGIGLS
Uxllp, = Sup

0#£g€Lo ”9HL2

We put u = A7, Then g(€) = (Au)(€), lgll,, = llulle. 1F g runs
over Lo, then u runs over H*. Thus, for v, = A_sv we have

Pl = T,
o (As) (9A—0) (©)e|
= sup

0AucHs® HUHHS

Jgn w(@)v(z)dx
sup

0£ucHs* ]| grs

From Theorems 2 and 3 it follows that I(u) = [, uDdz is a linear continuous
functionalonu € H*(R") (ifv € H~*(R")) and the norm of this functional
is equal to [|v||—s:

l(u » uodr
0AucHs ”u”HS 0AucHs HUHHS

= [lvll - -
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Riesz Theorem

Let H be a Hilbert space and I(u), u € H, be a continuous linear
functional on H. Then there exists such element v € H that
l(u) = (u,v) . This element v is unique and ||I|| = [|v]| 4.

Proof

1) Let N=Kerl={z€ H:l(z ) = 0}. Then N is a closed subspace in

H. Indeed, if z; € N and z; Z% 2 in H, then l(z]) = 1(z). Since
l(z;) = 0, it follows that I(z) =0, i.e., z € N.

2) If N = H, then I(u) =0, Yu € H. In this case v = 0.
If N # H, then N* # {0} ( where N+ is the orthogonal complement
of N). So, there exists vg € N+, vg # 0. Then, I(vg) # 0.

3) For Yu € H consider u — ll((u)) vy € N.

(deed, 1 (u— §&vo) = 1) — {1(v0) = 0.)

Since vy € N+, we have

2
<u - %m,m) =0= (u,v9) = l(u) ‘1‘2}5(‘)‘) .

Denote v = |f(v(|)|)2@ Then I(u) = (u,v).

4) Uniqueness
If (u,v) = (u,0), Yu € H, then v —01H = v—0=0.

5) The norm of [.

U= sp MO )

o;éueH HUHH 0#ucH ||UHH

= [Jvll -

Indeed,
Hell < |v]|; for VO # u € H, and for u = v we have )] = ||vll4-

Tully Tullyy

Let I(u) be a continuous linear functional on H*(R"™).
It means that [ : H® — C,

a) l(ciuy + coug) = c1l(uy) + cal(ug), Y ui,us € H%, V1,09 € C,
b) [l(w)] < ellull s, Yu € H*(R™).

The norm ||{|| of a functional [ is defined by the formula

i = sup 1)

0£ucHS HUHHS.
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Theorem 4

Let I(u) be a linear continuous functional on H*(R™). Then there exists
unique element v € H*(R"), such that

I(u) :/ wode, Ywue H*(R"), (3)
and
2= Nl - - (4)

Proof
Consider the mapping

SN n ~ s/2

Ayt HP(RY) = Ly(R"), (Awu) (€) = ua () = () (L +1€P)""”.

Then u = A 'u,. We define the functional I(u,) on Ly(R™) by the formula
I(uy) = 1A ) = I(u).

Then [ is a linear continuous functional on La(R™).
By the Riesz theorem for the functional [ there exists unique function
w € La(R™) such that

l) = [ wn(eut@de, and |[i] = ],

Then I(u) = I(u )= feo () (1+1¢2)* w(©)de.

We denote v(z) = F~1 (w(€)(1 + [¢]?)%/?).

Then
T - w 2\s/2. —s ]
(€) = w(&)(1 + ¢} ,/Rr()\ (1 + [eP)*de = / &) de

So, v € H™%, and [[v| -s = |lwl|p,-
We have w<5> (1+ 15\ )28 = (A-v) (€),
() = [(12) = Jn (Ast) (E)A_y0) Q) = Jp .

For the norm of the functional [ we have:

)] _ i)

Il]| = sup sup
ozucts [l s ozucels sl

= (7] = el = Wl

Remark

Theorem 4 means that H *(R™) is dual to H*(R™) with respect to
Lo—duality.
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3. Mollifications in H*(R")

Let wy(x) = p™"w (%) be a mollifier.

Recall that w € C°(R"), w(z) >0, [pnw(z)dr = 1.
For u € H*(R™) consider mollifications: u,(x) = (w, * u)(x), p > 0.
Theorem 5

If we H°(R"), then |lu, — ul| 4. — 0 as p — 0.

