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The rapid growth of genomic sequence data for both human and nonhuman species has made analyzing
these sequences, especially predicting genes in them, very important and is currently the focus of many
research efforts. Beside its scientific interest in the molecular biology and genomics community, gene
prediction is of considerable importance in human health and medicine. A variety of gene prediction
techniques have been developed for eukaryotes over the past few years. This article reviews and analyzes
the application of certain soft computing techniques in gene prediction. First, the problem of gene pre-
diction and its challenges are described. These are followed by different soft computing techniques along
with their application to gene prediction. In addition, a comparative analysis of different soft computing
techniques for gene prediction is given. Finally some limitations of the current research activities and
future research directions are provided.

� 2013 Elsevier Inc. All rights reserved.
1 Abbreviations used: HMM, hidden Markov model; DP, dynamic programming; A,
adenine; T, thymine; G, guanine; C, cytosine; ORF, open reading frame; EST, expressed
During the past decades, various genomes have been sequenced
in both plants and animals. With the development of genomic se-
quence data, genome annotation has become important in bioin-
formatics. Genome annotation helps in understanding the
biological functions of the sequences of these genomes. Gene pre-
diction is one of the most essential aspects of genome annotation.
Since the time the Human Genome Project started, the database of
DNA sequences has been increasing exponentially [1,2]. The se-
quence data is growing rapidly, and our ability to predict genes
in them has lagged behind significantly [3]. The process of predict-
ing genes using experimentation methods is very slow and time-
consuming. Thus, the development of reliable automated tech-
niques for predicting genes in uncharacterized genomic sequences
became significant [4]. The problem of gene prediction consists
mainly of identifying protein coding regions in genomic DNA, but
it may also include the identification of other functional regions
such as RNA coding and regulatory regions. Various gene predic-
tion techniques have been developed during the past several years.
The current techniques of gene prediction are considerably more
accurate, reliable, and useful than those available in the past. How-
ever, the performance of these gene prediction methods is still be-
low the expected level. The main problems of the existing gene
prediction techniques are genome dependency and gene-level
accuracy. Most of the techniques are developed for specific gen-
omes, and the gene-level accuracy of these techniques is very
low. It is obvious that further improvement to gene prediction is
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much needed. An extensive list of existing gene prediction pro-
grams can be found in Ref. [5].

Most of the previous reviews written on this problem have fo-
cused on traditional gene prediction techniques such as the hidden
Markov model (HMM),1 dynamic programming (DP), and decision
trees [6–8]. In addition to these traditional gene prediction tech-
niques, approaches based on soft computing have gained popularity
during recent times. A review on traditional and computational
intelligence techniques is presented in Ref. [9]. Soft computing tech-
niques can work well for gene prediction due to their ability to han-
dle uncertainty and noise in the sequence data. However, none of the
reviews has focused on soft computing techniques for gene predic-
tion during the past few years. The main focus of this article is to
provide a comparative analysis of soft computing techniques for
gene prediction.

The article outline is as follows. The next section describes the
basic terminology related to the problem of gene prediction along
with its challenges and the types of information used by gene pre-
diction techniques. Different soft computing techniques used in
the field of gene prediction are then discussed, followed by a com-
parative analysis of these techniques. Finally, some conclusions
and future research directions are presented.
sequence tag; ANN, artificial neural network; HOMM, higher order Markov model;
IMCM, inhomogeneous Markov chain model; GIN, gene identification using neural
nets and homology information; RBFN, radial basis function network; ANFIS, adaptive
network-based fuzzy inference system; GRNN, generalized regression neural net-
work; ncRNA, noncoding RNA.
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Background

This section provides the basic terminology related to gene pre-
diction as well as some of the challenges involved in it. The prob-
lem of gene prediction is then described, followed by types of
information used by gene prediction techniques.
Basic terminology

Proteins are considered as the building blocks of life. A protein
is a chain of simpler molecules called amino acids linked by poly-
peptide bonds. The information necessary to build protein in an
organism is encoded in DNA. For this reason, DNA is referred to
as the ‘‘blueprint of life’’ [10]. All organisms self-replicate due to
the presence of genetic material in DNA [11]. DNA exists in nearly
every cell of an organism and is contained in a larger structure
known as a chromosome. The number of chromosomes in each cell
depends on the species and can vary to a large degree. For example,
a human has 46 chromosomes, whereas Drosophila melanogaster
has only 8. The entire DNA content of a cell is known as the
genome.

