Tissue concept and classification Petr Vaňhara, PhD Department of Histology and Embryology, Faculty of Medicine MU pvanhara@med.muni.cz nmnMti -Hi*' taw U** "top- —' ^ ' flt«ldi.i|*i.» |».ilr«4i!l» !f"~'' taKmi iiitm* taut ** Mi»A , .n i.-l.- - tol*i|l-iH |iTII»1l»iV*l«* iin|ki a (.-111- IH*c*bMli- h* hM «fc •bknwii** piklixLqtii M* j» «t*«»*ta»' Tlvutt* it* ^rcgair-i or píoupii ní' crlli oqpuiimJ to per forrn om or mvn ipeciflc fuutt i cm* &. At tlv I rtfhi miLímcopc Irreí, thí ntlhv wiii cmarclluJar icřfh puocim -Ur tin ivwm itígjm wf ilir b*ciintm a inugmj. jlik' .LnJ i»firt itutiatxrVE pjuuru *ii un^jniixrJíHt I ht> oifJfiin-J jrrjji^einmi rrflwb fhť tttoftíwříiř efliirt of«ili pcrtiMmmg j pMninrulw runawm nxttefufc. an iirpjnrieeJ grcpirrnn itf ;ellt th-u run;"nv m a tutlecnvc rmnrwr .i«. Jkd Ahhjiupli It fa frapjrnrfi nut itut the ceil»tr* Uk Íuhv iuui.il unit t.4 rhc both: Ji n Mill* rhr ekMrr>- iliimj^i liiruit ire the ťirbíhHh it* grrwal J ItřOCToraJ nfpiaifJlJuttL Jftii pJij-iiuiiJiflji: [irupcrtlo ufs n mí i UtdV • i fv.J m the tuwn rim icrrspmr rbffn ait f in Kt hiur hiiu. rype*. btv&v CitntKt, iiírd hirmi pjindt- • ConT>*ctv» imau* untMhn or wpporrs Ac ť UitU imiio, liiiih iirmitirjllv JfuJ I'lipkih:>iuI[« • MufiCt* BBHt n Tn.iA- up oC iinurseillc- CcUtV .■,.>"'■' for nujincr/rxnj • N«m tt-ssuc ireenn, ttEiirmtL ifid uircRi miitrťio from rniiD.l»ir iruJ íniidc iřiř lw*í> ri> i jptmaa of thr UhIj._ Modern cell theory ■ Cells are the basic units of any organism ■ New cells origin only from other cells ■ Cells exchange energy (open thermodynamic system) ■ Genetic information is inherited in new generations ■ Chemical and structural composition of cells is generally identical How do these cells differ? How the variability of a multicellular body develops? Tissues and organs 6 x 1013 CELLS of 200 different types A-V node - cells form functional, three-dimensional, organized aggregations of morphologically similar cells and their products or derivatives - TISSUES - tissues constitutes ORGANS and organ systems Intemoi pathways ■ Tissues and organs Parenchyma: functional component of a tissue (liver, lung, pancreatic, kidney parenchyma) Stroma: surrounding, supportive tissue Parenchyma LIVER Parenchyma: - Hepatocytes - Sinusoids and adjacent structures Stroma: - Connective tissue and adjacent structures - Vessels - Nerves Contemporary tissue classification Based on morphology and function: Epithelium Muscle Continual, avascular layers of cells with different function, oriented to open space, with specific junctions and minimum of ECM and intercellular space. Derivates of all three germ layers Myofibrils -> contraction Mesoderm - skeletal muscle, myocard, mesenchyme — smooth muscles Rarely ectoderm (eg. m. sphincter a m. dilatator pupillae) Nerve ■ ■ 3p S; Neurons and neuroglia Reception and transmission of electric signals Ectoderm, rarely mesoderm (microglia) Connective 4_ Dominant extracellular matrix I Connective tissue, cartilage, bone. i Mesenchyme ■ Definition of a tissue Functional, three-dimensional, organized aggregation of morphologically similar cells, their products and derivatives 4 classical histological definition is based on microscopic visualization Functional cells of tissues differentiate from stem cells Stem cells are capable of differentiation and self-renewal Knoblich JA. Asymmetric cell division during animal development. 