Proof
For the Fourier transform of the convolution u, = w, * u we have

Up(€) = (2m)"*B,(&)u(€).

Next,
~ _ —n/2 —-n T —ix§
0,(&) = (2m) / p "w <;> e "Sdx
= [ we ey
= W(ps).
Since w € C§°(R™), then @(&) belongs to the Schwartz class S(R™). Hence,
a) [W(pg)| < ¢, VEER™

b) lim, o &(p€) = &(0) = (27r)‘"/2/ w(y)dy = (2m) /2.
— =1

Let us estimate the norm |lu, — u|| ;.. We have
Up(€) — () = ((2m)"2B(pg) — 1) U(€);
p(€) — (&) = ((2m)"*D(p€) — 1) (E):

2
Jup =l = [ 1+ I @O |(2m)25006) ~ 1] de.
Rn

—0 as p—0V £

The function under the integral is estimated by C(1 + |¢]?)® [@(€)]?, which
is summable since v € H®. By the Lebesgue Theorem, |lu, — ||, — 0 as

p— 0.
|
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4. Embedding H* — C"

Theorem 6

Let s > 7+ 5. Then H*(R") — C"(R").
Proof

1) Let u € C§°(R™). We have

u(z) = (2m) "2 /

Then, by the Holder inequality,

n

AE)EdE, O u() = (2m) "2 / (i€)*a(E)e e de, Vo
Rn

oru@)l < [ jelrac)ds

< ([erasimra)” ([ morariere)

|24
If [o] <r,and s —r > %, then [g, (‘fﬂliﬂggs < 00. Thus,

max max [0%u(z)| < Clullys, weCFR"),
|a|<r zeR™
Le, fulgr < Cllullgs, we GG (R). (5)

2) Let u € H°(R™). Then there exists a sequence u; € C§°(R"), such that

Jyl—o0

u; == win H%. By (5), luj — wllor < Clluj —wll e 7= 0.

So, {u;} is the Cauchy sequence in C"(R™). There exists a limit

i€ CT(R™): |luj — il — 0.

In fact, u(x) = u(z), for a.e. x € R™ (check this!). We identify u = u.
We have proved that H® — C" and

lullgr < Cllullgs, ¥Yue H®.

Remark

Theorem 6 is generalization of the embedding theorem:

Wi — Crif 2(1 —r) > n.
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5. Equivalent norm in H® with fractional s > 0

Theorem 7

If 0 < s <1, the norm ||ul| ;. is equivalent to the norm

1/2
(y)|?dxdy
fullye = ([ JPaos [ [ ) T

Proof Note that

Fu(z) —ulx + 2) — 0(€)(1 — €3%).
We have

ded otz —u(z+z 2dxdz
Yy y=
n n |1E — |n+2$ n n |Z|n+2s
Parseval ’ ‘ 1— et \Qdfdz
" n ’n+25

— ]f 9(6)[a(©)|2d.
Rn

1—e#€|2dz
where g(&) = [gn ||n7+|23

The functlon g(&) is homogeneous in & of order 2s:

11— e¢)2dz |1 — €% 2d(t2)
g(t§) = / W = 1% . TEGEE =t7g(¢), Vit >0.

The function g(¢) depends only on |]:

|1 — e=1lél)2q
9(§) = /n T

where the axis 0z; has direction of vector £.
It follows that g(&) = Al£]?%, A > 0.

Then
1/2
\wmp=:</ m@n%1+AKPﬂ@> |
]Rn

Obviously, c1(1+ [€2)5 < 1+ A[E)?* < (14 €75, € € R™.
Then [Jullp. = [|lul g

Corollary
If s>0,[s] =k, {s} >0, then the norm

, . 9°u(z) ~ u(y) Py
fullye = | X [ worupar Y [ [ =S

|al<k laf=k

1/2

is equivalent to ||u| ys.
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Proof u € H® < u € H* and 9%u € H} with |a| = k. It is easy to check
that