DNA can be viewed as a sequence of organic molecules called
nucleotides. A nucleotide is made up of a base and a sugar linked
to it. There are four different nucleotides in DNA, each differing
in its base. These four bases are adenine (A), thymine (T), guanine
(G) and cytosine (C). In DNA sequence, A pairs with T and G pairs
with C due to the presence of hydrogen bonds. The nucleotide
bases are classified into two types: purines and pyrimidines. Ade-
nine and guanine are called purines, and cytosine and thymine are
called pyrimidines. The DNA molecule is made up of two comple-
mentary strands of nucleotides wound in a double helix. One of the
strands in double helix structure is called the sense strand, and
other is called the antisense strand. The antisense strand is the
one that is generally transcribed. In a double helix, the direction
of the nucleotides on one strand is opposite to their direction on
the complementary strand; therefore, they are said to be anti-par-
allel to one another. The ends of DNA strand are referred to as 50

and 30 ends.
A gene is a segment of DNA that codes for either protein or non-

coding RNA. The part of DNA that does not contain any gene is
known as noncoding or intergenic regions. Intergenic regions are
the regions of DNA between genes. Introns are the noncoding seg-
ments of DNA found within genes. After the DNA is transcribed
into RNA, the introns are spliced out from it to form mature RNA.
The rest of the coding segments of RNA are known as exons. The
exon/intron boundary is usually referred to as splice sites. The
mRNA is further converted into protein. The process by which
information is extracted from DNA to make protein is called central
dogma of molecular biology.

Gene prediction is the problem of identifying the portions of
DNA sequence that are biologically functional. This especially in-
cludes protein coding regions but may also include other func-
tional elements such as noncoding RNA genes. This article deals
only with protein-coding gene prediction techniques. The main
aim behind the problem of gene prediction is to correctly label
each element of DNA sequence as belonging to protein-coding re-
gion, RNA-coding region, or noncoding or intergenic region. The
problem of gene prediction can be formally stated as follows [9]:

Input : A sequence of DNA

X ¼ ðx1; � � � ;xnÞ 2
X�

; where
X
¼ fA; T; C; Gg

Output : Correct labeling of each element in X as belonging to
protein-coding region; noncoding region; or intergenic region
All living organisms in this world fall into one of two categories:
eukaryotes or prokaryotes. In prokaryotes, genes are made up of
long coding segments, that is, open reading frames (ORFs). On
the other hand, genes in eukaryotes consist of coding segments
interrupted by long noncoding segments. These coding segments
are termed as exons, and noncoding segments are termed as in-
trons. In eukaryotes, only 3% of human DNA sequence is coding
[3]. Gene prediction in prokaryotes is less difficult due to higher
gene density and the absence of introns in their protein coding re-
gions [1]. The main difficulty in prokaryotic gene prediction is due
to the presence of overlapping regions [12]. The process is more
complex for eukaryotes due to large genome size, and exons are
interrupted by introns. Furthermore, in eukaryotes, coding se-
quences are subject to alternative splicing, that is, a process of
reconnecting exons in multiple ways during RNA splicing [13]. In-
deed, it is estimated that more than 95% of human genes show evi-
dence of at least one alternative splice site [3].

Numerous gene prediction methods have been developed for
both eukaryotes and prokaryotes. In this article, the soft computing
techniques of gene prediction are discussed for eukaryotes only.
Although gene prediction techniques in eukaryotes have achieved
a significant level of accuracy, there are many challenges that still
need to be resolved. The major challenges in eukaryotic gene pre-
diction are as follows:

� Prediction of short exons, especially those bordered by
large introns

� The exact boundaries of exons and their assemblies into
complete genes

� The exact number of genes in human genome being
unknown [14]

� Alternative splicing
� Reliance on known sequences
� Presence of overlapping genes
� Large proportion of human genome being composed of

noncoding RNA
� The possibility of sequences stored in databases contain-

ing error
� Prediction of partial and multiple genes
� Noncanonical splice sites (splice sites other than those

based on GT–AG dinucleotides)
� Prediction of genes in newly sequenced genome.

Types of information used

There are two important aspects to any gene prediction pro-
gram. One is the type of information used by the program, and
the other is the technique used to combine that information into
a reliable prediction [8]. This information is generally divided into
content sensors and signal sensors [4]. This subsection is devoted
to the types of information used in predicting the gene structure:

� Content sensors: Content sensors are measures that try to
classify a DNA region into coding and noncoding. The exis-
tence of a sufficient similarity with a biologically character-
ized sequence can also be used as a means for predicting
coding and noncoding regions. Content sensors are further
classified as extrinsic or intrinsic. The extrinsic content sen-
sors take a genomic DNA sequence and calculate its similar-
ity to a protein or DNA sequence present in the database in
order to determine whether the region is coding or noncod-
ing. Similarities with three different types of sequences can
be used to find information about coding regions: protein
sequence, cDNA or expressed sequence tag (EST) sequence,
and DNA sequence. With intrinsic content sensors, coding
regions have statistical properties (i.e., asymmetries and
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periodicities) that help intrinsic content sensors to distin-
guish them from noncoding regions. Some of the common
measures used include codon (a triplet of DNA bases) usage,
GC content, nucleotide composition, hexamer frequency,
and base occurrence periodicity.