2001. Nat Rev Mol Cell Biol ■ Stem cells Totipotent 0r r r f - Constitute all cells of the body incl. extraembryonic tissues jf " / 4 - Zygote and early stages Pluripotent -All cells in the body except fortrophoblast - Blastocyst - Inner cell mass - ICM (embryoblast) - Embryonic stem cells Multipotent - Give rise to various cell types of a particular tissue - Mesenchymal SC, hematopoietic SC Oligo- a unipotent - One or several cell types - hematopoietic, tissue precursors for renewal of intestinal epithelia, etc. http://www.embryology.ch/anglais/evorimplantation/furchung01 .html Blastocyst Stem cells in human body Embryonic stem cells (ESCs) - embryoblast of blastocyst - pluripotent - modelling of early embryogenesis, regenerative medicine Tissue (adult) stem cells - regeneration and renewal of tissues - GIT, CNS, mesenchyme - regenerative medicine, cancer biology Stem cells as a research tool Induced pluripotent stem cells (iPSc) ■ adult differentiated cell (fibroblast) is reprogrammed into pluripotent state ■ differentiation into desired cell type regenerative medicine, cell and gene therapy 0 0© Nobel prize 2012 SoxZ Growth factors Oct3/4 Chemicals Disease modelling Drug testing Tissue replacement Induced pluripotent stem cells share biological properties with embryonic stem cells Oct4 hESCs ^^^^^ .I hiPSCs 2 \ Ariuli Cell \P<> Cells Mesoderm Endoderm iPS reprog ramming factors Ectoderm i m ß I * I Ii*. > I WHU If i niz.iiF ill '.ninnrh r,i....., ■ -,i.j i -h n„„i iMi HI.H ttflk ttgnml I nMN-filr-i I (HiClirf (frpHbrC-lll I Ml tt tm&rtm I T&ll HUM tp.ll. -örti bCirth Call! Stem cells as a therapy Age-related macular degeneration hiPSCs Retinal pigment epithelium ■ Stem cells as a foe Cancer stem cells - solid tumor is always heterogeneous - small population of cells with stem cell character can repopulate tumor tissue after cytotoxic therapy □rues that kllf Tumor loses ability to ...arid tumor CSC-Targeted tlJ mor slerri ce 1 fs generate nev eel Is... degenerates Cancer Therapy Traditional 1 Cancer Therapy Tissue stem cells WE Quiescent Multipotency Low frequency (<1%) Long lifi Resistence Tumorigenicity Proliferation capacity tu mor stem ce I Is generate new eel Drugs that kill timlorceNs.,. ...but natcancer Tumorshrlnks, stem cells but grows back Cancer stem cells doi:10.1038/nrg3209 Differentiation is driven by gene transcription DMA IwodWB protein i Di^LnJ conMul C'Niini.'lir:- RMAptMyttwraie ■> ELP oo Nonlymphoid \_) lineages Cell typr 1 Lineage committment lead* to binary switch Feedforward .ndudron of iMrtvcripifon: factors B ami C c*Vo \ Crcrtvflnrsgortbtk regulation of iranKtiption 1. 11 :■>}•■ A .ml D Tran« ription factor feedforward inducttortof irarrscriptlon factors f. and F Transcription fActor network i i i i i p^, .fTTÝTTl. gene* " **** C //. Ä>. C /S&ftC vÍ^/C w^^C "Tcrmína! selector' regulation in. for e*i»rnp(etC dogn-ns iwumre NKP) E4BP4> Id2 Hypothetical more complex regulatory logic [n higher vertebrate* Nature Reviews 10*netlcs ■> TSP Notch 1 GATA-3 ■>■ {pro-T Pax5 0 PLZF. Tissue differ in their genetic and epigenetic profile Fetal development Postnatal development doi:10.1038/nature10523 Cells create unique microenvironment Metabolites Cell interactions ■ Microenvironment regulates tissue function and reflects its tissue composition Huge number of biological and physically-chemical parameters Embryonic development Intercellular interaction Space organization (dimensionality) Gradient of morphogenes Epigenetic profile Gene expression dynamics Partial pressure of gases ECM composition Mechanical stimulation Perfusion and interstitial flows Local immunity response Metabolites Bone Loading forces V Hormones (PTH. calcitonin, GH, steroids) Electrostatic forces Cortical bone (*Mf of total bant ma is] Stem cell niche? ECM components Flbronectin Larnlritn Collagens Apatite crystals {calciu m 38%, phosphorus 18%) Bone promoting proteins. Bone siabproteins Osteonectin Osteoprotegeriln Osteocalcin Integrins Alcallne Phosphatase