9 check this! 2 9
[[ll s = el + > 0%l
lal=k
by Theorem 7 o -0 2dxd
D Sl e S
|
6. ,,e—inequalities*
Obviously, H**(R") — H®2(R") for s; > so.
Proposition
Let s1 < s < s9. Then for V e > 0 3 C(g) > 0 such that
2 2 2
ullrs < e llullzss + C(e) [lullzs: (6)
Proof
(6) is equivalent to the inequality
(L+1EP)" < e(@+EP)”+0@E) 1+ )™
& p° < ep?+ 0™, p21
s 1 < 2+ CE)p ), p>1.
1 s—s
We denote A = 52— > 0, and put C(g) = A5 = ¢~ 22 . Then
obviously
ep™ T+ Cle)p ) = (Ap)™= 7 + (Ap) ") >
|
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§3: Trace embedding theorems

We write x € R" as z = (2/,x,), 2’ = (21,...,2,-1). Consider the traces of
functions on the hyper—plane z,, = 0. We define the trace operator

70 CE(R™) — CE(R™™),  (ou) (2') = u(’, 0).

Theorem 8
Let s > 1. Then the trace operator 7o : C§°(R") — C§°(R" 1) can be

extended by contmulty to the linear continuous operator
Yo : HS(R™) — H*~2(R"~1). We have
1900l e gy S C 0l ()
Proof
1) Let u € C§°(R™). Then

u(x) = w2, z,) = (27?)"/2/ ﬂ(f/,£n)eix”§”eix/§/d§/d5n;

(o) (@) = ue!,0) = 2m) 2 [ age® (= [ e gas, )

=You(¢’)

+ ) = o= [ e g

Then

\ww%gﬁw%mw@/XMW%w@
— 0 —00 v

Here the second integral is finite, since s > % We have

/°° &, W e d(%)
oo (a2+§%)s - a2s oo <1+ <%)2>8

> dén 12\1—s
[ arerray - cavenie ®

7

- (8)



Thus, from (8) and (9) it follows that

(1+1€12)"2 [ou(@)]* < e, / O (1 + |€2) den.

— 00

Integrate over R"1:

[ arery i mue)P < o [ @ o+l
Rn—1 Rn

. 2 2 o0
L €. ”’You”Hs-%(Rn_l) < G ”u”HS(R”)a ue Cg. (10)
2) C§°(R™) is dense in H*(R™).
Let v € H*(R™). Then 3 {u;}, u; € C&(R"), |lu; — uHHS(Rn) 0.
By (10),
2 2 Jl—o0
[vou; — VOUIHHS_%(R”_1) < ¢ [luj — wllfs@ny "= 0

So, {you;} is a Cauchy sequence in H > (R"~1). Then there exists a
limit: ‘ ) )

You; =3 v € H* 72 (R™™1) in H*72(R"1).
By definition , v = ypu. By the limit procedure, the estimate (10) is
extended to all u € H*(R").

Corollary
Let ke Nand s > k+ % Then the trace operators
. o ]
v ="000%, : H¥(R™) — H*772(R""!) are continuous for
7=0,1,..., k. We have

1950 grmsy gy €001

Theorem 9 (extension theorem)
Letk€Z+,s>k+%.
Denote H{*~2) (R*1) = H*3 (R"1)x H*"3 (R V)x. .. x H*~F=3 (R"~1).
There exists a linear continuous operator

P HE )R & HY(RY),
such that, if ¢ = (¢o,%1,---,0%) € H<S_%>(]R"_1), u = Py (€
H*(R™)), then ¢; = vju, j =0,1,...,k. We have

k
2 2 2
Il ey < Bl b gy = €2 1M
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Proof
Let h € C§°(R), h(t) =1 for |t|] <1, 0 < h(t) < 1. We put

k
1 .. _
V(€ an) =3 G € (s THIER), € € Ry € R

J=0

Here $;(¢’) is the Fourier image of ¢;(z"). Clearly, V(¢',0) = @o(£"),
22,V (£,0) =@;(&), j=1,...,k. Let us show that V(¢’,z,) is the Fourier
image of the function u(z’,x,) such that v € H*(R™). We put u(¢',§&,) =

V(¢ &), where V(¢,&,) is the Fourier image (in one variable z,, — &,) of
V (&', xy,). Note that

. g &
wo(za) 5 759(E) =i =),
dén,
Foo1. gn
g(pxn) = =g\ — ),
P\ p
, P &
) h(pz,) Z]p]Jrlh] (;)
Then i
ij LA j gn
N1+ [€]2) RO (—%>
jzoj' J 1 + |£/|2
We have:

ey = [ QR 1+ e

2
3G gn
< O3 [ 1@ a0 |
Z VI I[EP
We write the integral as [pn_1 d{ [z d&y ..., and in the internal integral
h iable: 7 = —22. Th
change variable: 7 W R en