� Signal sensors: The basic and natural approach of finding the
presence of functional sites is signal sensors. Among the
types of functional sites are splice sites, start and stop
codons, branch points, promoters and terminators of tran-
scription, polyadenylation sites, and various transcription
binding sites. Local sites such as these are called signals,
and methods used to detect them are known as signal or site
detection methods.

The methods that use signal sensors or both signal and intrinsic
content sensors are known as ab initio methods of gene prediction.
During the past few years, gene prediction methods based on the
combination of ab initio and similarity information have been devel-
oped. The prediction accuracy of these combined methods is better
than that of methods based purely on ab initio approaches [15].

This section has presented the background knowledge for gene
prediction. The soft computing techniques for gene prediction are
described in the subsequent section.
Soft computing techniques for gene prediction

Soft computing is the modern approach to constructing a com-
putationally intelligent system. Soft computing is the blend of
methodologies that provides flexible information processing capa-
bilities for handling real-world problems [16]. Nowadays, soft
computing techniques are identified as attractive alternatives to
the standard, well-established hard computing methods. Tradi-
tional hard computing methods are often inconvenient for real-
world problems. They always need a precisely stated systematic
model and often need a lot of computational time [17]. Unlike hard
computing methods, soft computing methods cope with those
problems that deal with imprecision, uncertainty, learning, and
approximation to achieve tractability, robustness, low-cost solu-
tions and human-like decision making [18].

Certain properties of soft computing techniques make them suit-
able for sequencing tasks. These techniques can be easily adapted to
changing circumstances. They are able to handle very large data sets
with missing and noisy data and can be used to extract hidden rela-
tionships from these data. One unique property of soft computing is
that it is deeply involved in learning from experimental data, mak-
ing it suitable for gene prediction. While predicting genes, specific
patterns in DNA sequence are recognized and soft computing tech-
niques have been used extensively in pattern recognition problems
[19]. Soft computing consists of several techniques, with the most
important being neural networks, genetic algorithms, and fuzzy lo-
gic. The importance of soft computing techniques lies in the fact that
they are complementary, not competitive. In many cases, a problem
can be solved by using a neural network, fuzzy logic, and genetic
algorithm in combination rather than one technique exclusively.
This section describes the application of these soft computing tech-
niques in the area of gene prediction.
Artificial neural networks

An artificial neural network (ANN) is an information processing
model that is used to represent complex input–output relation-
ships. The main aim behind the development of neural networks
is to acquire human ability to deal with the changing environment.
An ANN is an interconnected group of artificial neurons [18]. The
structure of a neural network is represented as multiple layers of
neurons operating in parallel to solve specific problems. The main
characteristic of ANNs is their ability to learn from examples and
generalize this learning beyond the examples supplied. A neural
network system helps in situations where one cannot formulate
an algorithmic solution or can get lots of examples of the behavior
required. These properties of neural networks make them suitable
for predicting genes in DNA sequence. Neural networks can be di-
vided into different architectures on the basis of learning algo-
rithms [20]. Various neural network architectures employed for
splice site and gene prediction are discussed here.

Splice site prediction
The most common functional sites in DNA sequence are splice

sites because they define exon/intron boundaries and, thus, define
the exact content of coding regions. Neural networks have been
used successfully for splice site prediction during the past two dec-
ades. One of the earliest attempts at splice site prediction using
neural networks is described in Ref. [21]. The method is based on
the statistical technique of discriminant analysis. The perceptron
algorithm is represented in the form of a variable that can be used
in the discrimination function. The results show that a combina-
tion of methods within the discrimination analysis framework pro-
vides a reliable method for splice junction prediction. Another
method that demonstrates use of the perceptron algorithm is de-
scribed in Ref. [22]. This method uses base composition surround-
ing the splice sites as a means to preprocess the sequences that
further can be fed into neural networks in encoded form. The
method does not work in the case of noncanonical splice sites.

The aforementioned methods are based on local sequence infor-
mation. A new method called NetGene, which combines both local
and global sequence information in neural networks, is presented
in Ref. [23]. Here a joint prediction approach, where prediction of
transition regions between coding and noncoding helps in splice
site assignment, is applied. The resulting method obtained better
results than the methods that used only local information. The
method does not use the constraints of ORFs in the selection of
compatible splice sites. This would have helped in reducing the
false positive predictions. This method is extended further to pre-
dict splice sites in plants. The new system, NetPlantGene [24], pro-
vides better results than NetGene. An enhanced prediction system
called NetGene2, which incorporates branch point consensus to
improve acceptor site prediction, is reported in Ref. [25]. The sys-
tem also reduces false positive predictions.