Proteoglycans, Glycosaminogiycans Osteopontin MMPs &T1MPS Receptors Adhesion molecules Physico-chemical Effectors Cytokines Chemokines Growth factors Hormones Physico-mechanical forces Biochemical regulators (pH, oxygen concentration, nutrients...] Microenvironment is necessary for tissue homeostasis Functional tissue Damaged tissue ÍO 1 r © w >-! c—, o development ceases A F R regresses; iiiih development cease* AF.K replaced Norma) by_FGKbr«d B «jng http://courses.biology.utah.edu/bastiani/3230/DB%20Lecture/Lectures/b14Limb.html ZPA specifies positional infromation in limb bud M '.....li ........i Hi tul limit In,! IUI i'(;[; iiiiiiiLfj > ) M'.'ii. i !■'■:;:•;!' concentration B lue-White threshold White-Red threshold So urea http://courses.biology.utah.edu/bastiani/3230/DB%20Lecture/Lectures/b14Limb.html Anterior honor host Gradients of morphogenes from AER and ZPA defines limb formation Limb buds Normal limb Posterior Anterior Concentration of morphogen polarizing region ectodermal ridge ^7 Additional polarizing region grafted to anterior margin Posterior Anterior Small number of polarizing region cells grafted to anterior margin Posterior Anterior Thresholds for digits Ina '..t iron Hox pattern represent the transcription response and induces differentiation to cartilage and muscles fhalidomid Morphogenes in notochord-neural tube formation Noggin Xenopus laevis notochord Body axes Segmentation Limb buds Protein Cerberos induces head formation (Danio reiro) chó+cer-S 15 * chd+cer-S+pcsKAwnt8 cer+CA-ALK4 Thfi hfiad inducer Cfirhfirus is a multifunctional antagonist nf Nodal. BMP and Wnt signals Stefano Piccolo, Eric Agius, Luc Leyns, Subha Bhattacharyya, Horst Grunz, Tewis Bouwmeester and E. M. De Robertis Nature 397, 707-710(25 February 1999) doi:10.1038/17820 pcs2-Xnr-1 Neurulation Hcffgn'siude primiiivf si teal rmwfcim Cranial end Q BMP-4 Cardiogenic area Prechordal plate (future mouth) ■ Notochord Noggin Chordin S Follistatin . ,;: "JL- Prllmltlve I"1 I—Primitive node ■ Primitive groove ■ Cloacal membrane [future anus) BMP-4 In whole embryo, ventralisation of endo- a mesoderm Noggin Chordin Follistatin FGF Wnt3a In developing notochord, primitive pit, prechordal mesoderm Inhibit BMP-4 Neurulation of ectoderm, development of fore-and midbrain Caudal neural structures - hindbrain and spinal cord Histogenesis and organogenesis rmuroeelodcrm (neural crest i Ectoderm Entoderm rauroaclodcrm (neural tuba) \ * - úofthal WWM ty>l*m . DtnaaJtwdy ■ pdálmtnrpniiAnydlirai • J1,11 ill,TI IlKUll I * e;onň#ca*p Maw ut n*u*t EUllMBlWl luting d: • iBApindDry Trad «Uli iynpfuJ* ' tavní iflrlm Limbo í ulupJil ir jihu"' ■ muDAt 0/ h»d J ladlale mesoderm ■ uiQUBiirMl ai«iafniw*Kjlřig ganjidK ducK und ap Mesoderm Embryonic development Ectoderm Mesoderm Endoderm CD "O O +- 0 01 CD CJ l ■ Epidermis, hair nails, cutaneous and mammary glands ■ Corneal epithelium and lens of eye ■ Enamel of teeth ■ Internal ear ■ Anterior pituitary gland ■ Epithelium of oral cavity and part of anal canal ■ Neural tube and derivatives - CNS - Retina - Posterior pituitary gland - Pineal body ■ Neural crest and derivatives: - Cranial and sensory ganglia and nerves - Schwann cells - adrenal medulla - Enteroendocrinne cells - Melanocytes - Head mesenchyme and connective tissue - Odontoblasts co CD X re Q_ CD re CD ■ Connective tissue of head ■ Cranium, dentin ■ Skeletal muscle of trunk and limbs except cranium ■ Dermis of skin ■ Muscles of head ■ Urogenital system + ducts, glands and gonads re 0 +-re ■ GIT epithelium except oral cavity and part of anal canal ■ Extramural glands of GIT ■ Epithelium of bladder ■ Epithelium of respiratory system ■ Thyroid gland, parathyroid glands, thymus ■ Tonsils ■ Epithelium