L+ [P =14+ P+ & =0+ P+,

Wl = €3 [ a8 € 0yt [0 0antyar
Since h € C§°(R), then he S(R) and, so,

~ 2
/ ‘h(J)(T)‘ (1+73%dr = C(j,8) < oo.
R
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k
~ 2 s_il
= Nl < €3 [ 1B @R
j=0
k
2
) M| .
=0

So, the operator P : ¢ = (g, 1, .., ¢k) — uis a linear continuous operator
from H<37%>(]R"_1) to H*(R™) , and vju = ¢;, j=0,...,k.
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§4: Spaces H*({2) (survey)

1. Definition of H*(2)

Let 2 C R™ be a domain. There are different ways of definition of the Sobolev
spaces H*(Q).

Approach 1.

Definition 1

H*(Q) is the class of restrictions to € of functions in H*(R"):

we H(Q) & Jve H'R"), vl =u.

Approach II.
Case s > 0.
Definition 2

H?#(R) is the set of functions in Ly(€2), such that their weak derivatives
up to order k = [s] also belong to Ls(2), and the following norm is
finite: [Ju|| . < oo,

def Yjaj<s Jo [0%ul? dz, it s = [s] 2

2 € Yo' 8%u(x)—0% dad

lullfrs =] Dok Jo 0%l dr 4+ 302y Jo Jo T Eo sty =, (11)
if s #[s] =k {s} =s—F.

Comments

1) If @ C R™ is a bounded domain of Lipschitz class, then both definitions
give the same space: Def 1 < Def 2.
If H°(92),s > 0, is the Sobolev space in the sense of Def 2, there exists
a linear continuous extension operator Il : H*(Q2) — H*(R™).

2) The spaces W (€2) with fractional s > 0 and p # 2 can be defined by
analogy with Def 2 (with “2“ replaced by “p“).

3) The embedding theorems can be generalized for spaces of fractional
order.

Next, the space H*(2) is defined.
Definition 3

H?(Q) is the closure of C§°(£2) with respect to the norm (11).
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Definition 4

Let s > 0. Then, by definition, H*(2) = <HS(Q)> yi.e., H5(Q)
is the space of linear continuous functionals on H*(2) with the norm

[{u, )|

[ullgg-s = sup :
" 1l £rs 0

0£peH*(Q)

By analogy with H*(R"™) and H*(R"), for u € H*(2), ¢ € ]-}S(Q),
we denote

(u, @) :/Qu(x)cp(x)dm.

Comments
1) H*(Q) = H%() for s < L.

u(z), xef
0, xeR"™\Q "

Then Py : H*(Q) — H*(R") is continuous, if s #m + 1, m € Z.

2) Let u € I;S(Q), Pyu(x) = {

3) Let Q@ C R™ be a bounded domain with Lipschitz boundary. Then
H~%(2) coincides with the space of restrictions to € of distributions
EH (R, ifs£#m+1, meZ,.

4) H*() is invariant with respect to diffeomorphisms of class C,
l>|s|,l € N.

2. Trace embedding theorems

Theorems 8 and 9 can be extended to the case of bounded domain € with
smooth boundary. Let © C R™ be a bounded domain of class C'. Then
there exists a covering {U;},_; y such that Q cC U;VZI Uj, either U; C
Q, or U; N0 # 0, then 3 diffeomorphism f; : U; — K, fjafj_l e C,
[iU;NQ) = Ky, f;(U; N0NQ) = 0K \¥X; = I'. Suppose that domains
Uy, Us, ..., Uy are of second kind, and Ups41, ..., Uy are strictly interior.
There exists a partition of unity {¢;}, such that (; € Cg°(R"), supp {; C Uj,
SiG@) =1z

For x € 0f) we have Zjle ¢j(z) = 1. (This is true in some neighbourhood
of 90.) Let u € CH99), u;(x) = u(x)¢j (), v; = uj ofj_l. Then v; € CY(T),
supp vj CC I'. We extend v; by zero to R \T:

=y vy, yel
”J(y)_{ 0, yeR"II

82



Then ¥; € CY(R™™1), supp ; C T'. Consider
1/2

M
def
Z 19517 n-1) [ull s o). 5 <1 (12)

Definition

H*(09) is the closure of C'(9€2) with respect to the norm (12).

