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ABSTRACT

Improving the accuracy of prediction of gene starts is
one of a few remaining open problems in computer
prediction of prokaryotic genes. Its difficulty is
caused by the absence of relatively strong sequence
patterns identifying true translation initiation sites. In
the current paper we show that the accuracy of gene
start prediction can be improved by combining
models of protein-coding and non-coding regions
and models of regulatory sites near gene start within
an iterative Hidden Markov model based algorithm.
The new gene prediction method, called GeneMarkS,
utilizes a non-supervised training procedure and can
be used for a newly sequenced prokaryotic genome
with no prior knowledge of any protein or rRNA
genes. The GeneMarkS implementation uses an
improved version of the gene finding program Gene-
Mark.hmm, heuristic Markov models of coding and
non-coding regions and the Gibbs sampling multiple
alignment program. GeneMarkS predicted precisely
83.2% of the translation starts of GenBank annotated
Bacillus subtilis genes and 94.4% of translation
starts in an experimentally validated set of
Escherichia coli genes. We have also observed that
GeneMarkS detects prokaryotic genes, in terms of
identifying open reading frames containing real
genes, with an accuracy matching the level of the
best currently used gene detection methods. Accu-
rate translation start prediction, in addition to the
refinement of protein sequence N-terminal data,
provides the benefit of precise positioning of the
sequence region situated upstream to a gene start.
Therefore, sequence motifs related to transcription
and translation regulatory sites can be revealed and
analyzed with higher precision. These motifs were
shown to possess a significant variability, the func-
tional and evolutionary connections of which are
discussed.

INTRODUCTION

Developing ab initio computer methods for gene finding has a
rather long history initiated by the works of Fickett (1),
Gribskov et al. (2) and Staden (3). Several frequently used
techniques employ a local Bayesian approach analyzing one
sequence ‘window’ or one open reading frame (ORF) at a time.
In doing so, protein-coding regions are represented by inhomo-
geneous three-periodic Markov models, either fixed order (4,5)
or interpolated (6,7). Other techniques use a global approach
and find maximum likelihood sequence parse with regard to
specified Hidden Markov model (HMM), either uniform one
(8), or one with duration (9). Many current gene finding
methods are highly accurate in detecting ORFs in which
prokaryotic genes reside. Acceleration of microbial genome
sequencing has led to a high need for gene finding methods
using non-supervised training. Non-supervised training proce-
dures were described for methods using a local approach, such
as GeneMark or Glimmer (7,10–12). A non-supervised
training procedure utilizing models with heuristically built
pseudocounts was proposed for GeneMark.hmm, a method
using a global maximum likelihood approach (13). Non-super-
vised training may include clustering routines to build models
for the atypical gene class, which is assumed to be populated
with genes horizontally transferred into a given microbial
genome in the course of evolution (10). A different type of
non-supervised training method based on sequence similarity
searches is used by the ORPHEUS program (14).

Detecting a gene as a protein-coding ORF with an ‘open’
start still does not provide full information for gene annotation.
Although several procedures for gene start prediction accuracy
have been described (8,9,14–16), verification of the actual
accuracy of these methods has been hampered by an insuffi-
cient number of experimentally validated translation starts and,
therefore, a deficit of reliable data for training and testing. In
the absence of a reliable computer procedure for gene start
prediction, the rule of the ‘longest ORF’ was frequently
applied to annotate complete microbial genomes with gene
start assigned to the 5′-most ATG codon (see Table 1). A
simple estimate of the accuracy of this rule can be derived as
follows. Let us assume that a model of DNA sequence situated
upstream of a real translation start is a multinomial model
sequence with probabilities of occurrence of nucleotides T, C, A
and G, estimated by their observed frequencies in non-coding
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DNA and designated as fT, fC, fA and fG, respectively. The proba-
bility, P, that a 5′-most ATG in a given ORF is a real translation
start is provided then by the formula:

P = 1 – fATG/(fATG + fTAA + fTAG + fTGA), where fXYZ = fXfYfZ.