A method that takes into account pairwise correlation of the
dinucleotides at the splice site consensus is described in Ref.
[26]. The tool NNSplice proposed here is incorporated into a
gene-finding system called Genie. The resulting system reduces
false negatives and improves the overall gene prediction perfor-
mance. The predictions of this new version of Genie are better than
those of the old version [27], which uses neural networks for splice
site prediction in a manner similar to that of NetGene. No attempt
is made here to predict noncanonical splice sites. Another ap-
proach based on a hierarchical neural network simulator is pre-
sented in Ref. [28]. The proposed method also analyzes the effect
of point mutation on splicing. Although the system succeeds in
extracting the particular features of the splice sites to some degree,
it does not obtain the explicit expressions of the features.

A neural network-based hybrid approach to predict splice sites is
proposed in Ref. [29]. The BRAIN algorithm used here infers Boolean
formulas from examples and considers splicing rules as disjunctive
normal form (DNF) formulas. The predictions of this algorithm are
refined by a neural network and combined using a discriminant
analysis procedure. The proposed method confirms low error rates
and shows better results than other stand-alone methods. The high-
er order Markov model (HOMM) can be implemented using a neural
network because of its ability to learn complex interactions of
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nucleotides through nonlinear mapping. A novel hybrid technique
based on this concept is described in Ref. [30]. To implement this,
Markov encoding is used at the first stage and the obtained condi-
tional probabilities are fed into the neural network. The method
outperforms other splice site detection programs developed during
that time. The model is further used to predict transcription and
translation initiation sites [31].

The technique used to encode neural network input plays an
important role in splice site prediction. Most of the methods men-
tioned above are based on the orthonormal encoding method
(OEM). A complementary encoding method (CEM) for splice site
prediction is illustrated in Ref. [32]. The new approach consider-
ably reduces the false positive predictions and training time of
the neural networks. Another hybrid technique based on the inho-
mogeneous Markov chain model (IMCM) and neural network is
presented in Ref. [33]. The sequence data are preprocessed using
an inhomogeneous Markov chain before feeding into the neural
network. The proposed technique requires less computation and
outperforms all other splice site prediction methods with predic-
tion accuracy greater than 98%. The neural network can also pre-
dict splice site locations without prior knowledge of signals such
as GT and AG. Such a technique designed for plants is discussed
in Ref. [34]. The input is encoded using orthonormal encoding. This
method achieves a significant level of accuracy but not better accu-
racy than other popular techniques.

A summary of neural network-based splice site prediction
methods presented above is provided in Table 1. The table enlists
different splice site prediction methods, their references, the train-
ing algorithm used by these methods, the years of their develop-
ment, organisms for which they train, the information used, and
the available links. Most of the methods discussed in this section
use the feedforward neural network trained using the back-propa-
gation algorithm. Some more work to predict splice sites using
Table 1
Neural network-based splice site predictors.

Method [reference(s)] Neural network
algorithm used (year)

Organism

Discrimination based [21] Perceptron algorithm
(1985)

Human

Perceptron-based neural
network [22]

Perceptron algorithm
(1988)

Human

NetGene [23] Back-propagation
algorithm (1991)

Human

NetPlantGene [24] Back-propagation
algorithm (1996)

Arabidopsis thaliana

NetGene2 [25] Back-propagation
algorithm (1997)

Human, A. thaliana,
Caenorhabditis elegans

NNSplice 0.9 [26] Back-propagation
algorithm (1997)

D. melanogaster, human,
other

Hierarchical neural network
simulator [28]

Back-propagation
algorithm (1997)

Mammals

BRAIN [29] Perceptron algorithm
(1998)

Primate

HOMM-based neural network
[30,31]

Back-propagation
algorithm (2003)

Human

CEM-based neural network [32] Back-propagation
algorithm (2005)

Human

IMCM-based neural network
[33]

Back-propagation
algorithm (2007)

Primates

Feedforward neural network
[34]

Back-propagation
algorithm (2009)

A. thaliana
different neural network architectures is described in Refs. [35–
37]. Discussing the literature related to other functional sites, such
as transcription and translation, is beyond the scope of this article
and is summarized in Ref. [38].
Coding region and gene prediction
The first attempt to locate coding regions of genes using neural

networks is described in Refs. [39,40]. The method combines the
output of seven sensor algorithms into a neural network from
which coding regions are identified. The coding recognition mod-
ule (CRM) of Grail uses a sequence window of fixed length. The
gene modeling module used by this system is presented in Ref.
[41]. The results of this technique are quite promising, but it easily
misses short exons. The performance of Grail is improved further
by using a variable length sequence window that results in a
new system known as Grail II [42–44].