This norm depends on the choice of covering {U;}, diffeomorphisms {f;},
and partition of unity {¢;}. It can be proved that all such norms (for different
{U;},{f;},{¢;}) are equivalent to each other. So, the class H*(0f2) is well-
defined.

Theorem 10 (trace embedding theorem)

Let Q C R" be a bounded domain of class C!, | € N. Let k € Z,,
s>k+3, s <l Let vy : C(Q) — C'7(9Q) be the trace operator:

YU = % o j=0,...,k (where aJJ are ,normal“ derivatives of u).

Then the operator 7; can be extended (uniquely) to linear continuous
operator v; : H*(Q2) — Hs_j_%(aQ), j=0,1,... k.

The proof is based on Theorem 8, and using covering {U; }, diffeomorphisms
{f;} and partition of unity {¢;}.

Theorem 11 (extension theorem)

Let © € R™ be a bounded domain of class C!, s <1, s > k + %, where
k € Z4. We denote

H=2)(00) = H*=2(0Q) x H*3(Q) x ... x H*F=3(9).
There exists a linear continuous operator
Po: H72)(0Q) — H*(Q)
such that, if ¢ = (@0, @1,...,0k), @; € H I~ 2(69) and u = Pqep,

then v;u = ¢;, 7 =0,1,...,k, and

k
ullFs) < e Nl .oy =cllel® ., :
@) JZZ:O P72 (00) 3) (90)

Theorem 12

Let Q C R™ be a bounded domain of class C,1 € N. Thenu € H'(Q) =
Wi(Q) if and only if u € H(Q) and you = yyu = ... = y_ju = 0.
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Proof
For simplicity we prove Theorem 12 in the case [ = 1.

ue H'(Q) < we HY(Q) and yu = 0.

“=%“  Obvious.

«

Using covering, diffeomorphisms and partition of unity, we reduce the que-
stion to the following. Let Ky = {x € R" : |z| < 1,2, > 0} be the half-ball.
Suppose that u € H(K}), u(z) = 0 near ¥4, you = ulp = 0. We have to

prove that u € H'(K, ). We have the following representation for u(x):

u(x', z,) = / ' ;—u(ﬂ:/,t)dt, for a. e. (2/,2,) € K. (13)
0

In
We fix a cut—off function h(t) such that h € C®(Ry), h(t) =0,0 <t < 1,
h(t) =1fort > 1, and 0 < h(t) < 1. We put hy,(t) = h(mt), then h,,(t) =1
for t > L. Consider wy () = u(2’,2n)hm(zn). Then uy,(z) = 0 near K,
U, € HI(K+)
Let us check that [Jum — ull g1, "5° 0. We have:

w(@, xy) —um (2, 2n) = (1= hp(zp))u(a’, x,),
0 B Ou(x) B B
a—%(u(x)—um(x)) = (1= hm(z,)) oz, j=1,...,n—1,
0 B ou(x)  Ohy,
o (@) — (@) = (1= hn(oa) ) = T(z),
Then
| @) = wn@)fde = [ b ) ) da
Ko K=
< / lu(z)|? da
Kin{0<zn<t}
— 0 asm — o
d 2 / 5| Ou |?
— (U —upy)| dx = 1— hp(z, —| dx
/K.,_ 83:]( ) K+| ( )| 8:6]'
2
Kin{o<z,<L} |07;

— 0 asm — o
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i (U — Up,)

oxy,

o
oxy,

9 1/2
dw) +

/

9 1/2
dm) _ (/ 1 = B ()2
Ky
—0 as m—oo
[

1/2
\ B dm) .
It remains to show that Jy,[u] — 0 as m — oco. We have:

(/.

Oh,,
&’Un

_l’_

=Jm[u]

Ohy(z) i
or, O,

(h(mxy,)) = mh/(maxy,).

Using (13), we obtain:

ou
Jnlu] = m? |h' ma,)| / 3— 2 t)dt dx
< m/ ( act) dt)(/n12dt>dm
0
S S —
Tn | 9 2
< em? T, / —u(x',t) dt | dx,da’
Kin{o<z,<X} o |0y
5 1 ou |?
< eom'—=
Kin{0<zn<t} axn

— 0 asm — oo.