Further refinement of this formula is possible for more
complex DNA sequence models. If nucleotide frequencies are
equal to each other, then P = 0.75. This value may serve as an
estimate of the accuracy of the ‘longest ORF’ rule for a large

number of genomes. This level does not seem to be sufficient.
The computer procedures described earlier for annotating gene
starts (8,9,14–16) use, in most cases, the model of the ribosomal
binding site (RBS), either derived by supervised training or
inferred from prior knowledge of the species 16S rRNA
sequence. The GeneMark and GeneMark.hmm programs use
the RBS model (9,17) in a form of positional nucleotide
frequency matrix, motif, whose parameters are derived by
Gibbs sampling multiple alignment of DNA sequences situated

Table 1. Characteristics of 34 completely sequenced microbial genomes available in GenBank

The last column indicates the percentage of genes whose annotated start codons are located inside the longest possible ORF, and not at its 5′ end.

Species Date
submitted

G + C (%) Base pairs Number of genes Number of genes
whose starts are not
leftmost start codon

Synechocystis PCC6803 1997 47.7 3 573 470 3163 0 (0%)

Aeropyrum pernix 1999 56.3 1 669 695 2694 1 (0%)

Mycoplasma pneumoniae 1996 40.0 816 394 677 2 (0%)

Rickettsia prowazekii 1998 29.0 1 111 523 833 4 (0%)

Borrelia burgdorferi 1997 28.6 910 724 850 4 (0%)

Pyrococcus horikoshii 1998 41.9 1 738 505 2058 8 (0%)

Methanococcus jannaschii 1998 31.4 1 664 970 1715 12 (1%)

Aquifex aeolicus 1997 43.5 1 551 335 1522 21 (1%)

Haemophilus influenzae Rd 1995 38.1 1 830 138 1709 33 (2%)

Vibrio cholera 2000 47.7 2 961 149 2736 61 (2%)

Mycoplasma genitalium 1995 31.7 580 074 480 12 (3%)

Ureaplasma urealyticum 2000 25.5 751 719 611 17 (3%)

Campylobacter jejuni 2000 30.5 1 641 481 1653 55 (3%)

Archaeoglobus fulgidus 1997 48.6 2 178 400 2407 79 (3%)

Chlamydia muridarum 2000 40.3 1 069 412 909 34 (4%)

Chlamydia trachomatis 1998 41.3 1 042 519 892 36 (4%)

Helicobacter pylori 26695 1997 38.9 1 667 867 1566 64 (4%)

Chlamydia pneumoniae 1998 40.6 1 230 230 1052 62 (6%)

Methanobacterium thermoautotrophicum 1997 49.5 1 751 377 1869 120 (6%)

Pyrococcus abyssi 1999 44.7 1 765 118 1763 124 (7%)

Escherichia coli 1998 50.8 4 639 221 4288 288 (7%)

Helicobacter pylori J99 1999 39.2 1 643 831 1478 114 (8%)

Buchnera sp. APS 2000 26.3 640 681 564 49 (9%)

Thermotoga maritima 1999 46.2 1 860 725 1846 159 (9%)

Deinococcus radiodurans 1999 67.0 2 648 638 2580 229 (9%)

Halobacterium sp. NRC-1 2000 67.9 2 014 239 2058 221 (11%)

Treponema pallidum 1998 52.8 1 138 011 1031 133 (13%)

Xylella fastidiosa 2000 52.7 2 679 306 2766 392 (14%)

Neisseria meningitidis Z2491 2000 51.8 2 184 406 2143 320 (15%)

Mycobacterium tuberculosis 1998 65.6 4 411 529 3909 697 (18%)

Bacillus subtilis 1997 43.5 4 214 814 4097 786 (19%)

Thermoplasma acidophilum 2000 46.0 1 564 906 1478 321 (22%)

Bacillus halodurans 2000 43.7 4 202 353 4066 888 (22%)