A system based on the Grail framework to predict genes in Dro-
sophila is illustrated in Ref. [45]. The latest version GrailEXP [46]
has incorporated homology information from database sequences
to improve the prediction results of Grail. This method is further
extended in Ref. [47] to predict multiple gene structures based
on ESTs. A similar system called Codex [48], based on Grail, has
been developed to improve the prediction performance. Unlike
Grail, it uses a series of neural networks for the prediction of exons.
The technique helps in reducing the number of false predictions,
but it classifies some sequences as ‘‘don’t know.’’ Moreover, it does
not predict the complete gene structure. An attempt to discrimi-
nate coding regions from noncoding regions based on di-codon sta-
tistics is investigated in Ref. [49]. The system shows higher
accuracy on small coding segments but does not recognize com-
plete exons.

An approach to predict coding regions by combining neural net-
works and dynamic programming is discussed in Ref. [50]. The
Type of information used Link (where available)

Consensus sequence patterns, base
composition, and periodicity of coding
and noncoding regions, free energy of
small nuclear RNA and mRNA base pairing

–

Base composition surrounding the splice
sites

–

Consensus sequence around splice sites
and base composition of coding and
noncoding regions

–

Consensus sequence around splice sites
and base composition of coding and non-
coding regions and sequence based rules

http://www.cbs.dtu.dk/services/
NetPGene

Consensus sequence around splice sites
and base composition of coding and
noncoding regions, sequence-based rules,
and branch point consensus sequence

http://www.cbs.dtu.dk/services/
NetGene2

Pairwise correlation of dinucleotides at
the splice site consensus

http://www.fruitfly.org/
seq_tools/splice.html

Consensus splice site sequences –

Formulas inferred from consensus splice
site sequences

ftp://ftp.ebi.ac.uk/pub/softwares/
dos under nnbrain$.exe

Consensus sequence around splice sites
and composition of coding and noncoding
regions

–

Consensus splice site sequences –

Consensus splice site sequences –

DNA sequences –

http://www.cbs.dtu.dk/services/NetPGene
http://www.cbs.dtu.dk/services/NetPGene
http://www.cbs.dtu.dk/services/NetGene2
http://www.cbs.dtu.dk/services/NetGene2
http://www.fruitfly.org/seq_tools/splice.html
http://www.fruitfly.org/seq_tools/splice.html
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main aim behind the development of GeneParser is error tolerance.
The method perform well for short internal exons but is unable to
predict terminal exons. The problem of terminal exons is solved in
the enhanced version of GeneParser [51]. Another attempt to dis-
criminate coding regions of eukaryotic genes using neural net-
works is reported in Ref. [52]. Various organisms’ sequences have
been taken to build a discrimination model. The performance of
this method depends on coding length.

A new method based on a modular system of neural networks
to identify eukaryotic gene structure is proposed in Ref. [53]. The
prediction task is divided into the detection of distinct signals
based on different neural network architectures. A novel approach
of using homology information for multiple gene prediction is pre-
sented in Ref. [54]. The technique is designed primarily to reduce
false positive predictions. Although GIN (gene identification using
neural nets and homology information) predicts genes with rea-
sonable accuracy, it does not work well in the absence of homology
information. A knowledge-based neural network system, Exon–
ENet, is described in Ref. [55] for exon prediction. This system out-
performs Grail on short DNA sequences. However, its performance
is not very good on long DNA sequences. Most of the methods dis-
cussed above predict genes in human DNA sequences. A neural
network-based method to predict coding regions in the yeast gen-
ome is reported in Ref. [56]. The prediction accuracy of this method
is better than that of the previous method designed for yeast.
Nearly all neural network approaches for gene prediction discussed
above use the back-propagation algorithm to train DNA sequences.

Genetic algorithms

Genetic algorithms are heuristic search algorithms based on the
process of natural evolution [57]. They are efficient, adaptive, and
robust processes and have a large degree of parallelism. Therefore,
genetic algorithms are suitable for solving those problems that
need optimized, fast, and close approximate solutions. Further-
more, erroneous bioinformatics data can be handled with the ro-
bust property of genetic algorithms. They often encode candidate
solutions as fixed length bit-strings called chromosomes [58].
Due to these characteristics, the use of genetic algorithms in the
field of gene prediction seems appropriate.