Next step: consider mollifications of uy,(x): (um),, p > 0. Then (u.n,), €
Ci° (K4 ) for sufficiently small p and ||(um), — um||H1(K ) 90,

Thus, we can approximate function u(z) by functions (up,), € C§°(K4) in
e]

HY(K,)mnorm = u € H(K,).
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§5: Application to elliptic boundary value problems

1. Dirichlet problem for the Poisson equation

Let 2 C R™ be a bounded domain. Consider the classical Dirichlet problem:

—Au=F, er} 1)

If ®(x) is arbitrary function in © such that @[y, = g, then the function

v(z) = u(x) — ®(x) is solution of the problem

—Av = f, xEQ}
Vpq =0

(2)

where f(z) = F(x) + A®(z). First, we’ll study problem (2) with homo-
geneous boundary condition. In the classical setting of problem (2), the
boundary is sufficiently smooth, f € C(Q) and solution v € C?(9Q).

Now we want to define ,, weak“ solution of problem (2) under wide conditi-
ons on JN) and f. Let us formally multiply equation —Awv = f by the test
function ¢ € C§°(2) and integrate over 2. Then v(z) satisfies the integral
identity

/ VoVpds / fadz, Ve C3(Q). (3)
Q Q

The left-hand side is well-defined for any v € H*(Q) = W4 (), ¢ € H(Q);
and the right-hand side is well-defined for f € H=Y(Q), ¢ € H'() (since
H~1(Q) is the dual space to H'(Q) with respect to Ly—duality). The boun-

[¢]
dary condition v|;q = 0 we understand in the sense that v € H'($2). Then
we can consider arbitrary domains.
Definition

Let Q C R™ be arbitrary bounded domain. A function v € H'() is
called a weak solution of the Dirichlet problem (2) with f € H=1(Q),
if v satisfies the identity (3) for any ¢ € H'(1Q).

Theorem 1
Let Q C R" be a bounded domain. Then, for any f € H-1(f), there

exists unique (weak) solution v € H*(§)) of the Dirichlet problem (2).
We have [[v]|g1q) < Clfllz-1()-
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Proof
1) The form
[v,¢] := / VoVedz, v, € H'Y(Q),
Q

o
defines an inner product in the space H!(2). The corresponding norm

[v, v]'/? is equivalent to the standard norm [Vl gy = (Jo (o2 +|Vv]?) d )1/2.

This follows from the Friedrichs inequality:

/ [v|?dx < CQ/ |Vol?dz, Yve HY(Q)
Q Q

(here it is important that © is bounded).
2) The right-hand side of (3) is

p) = /Qfﬁdw-

l(¢p) is antilinear continuous functional on ¢ € H*(€):

L < -1 lell @) -

We rewrite (3) in the following form:

[v, @] = L (). (4)

By the Riesz Theorem, for antilinear continuous functional Iy on H*(Q2) there
exists unique function v € H'(Q) such that {¢(¢) = [v,¢], and the norm of
this functional is equal to the norm of v. (Now we consider H'(Q) as the
Hilbert space with the inner product [-,-].) Then, by the Riesz Theorem,
| ()] 1/2
ligll = sup f—]/ = [v,0]"/. (5)
otpei (@) P
Thus, v is the unique solution of (4) (< (3)). Since, by definition of the class
H(Q),
iGN

£ -1y = sup
e lellzr1a)

0 e H(Q)

and || 1) = [¢, ¢] 2 it follows from (5) that

[l 1) < C Il
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2.

Now we return to the problem (1) with non-homogeneous boundary con-
dition uly, = g. Suppose that Q@ C R™ is a bounded domain of class Ct.
Then, by Theorem 10 (trace embedding theorem) the trace operator gy
(You = ulyg) is continuous from H'(Q) onto H'/2(99):

v : HY(Q) — HY?(09).
Consider the problem

—Au=F, x € €, }
You = U‘ag =g(z),

for given F € H=*(Q) and g € H'/2(9Q). We look for solution u € H'(Q).
Equation —Awu = F in © is understood in the sense of distributions: u(z) is
a weak solution of (1), if u € HY(Q), u(x) satisfies the identity