Pseudomonas aeruginosa 2000 66.6 6 264 403 5565 1381 (25%)
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upstream of annotated translation starts. The new program
GeneMark.hmm 2.0 additionally uses a probability distribu-
tion of the length of a spacer, the sequence between the last
nucleotide of the RBS sequence and the first nucleotide of a
gene. Typically in prokaryotes, the consensus RBS sequence is
complementary to a section of 3′-terminal sequence of 16S
rRNA. The Frame-by-frame program (15) does not explicitly
use an RBS model. It employs a HMM with several hidden
states modeling the trinucleotide frequency pattern specific for
sequences immediately upstream, upstream sequence, and
downstream of a translation start site. Note that it has been
argued that a downstream sequence pattern is not related to the
mechanism of ribosome binding, but rather to the bias in
composition of amino acid sequences proximal to the protein
N-terminal (18). The RBS model is also used by the
ORPHEUS program (14). Unlike the GeneMark programs,
ORPHEUS uses a weight matrix model of RBS with positional
frequencies normalized by the frequency of the most probable
nucleotide in a given position. The ORPHEUS model also
takes into account the pattern of the spacer length variation.
The model is built from the multiple alignment of a set of
sequences located upstream (–1 to –20) of predicted protein-
coding ORFs selected by the criteria that their starts are both
located relatively far from alternative start codons and are not
overlapped by other predicted genes. Gene start prediction
includes extension of an ORF seed, detected by protein
sequence similarity search, to the 5′-most likely start codon.
Another method of using the RBS model for gene start predic-
tion was mentioned recently (16), albeit in much less detail
than for the ORPHEUS. Glimmer 2.02 assigns, by default, the
predicted gene start to the start codon of the longest ORF
containing predicted coding region. Optionally, as described in
the program documentation, Glimmer 2.02 computes the
maximum value of hybridization energy between a fragment of
16S rRNA and any fixed length region located in front of a
possible start codon. If this value exceeds a certain threshold
and the maximum values defined for all other alternative starts
then the codon in question is selected as a predicted gene start.

In this paper, we describe a new non-supervised iterative
method, GeneMarkS, performing gene finding in prokaryotic
DNA with a specific focus on identifying gene starts. This
method makes use of heuristic Markov models of protein-
coding regions as well as algorithms developed in our earlier
projects on GeneMark and GeneMark.hmm (5,9,13). The
Gibbs sampling multiple alignment program (19) is also used
as a part of an iterative routine that creates a two-component
statistical model of a conserved in evolution site situated in
upstream sequence. The two components are the positional
frequency matrix, a motif and the spacer length distribution.
This two-component model is included in the set of models
used by the new v2.0 of GeneMark.hmm. GeneMarkS runs the
GeneMark.hmm program iteratively and finds a maximum
likelihood parse of a given anonymous sequence into protein-
coding and non-coding regions, given the models. Newly
predicted sequence parse is utilized to update the models used
in the next iteration. This process runs until convergence, in
terms of achieving a change in the sequence parses, obtained in
two subsequent iterations, less than some predefined small
value. The iterative GeneMarkS procedure can be applied to
anonymous genomic DNA without prior knowledge of any
protein or rRNA coding genes.

By means of its design, besides the ability to find prokaryotic
genes and derive models of coding and non-coding regions,
GeneMarkS is able to detect functional sites in upstream
sequences (such as a RBS) and derive their models. Many
algorithms for detecting various DNA functional sites,
including RBS, have been described (17,20–30). In the context
of gene finding, the separately derived RBS model was used at
a post-processing step for further refinement of predicted
genes (GeneMark.hmm, Glimmer, ORPHEUS). Here, we
emphasize that GeneMarkS is an integrated procedure where
parameters of the model for an upstream functional site are
derived and refined in the process of adjusting all models used
in the gene prediction algorithm in parallel with gene predic-
tion.

In testing selected genomic sequences with reliably anno-
tated genes we have demonstrated that GeneMarkS perform-
ance matches or exceeds currently known standards and,
therefore, GeneMarkS can be used as a single or alternative
tool for annotation of newly sequenced prokaryotic genomes.