A novel attempt based purely on a genetic algorithm for gene
prediction is described in Ref. [59]. Here fitness function is calcu-
lated using site and content statistics based on in-frame hexamer
frequency and positional weight matrix. The experimental results
show that the system achieves moderately good results at the
nucleotide level. By adding a little more flexibility to the system,
it will be able to deal with many gene prediction issues such as
alternative splicing, noncanonical functional sites, ignored stop co-
dons, and pseudo-genes. The performance of the system is not up
to the mark, but it proves the validity of genetic algorithms as a
tool in gene prediction. An enhanced version of this method is re-
ported in Ref. [60]. Here support vector machines are used for func-
tional site prediction. The results obtained from this system are
better than those from the previous approach. The proposed meth-
od has provided a new direction of applying genetic algorithm in
the field of gene prediction.

Hybrid systems

A hybrid system integrates two or more techniques to solve a
problem. The most common examples include a neural network
combined with a genetic algorithm and a neural network com-
bined with fuzzy logic. Fuzzy logic is a relatively new technique
based on multi-valued logic that allows multiple values to be de-
fined between conventional values such as 0 and 1. It provides a
method to deal with imprecision and uncertainty [61]. The main
idea behind fuzzy logic is to approximate human decision making
by using natural language terms instead of quantitative terms [62].
One of the biggest advantages of fuzzy logic is that it simplifies
complex systems. Hybrid systems are more popularly known as
neuro-fuzzy and neuro-genetic. In neuro-fuzzy systems, fuzzy in-
put is provided to the neural network. In neuro-genetic systems,
a neural network calls a genetic algorithm to optimize its struc-
tural parameters. Neuro-genetic systems have been used in gene
prediction during the past 10 years. However, neuro-fuzzy systems
have been observed more recently.

Neuro-genetic systems
As mentioned previously, an exon recognition method generally

includes both signal and content sensors. This approach is used in
an evolved ANN [63], a system designed to predict coding and non-
coding regions in DNA sequences. In an evolved ANN, genetic algo-
rithms are used to determine appropriate parameters for neural
network structure. The neural network is provided with nine in-
puts based on different coding measures. Other structural parame-
ters of the network such as interconnection weights are evolved
using genetic algorithms. Finally, the output of the neural network
is refined in a postprocessing step to predict exons. The perfor-
mance of this neuro-genetic system is better than that of Grail,
which uses only a neural network to predict exons.

Many gene-finding programs have been developed during the
past 20 years. A common approach since the early days of gene
prediction is to combine the results of several existing gene-finding
tools to achieve high prediction accuracy. A recent method called
RBFN (radial basis function network) Combining, which combines
the predictions of three popular gene finding tools (GENSCAN
[64,65], HMMgene [66,67], and Glimmer [68]), is proposed in Ref.
[69]. An ANN is used here to combine the accuracy parameters of
these tools. Using a genetic algorithm, the equitable weighted
parameters of the RBFN is calculated. Finally, the integrative eval-
uation of the tools is done with the help of a trained neural net-
work. The results show that the proposed method is effective in
combining gene-finding programs and achieves higher accuracy
at the exon level than as a single gene prediction tool.

Neuro-fuzzy systems
A new approach to predict splice sites based on an adaptive net-

work-based fuzzy inference system (ANFIS) is discussed in Ref.
[70]. Here the sequence data are divided into three datasets using
five preprocessing strategies: encoding the nucleotides, extracting
the statistical properties, ignoring the low correlated features, nor-
malizing the patterns, and reducing the redundant features. Final-
ly, the network is trained using different learning algorithms. The
ANFIS outperforms well-known classification algorithms. A recent
attempt of using the neuro-fuzzy network to predict splice sites is
presented in Ref. [71]. The neuro-fuzzy network is also based on
the ANFIS. In contrast to the previous approach, examples of true
and false splice site sequences are used here to define fuzzy rules.
The largest contribution of this method is to achieve high predic-
tion accuracy using smaller neuro-fuzzy networks.
Comparative analysis of gene prediction techniques

In a recent study [72], the performance of different neural net-
work architectures for splice site prediction is measured with a 10-
fold cross-validation. The experiment is performed on perceptron,
back-propagation network (BPN), knowledge base ANN (KBANN),
multilayer perceptron (MLP), radial basis function (RBF), and gen-
eralized regression neural network (GRNN). The results of this
experiment show that GRNN is more successful than other net-
works used for splice site prediction. The performance of six splice



Table 2
Performance of programs on HMR195 dataset.