of cavum tympani and Eustachian tube ■ Visceral muscle and connective tissue ■ Serous membranes of pleura, peritoneum and pericardium ■ Blood cells, leukocytes ■ Cardiovascular and lymphatic system ■ Spleen ■ Adrenal cortex Tissue engineering ■ Current histology and tissue engineering at Dpt. of histology and embryology LF MU Biology of embryonic stem cells Cel cycle, mechanisms of differentiation and adaptation of SCs Genome stability and phenotype plasticity New differentiation protocols of hESCs/iPSCs/MSCs Neural crest, odontogenesis Lung epithelia Modeling of pathologies (e.g. cancer) Unique technologies and tissue engineering Modeling of microenvironment and development of nanosurfaces - Bioanalytic profiling of cells and tissues (MALDI TOF MS) 3D nanocarriers for modeling of interactions between cells and tissues State-of-the-art microscopy 6. Connective tissue Not only a tissue glue Connective tissue Mechanical and biological properties —> surrounds other tissues, compartmentalization, support, physico-chemical environment, immunological support, storage ■ General composition of connective tissue (CT) Cells and extracellular matrix • Cells Connective tissue - permanent and transient cell populations (fibroblasts/myofibroblasts, immune cells, adipocytes, adult stem cells) ____ Cartilage - chondroblasts/chondrocytes Bone - osteoblasts/osteocytes/osteoclasts • Matrix - fibrous and amorphous Fibrous component - collagen - reticular - elastic Amorphous component (amorphous ground substance) - Complex matrix consisting of glycosaminoglycans, glycoproteins and proteoglycans, depending on tissue type (connective x ligament x cartilage x bone) Classification of CI Embryonic CT - Mesenchyme - Jelly-like CT (Wharton jelly, dental pulp, stroma of iris) | Adult CT I-Areolar (loose, interstitial) CT ;- Dense collagen irregular CT I- Dense collagen regular CT !- Fat (adipose tissue) I- Cartilage |- Bone - Blood and hematopoietic tissue - Lymphatic tissue > Specialized CT ► Trophic CT (body liquids) ■ Embryonic origin of CT • Mesenchyme = loose tissue between germ layers • Complex network of star- or spindle-shaped cells httD://www,mun,ca/bioloav/desmid/brian/BIOL3530/DB Ch02/DBNModel,html Basic derivatives of CT Hansen's noBe jbrifnitivs streak ■ Cells of connective tissue Cells - Fibroblasts/fibrocytes/myofibroblasts - Heparinocytes - Macrophages of CT = histiocytes - Plasma cells - Lymphocytes -Adipocytes -Adult stem cells Extracellular matrix - Fibrous compound -Amorphous ground substance ■ Cells of connective tissue Mesenchymal (adult) stem cells CARTILAGE Stromal cells Koch etal. BMC Biotechnology2007 7:26 doi:10.1186/1472-6750-7-26 ■ Extracellular matrix - fibrous component Collagen fibers - family of fibrous proteins encoded by >35 genes (2013) - polymer - subunit = tropocollagen; triple helix - different structural and mechanical properties (strength, elasticity, pliability...) - most abundant protein in human body ( 30% dry weight) Collagen Translation of tnKNA Into am Inn ac id sequervce Itv rltwscmes JHwlfoivmulinc Si™nUi _ ' ( Transfer nKNAi - smmciieid pmptefls | Glycine^ ^ ^ ^ — CcKvlnRtMlvpeplid/ j . ., . X. -jj A -Ü chain ^^(nB-jrnnleoilariMndbebVieWHi and chair* — Alter ra*DcyUKii,.pHJf ullttgen pqwdaso outside celt cleaves Itntrfc The fihrablaa for Ma I l 35 iiin in BftCh iClw are between th+* r head and la II rji" adjacent trapnoalljjTtrn motwedle*. Heavy rnr.