/Vuv—cpdm:/Fde, Vo € C§°(9),
Q Q

and you = g.
Theorem 2

Let © C R™ be a bounded domain of class C!. Let FF € H~1(Q),
g € H'2(99Q). Then there exists unique weak solution u € H(2) of
problem (1). We have

el g0y < € (HFHH—l(m + |!9HH1/2<69>) : (6)
Proof

1) By Theorem 11 (extension theorem), for g € H'/?(99), there exists
extension G = Pog € H*() such that v9G = g and

Gl g ) < Crllgll grzan) - (7)

If u € H'(Q) and you = g. Then v = u — G € H'(Q) and yv = 0.

e]
This is equivalent to the fact that v € H'(£). Function v is solution
of the problem

Far ®

where f = F + AG. From G € H(Q) it follows that AG € H~1(Q)
and ||AG| -1y < C2[|Gl| g1 (q)- Then f € H~YQ) and

[flz-r < NEN -1 + CollGlligq) < 1Fllg-1 + C1C2 gl e -
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By Theorem 1, there exists unique solution v € H'(Q) of the problem
(8), and [[v[| g1 () < C3 ([ fllg-1- Then v = v + G is unique solution of
the problem (1), and

[oll g1 + |Gl e
Cs £l g1+ Cillgl g an)
Cs [|Fll g1 + (C1C2C3 4 C1) g1l 12 o0 -

[l g

VARRVARNVAN

3. Dirichlet problem with spectral parameter

Now we consider the problem
—Au = u+ f(z), z€Q }

with spectral parameter . Here € is bounded.
Definition

Let Q C R™ be arbitrary bounded domain. Let f € H~1(Q). A function
u € H'(Q) satisfying identity

/Vuv—apdm:)\/ u@dw—i—/ f(x)pdz, Yee HY(Q), (10)
Q Q Q

is called a weak solution of problem (9).

As before, we denote [u, o] = [, VuVpdz. This is inner product in H*(£2).

The form [, u@dz, u, o € H'(Q) is continuous sesquilinear form in H*(£2).
By the Riesz theorem for such forms it can be represented as [Au, ¢], where

o
A is a linear continuous operator in H1 ().

Obviously, [, updz = ([, pudz), so [Au,¢] = [Ap,u] = [u, Ap], Yu,¢ €

HL(Q). It follows that A = A*.
Next, [Au,u] = [ |u|?*dz > 0 if u # 0. So, A > 0.

Lemma
o)

The operator A is compact operator in H!(£).

Proof

This follows from the embedding theorem: H'(Q) is compactly embedded in
Ly ().
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We’ll use the following property of compact operators: 7' is a compact ope-
rator in the Hilbert space H, if and only if for any sequence {ug} which
converges weakly in H, the sequence {T'uy} converges strongly in H.

o

Let {uz} be a weakly convergent sequence in H!(f2). Since the embedding

operator J : H'(Q2) — Ly(Q) is compact, {uy} converges strongly in Ly().
We want to check that { Auy} converges strongly in Lo (£2). Since {uy} weak-

[e]
ly converges in H'(Q), it follows that ||ug|| () 18 uniformly bounded. A4 is
a continuous operator; then also || Auk|| g1 is uniformly bounded. We have

[A(ug — wp), Alug —wy)] = /Q(uk —wy)(Auy, — Auy)dx

lur = willp, @) 1 Auk = Awl[ 1, ()

IN

—0 <C
— 0 ask,l — oo.

{Auy} converges strongly in H'(Q). It follows that A is compact operator.
|
As before, the functional lf(p) = [, f@dx (where f € H~(Q)) is continuous

antilinear functional on ¢ € H'(Q). By the Riesz Theorem, there exists
[e]

unique element v € H'(Q) such that [, fpde = [v,¢], Vo € HY(Q), and

1/ =10y = [0l 1 -
Now, we can rewrite identity (10) in the form

[u, 0] = A[Au, 9] + [v, ], Vo € HI(Q), (11)
which is equivalent to the equation

u— ANu = v, (12)

where v € H'(Q) is given, and we are looking for solution v € H'(2). Thus,
we reduced the problem (9) to the abstract equation (12) with compact ope-

e]
rator A in the Hilbert space H'(Q).
We analyse equation (12), using the properties of compact operators.