Gene prediction program Nucleotide level Exon level

Sn Sp AC ESn ESp ME WE

RBFN combining 0.92 0.94 0.91 0.79 0.80 0.11 0.06
AUGUSTUS 0.94 0.90 0.90 0.73 0.82 0.17 0.08
FGENESH 0.95 0.94 0.94 0.83 0.84 0.07 0.07

Note. Sn, sensitivity; Sp, specificity; AC, approximate correlation; ESn, sensitivity;
ESp, specificity; ME, missed exons; WE, wrong exons.

Table 3
Performance of programs by nucleotide on human sequences.

Gene prediction program Nucleotide level

Sn Sp CC

FGENESH 0.93 0.93 0.92
AUGUSTUS 0.88 0.93 0.89
GENSCAN 0.94 0.89 0.9
HMMgene 0.88 0.9 0.87
GeneMark.hmm 0.87 0.89 0.87
GeneParser 0.71 0.72 0.68
Grail-I 0.56 0.85 0.65
Evolved ANN 0.74 0.38 0.46
Evolutionary algorithm 0.44 0.67 0.56

Note. Sn, sensitivity; Sp, specificity; CC, correlation coefficient.

Table 4
Performance of programs by exon on human sequences.

Gene prediction program Exon level

ESn ESp ME WE

FGENESH 0.81 0.8 0.09 0.11
AUGUSTUS 0.72 0.84 0.2 0.08
GENSCAN 0.78 0.74 0.08 0.14
GrailExp 0.9 0.93 0.06 0.008
Grail-II 0.77 0.78 0.07 0.06
Modular NN 0.88 0.83 0.11 0.17
Codex 0.81 0.9 0.19 0.09
GeneParser 0.69 0.63 0.31 0.37
Grail-I 0.59 0.91 0.4 0.09

Note. ESn, sensitivity; ESp, specificity; ME, missed exons; WE, wrong exons.

Gene prediction techniques / N. Goel et al. / Anal. Biochem. 438 (2013) 14–21 19
site tools (HMMgene, NetGene2, HSPL [73,74], NNSplice, Splice-
View [75,76], and Gene–Id3 [77,78]) is analyzed in Ref. [79]. The
results indicate that the programs that use both local and global
Table 5
Soft computing-based gene prediction programs.

Program Year(s) Reference(s) Organism(s)

Grail I/Grail II 1991–
1996

[39–45] Human, mouse,
Drosophila

GeneParser 1993–
1995

[50,51] Human

Codex 1995 [48] Human, mouse, plant
GrailExp 1996–

1997
[46,47] Human

Modular neural network
system

1996 [53] Human

GIN 1998 [54] Vertebrates

Exon–ENet 1999 [55] Human, primates
MLF–ANN 2003 [56] Yeast
Evolutionary algorithm 2011 [59,60] Human
Evolved ANN 2002 [63] Human
RBFN combining 2007 [69] Human, mouse, rat,

Escherichia coli, A.
thaliana
coding information along with splice signals (HMMgene and Net-
Gene2) perform better than the other four methods.

In a different evaluation, the accuracy of GeneSplicer [80] is
compared with six leading splice site predictors (NetGene2, Net-
PlantGene, NNSplice, HSPL, GENIO [81–83], and SpliceView). For
donor sites NetGene2 performs the best, whereas for acceptor sites
GeneSplicer, NetGene2, and HSPL perform comparably. From these
analyses, it is clear that neural network-based splice site predictors
perform well. A number of splice predictors are evaluated in these
studies. However, in practice it is very difficult to compare the per-
formance of splice site and gene prediction tools. Prediction tools
and their datasets are not all freely available. They are trained on
different genomes. The accuracy is evaluated using different
parameters.

In this study, a comparative analysis of soft computing-based
gene prediction programs is performed. During this analysis, five
programs are tested on sequences taken from the HMR195 dataset
[84]. The performance evaluation parameters used in this study are
the same as those defined in Ref. [85]. At the nucleotide level the
performance is evaluated on the parameters Sn (sensitivity), Sp
(specificity), AC (approximate correlation), and CC (correlation
coefficient), whereas at the exon level performance is evaluated
on ESn (sensitivity), Esp (specificity), ME (missed exons), and WE
(wrong exons). First, the performance of RBFN Combining is com-
pared against that of two popular gene prediction programs
(AUGUSTUS [86–88] and FGENESH [89,90]). The programs are
evaluated on all sequences of human, mouse, and rat from this
dataset. The results shown in Table 2 indicate that gene prediction
tools combined with using soft computing techniques perform
comparably to popular gene predictors. To evaluate the nucleo-
tide-level accuracy, 100 human sequences are taken from the
HMR195 dataset. The performance is compared with that of five
popular gene prediction programs (GENSCAN, HMMgene, Gene-
Mark.hmm [91,92], AUGUSTUS, and FGENESH).