^LiI staining ttfwll* in njfjeatfnj tight incldajk collagen hands. ■ t rjll.icen fibon, i.ibout 2 ym in rtramowr are made at bundle* utiolfagcn frfo lis that are iirns^lirilmd by proteoglycan* and fibril-associated COlljgjtini vvHIi Infj-mpted triple heJJcts iF^CITi {Jp»2n moktulai'tomii ofciilfapen Lifp * # JP *p - * • ! Kafir *« Jm». * *• je Hyaline cartilage, trachea_ Perichondrium | K^y\ Appsitional growth Exchange of metabolites Chondroblasfc Elastic cartilage Elastic fibers in matrix No isogenetic groups Auricula, meatus, larynx, epiglottis Fibrocartilage Fibrous compound dominant - collagen I and II - mechanical durability Minimum of amoprhous matrix-fibers visible Intervertebral discs, symphysis pubis, articular discs, meniscus ■ Clinical correlations Cartilage - no innervation, no vascularization - no spontaneous regeneration No migration of chondrocytes to site of damage Initiation of other degenerative events leading to cartilage erosion (arthritis) Normal femoral Damaged Cartilage cartilage Therapy: - joint mobility - restoration of biochemical and biophysical parameters of cartilage - prevention of further damage - removal of damaged tissue, autologous transplantation, MSCs on biocompatible scaffolds Bone Articular cartilage Histological classification of bone tissue Primary (woven, fibrous) Temporary, growth and regeneration of bones, collagen fibrils woven Replaced by secondary bone Remains only in some parts of body - sutures of skull, tuberositas ossium, tooth cement Secondary (lamellar) Lamellae - collagen fibers in concentric layers (3-7nm) around a canal with capillaries = Haversian system (osteon) Spongy (trabecular) - Trabeculae, similar to compact - Epiphyses of long bones, short bones, middle layer of flat bones of the skull (diploe) Compact - Outer and inner coat lamellae typical Haversian systems - Volkmann's canals - Interstitial canals Oirtocyti C«n«llH*l ■ Surface of compact bone • Outer surface - Synovial joint - hyaline cartilage - periosteum (periost) - membrane -dense CT, inner layer (osteoblasts) and outer layer (fibrous CT) - Inactive bone - fibrous CT in periost dominant National Museum of Natural History NY, USA Inner surface - cavities lining Medullar cavity Endosteum (endost) - single cell lining - bone remodeling Red bone marrow - hematopoiesis Yellow and gray bone marrow - adipocytes or CT Rich vascularisation Bone matrix 60% mineral compound, 24% organic compound 12% H20, 4% fat Crystals - calcium phosphate, hydroxy apatite Cells • Osteoblasts - specialized bone cells - produce ECM - collagen (I) and noncollagenous proteoglycans, glycoproteins - osteocytes ■ Cells • Osteoclasts - multinuclear, form by fusion of macrophages - bone matrix resorption .- ■ Cells • Osteoclasts - Complex architecture - Enzymes degrading organic matrix - HCI ■ Ossification Intramembranoeous - Mesenychymal cells —» osteoblasts - Ossification center - rich vascularisation, differentiation of osteoblasts, synthesis of primary bone Endochondral - Cartilage model - Growth plate - Primary and secondary ossification centers (diaphyse, epiphyses) -Artieiftot urnu*-'Secondare oijiftcstion u-nWJ Bone Remodeling Cycle Pre-Osteoctasts Active Osteoclasts Pre-OsteobLasls Osteoblasts Resting Bone Surface Osteocytes Resorption Reversal Bone Formation Mineralization -3 MONTHS http://ns.umich.edu/Releases/2005/Feb05/imq/bone.ipq Clinical correlations • Fracture healing Reactive Phase - Fracture and inflammatory phase - Granulation tissue formation Reparative Phase - Cartilage callus formation - Lamellar bone deposition Remodeling Phase - Remodeling to original bone shape Week I Weeki 1-3 Hematoma ior Inflammation) Soft CaJtus Weeki 4-16 Week* I 7 & Beyond Hard Callus KemodeHng ■ Clinical correlations - disbalance in osteosynthesis and osteoresorption • OSTEOPOROSIS • REVMATOID ARTHRITIS ■ Further study Thank you for your attention However, you still need to learn it;-) Thank you for attention Dr. Petr Vanhara, PhD. pvanhara@med.muni.cz