The case v = 0 (which corresponds to f = 0):

—Au = du er} (13)

U|aﬂ =0
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& u—-MMu=0 <& Au:,uu(where,uzi)

It is known that the spectrum of a compact operator is discrete: it consists
of eigenvalues pj,7 € N, that may accumulate only to point u = 0; each
eigenvalue is of finite multiplicity (i. e. , dimker(A —p;I) < co). In our case
A = A* > 0, then all eigenvalues j; are positive: u; > 0. We enumerate
eigenvalues in non—increasing order counting multiplicities pu; > pue > ...
Then each eigenvalue corresponds to one eigenfunction u; : Au; = pjuy,
j € N. Eigenfunctions {u;} are linearly independent. We have : p1; — 0 as
J — o0.

Then for the eigenvalues \j = ﬂ—lj of the Dirichlet problem (13) we have the
following properties: 0 < Ay < Ay < ..., A\j — 00 as j — oo.

Thus, we have the following theorem.

Theorem 3

The spectrum of the Dirichlet problem (13) is discrete. There exists
non-trivial solution only if A = A;, j € N. All eigenvalues are positive
and have finite multiplicities. The only accumulation point is infinity:
Aj — 00 as j — oo.

The case v # 0 (f #0)

—Au = Xu+f er} (14)

& u—ANMu=v
For compact operator A it is known that, if A # \;(= u_lj)’ Vj € N, then the
operator (I — AA)~! is bounded. We can find unique solution

u= (I —X\A)"to,

and
[ull gy < [T = 2A) [ o]l 1.0y -
~—_— —
—Cy

Since [[v]| g1 () =< [|f || gr-1(q), we arrive at the following theorem.
Theorem 4

I A ¢ {Aj};en (A is not eigenvalue), then for any f € H~1() there

exists unique (weak) solution u € H'(f2) of the problem (14), and

lull i) < Oy f -1 -
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Now, suppose that A = A, and v # 0 (f # 0). Then, solution of the equation
u— X\jAu = v exists, if v satisfies the solvability condition: v_Lker(I —\;A).
It means that v is orthogonal (with respect to the inner product [-,-]) in
H'() to all eigenfunctions gpg»k), k=1,...,p, corresponding to the eigenva-

lue \; (here p is the multiplicity of A;). Since [v,¢] = [, f( o(x)dzx, this
solvability condition is equivalent to:

/Qf(;c)gpg’“)(x)dx =0, k=1,...,p. (15)

(®)

The solution u(x) is not unique, but is defined up to a summand »7_, ¢;¢;

with arbitrary constants c;.
Theorem 5

If X = ); is eigenvalue of the Dirichlet problem, and ¢§k), k=1,...,p,
are corresponding (linearly independent) eigenfunctions, then problem
(14) has solution for any f € H~1(Q), which satisfies the solvability
conditions (15). Solution is not unique and is represented as

p
k
u=o+ ey,
j=1

where ug is a fixed solution, and c¢; are arbitrary constants.

4. Hilbert—Schmidt Theorem

Finally, we can apply the Hilbert—Schmidt Theorem for compact operators
and obtain the following result.

Let A1 < X9 < ... be eigenvalues of the Dirichlet problem. Here we repeat
each \; according to its multiplicity. There exists an orthogonal system of

ergenfunctions {¢;} oy

QDJ—)\JAQDJ :0, ] ENa [SDJaSDl] :0’ J#l

By the Hilbert-Schmidt Theorem, {¢;}, y is orthogonal basis in H L),

e. , for any F € H' (),

oy [

= SDJ, 80]

It is important that ¢; Ly also in Ly(Q). Indeed, [Au, ¢] = [, uipdz (by
Definition of operator A). Next, Ap; = pp; (where p; = )\i) Thus,

[Ap;, o] = /Q%de = pjlej, o1l =0, j#L
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We have
[ il = Aj[Ags, p5] = /\j/ﬂhﬂjlzdw-

Then
[F, o] _ Jo Fojdx _ (F, @j)LQ(Q)
[¢j,©j] fQ\%‘de H%‘Hi(m
SOJ L2(Q2
P 3 o,
lesllZ,

The last fomula can be extended to all F' € Ly(£2).
Theorem 6

, and

Let © C R™ be a bounded domain. Then there exists an ortogonal
system of eigenfunctions {¢; }j cy Of the Dirichlet problem. This system

forms an orthogonal basis in Ly(£2) and in H'(Q2) (with respect to the
inner product [-,]).
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