The exon-level accuracy is computed on 50 human sequences
extracted from the same dataset. To compare these results, three
gene prediction programs (GENSCAN, AUGUSTUS, and FGENESH)
are used. Due to the unavailability of the soft computing-based
gene prediction programs, the results are calculated from the data
present in their respective articles. The programs tested on se-
quences other than human are excluded in this analysis. The nucle-
otide- and exon-level results are summarized in Tables 3 and 4,
respectively. At the nucleotide level, programs other than soft com-
puting methods perform better. However, homology-based soft
computing methods are not included here. The exon-level results
Prediction type Link (where available)

Exon, single gene http://compbio.ornl.gov/grail-1.3

Exon http://beagle.colorado.edu/~eesnyder/
GeneParser.html

Exon –
Exon, multiple
genes

http://compbio.ornl.gov/grailexp

Exon –

Exon, multiple
genes

http://www.bork.emblheidelberg.de/fmilpetz/GIN

Exon –
Open reading frame –
Exon –
Exon –
Exon –

http://compbio.ornl.gov/grail-1.3
http://beagle.colorado.edu/~eesnyder/GeneParser.html
http://beagle.colorado.edu/~eesnyder/GeneParser.html
http://compbio.ornl.gov/grailexp
http://www.bork.emblheidelberg.de/fmilpetz/GIN


20 Gene prediction techniques / N. Goel et al. / Anal. Biochem. 438 (2013) 14–21
indicate that GrailExp performs better than all other methods. The
results shown here can vary with the dataset used. A detailed com-
parative study of popular gene prediction methods is carried out in
Ref. [85]. The evaluation is done on 570 vertebrate sequences.
These results, when compared with GIN [54], signify that it per-
forms similar to GENSCAN, one of the best gene prediction tools.
The above analysis indicates that gene prediction tools based on
soft computing techniques have good performance.
Discussion and conclusion

Gene prediction is an important open problem in bioinformat-
ics. Since the early 1980s, a large number of gene prediction pro-
grams based on traditional hard computing techniques (e.g.,
HMM, DP) have been developed. Because of the difficult nature
of this problem, soft computing techniques have been applied in
this field due to their ability to handle uncertain and noisy data.
This article has presented an extensive review of soft computing-
based gene prediction methods. A list of gene prediction programs
based on soft computing techniques is compiled in Table 5. For
each program listed, the table gives the year in which it was re-
ported, reference, organism used, prediction type, and important
URLs available.

Although significant advances have taken place in this area,
some problems still need to be addressed. The current splice site
predictors based on soft computing techniques show improved
performance over those available in the past. However, they are
unable to solve the problem of noncanonical splice sites. Moreover,
splice site prediction programs result in a large number of false
positives, reducing their performance and making gene prediction
extremely difficult. Various issues exist in the case of gene predic-
tion, as mentioned before. The current gene prediction programs
depend heavily on sequences from existing databases either for
training or for homologue sequences [6]. The databases themselves
are of poor quality. The dataset used to assess the performance of
gene prediction methods does not model real sequences com-
pletely, which sometimes overestimates their performance.

Another problem in gene prediction is to locate short exons,
especially those bordered by long introns. Short exons are easily
missed due to a lack of discrimination characteristics present in
these segments. To predict boundary exons with high accuracy is
still problematic. One major issue in gene prediction is to predict
alternative splice sites. Some programs have tried to predict sub-
optimal exons (e.g., GENSCAN), but a more effective mechanism
is required to deal with this problem. In addition, the presence of
noncoding RNA (ncRNA) genes in the human genome further com-
plicates the problem due to their poor conservation. Moreover, the
presence of overlapping genes makes the problem even more
difficult.

Keeping in mind the above issues, gene prediction is a hard to
solve problem. Some of these issues are addressed by soft computing
techniques, but there is still a long way to go. Soft computing tech-
niques, especially neural networks, appear to be a powerful tool in
gene prediction. It seems to be an ideal technique for combining
multiple sources of information. But the success of neural networks
as a gene prediction technique depends mainly on the type of infor-
mation used as input. Genetic algorithms and hybrid techniques
give promising results, but they are applied in a very limited fashion.

Even though the current soft computing techniques have
achieved a significant level of accuracy in identifying genes, the out-
put results are still far from perfect because most of the methods
are developed for specific genomes. In the future, techniques such
as fuzzy logic, genetic algorithms, and neuro-fuzzy and neuro-ge-
netic methods need to be explored. Neural networks alone are inca-
pable of incorporating already known sequence information from
biological knowledge. So they can be combined with traditional
gene prediction techniques such as HMM to achieve better results.
Nowadays, ncRNA gene prediction is becoming a promising area of
research and, thus, can be further explored using soft computing
techniques.
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