The ability of GeneMarkS to detect and model functional
sites in translation start upstream sequences may lead to a
better understanding of translation initiation mechanisms of
prokaryotic cells. Particularly, as a rather surprising observa-
tion, the GeneMarkS program was able to elucidate transcrip-
tion initiation related sequence motifs in archaeal genomes
Pyrobaculum aerophilum, Aeropyrum pernix (M.Slupska,
A.King, S.Fitz-Gibbon, J.Besemer, M.Borodovsky and
J.Miller, in press) and Archaeoglobus fulgidus.

MATERIALS AND METHODS

Genome sequence data

Sequence data used in the current study include the following
genomes available in the GenBank database: A.pernix (31),
A.fulgidus (32), Bacillus subtilis (33), Escherichia coli (34),
Haemophilus influenzae (35), Helicobacter pylori (36),
Methanobacterium thermoautotrophicum (37), Methano-
coccus jannaschii (38), Mycobacterium tuberculosis (39),
Synechocystis PCC6803 (40).

Additional sequence sets

The GenBank annotation of complete prokaryotic genomes is
frequently used as a benchmark for gene finding accuracy
tests. However, a simple analysis of GenBank annotation of
complete prokaryotic genomes has provided compelling
evidence of a systematic bias towards gene start annotation by
the longest ORF rule (Table 1). This bias is most pronounced
in the genomes listed in the top half of Table 1, with almost all
genes annotated as the longest ORFs (with only ATG considered
as a possible start codon). On the opposite end of the spectrum
(Table 1, bottom), are several prokaryotic genomes whose
annotated genes coincide with the longest ORFs in ∼80% of
cases.

Unless a special translation mechanism is involved, no
specific reason is seen to justify the ubiquitous absence of in
frame start codons in a DNA sequence located between the
start of a gene annotated as the longest ORF and the first
upstream stop codon. Since such a mechanism is not known
and may not exist, the GenBank annotation, particularly for
genomes from the top half of Table 1, should be used with
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caution. We assume that the B.subtilis genome is one of a few
annotated complete genomes that can be used to assess the
accuracy of a gene finding method targeting the gene starts. To
assess the robustness of the GeneMarkS prediction accuracy
with regard to gene length we used several sets of short genes
that were culled from the B.subtilis genomic sequence and
verified by protein similarity search. In another test of
accuracy of gene start prediction we used a set of 195 E.coli
genes whose starts were experimentally confirmed by
sequencing of N-termini of their protein products (41).

GeneMarkS algorithm outline

The step-wise diagram of sequence data processing and model
training is shown in Figure 1. In the first step, the parameters
of heuristic Markov models are determined by a method
described earlier (13). The set of heuristic models includes a
three-periodic second order Markov model of protein-coding
sequence and a second order homogeneous Markov model of
non-coding sequence. Transition and initial probability para-
meters of heuristic models can be estimated from a sample
DNA sequence as short as 400 nt (13). This approach uses
previously tabulated linear dependencies between codon posi-
tion specific frequency of a given nucleotide and its global
frequency, as well as linear dependencies between frequency
of a given amino acid in the species proteome and the GC% of
a genome. Parameters of these linear functions were deter-
mined by regression analysis of 17 complete bacterial genomes
(13).

The set of heuristic models also includes length distributions
of coding and non-coding regions described either analytically
or numerically. The accuracy of the algorithm was shown to be
rather insensitive to species-specific variations in these length
distributions (data not shown). Therefore, in the program we
used the length distributions derived from GenBank annotation
of the E.coli genome.

The new v2.0 of the GeneMark.hmm gene prediction algorithm
was used at several iterations of consecutive gene finding and
model refinement. The Gibbs sampling procedure was applied
in each iteration to align upstream sequences of predicted
genes. The ungapped multiple alignment singled out conserva-
tive sites situated upstream to gene starts. A positional nucleotide
frequency model of this site along with a length distribution of
the spacer was used in the GeneMark.hmm 2.0 program to
identify gene starts.

The v2.0 of GeneMark.hmm has the capability of predicting
genes with overlaps of arbitrary length (Fig. 2). The new
version also integrates the two-component models of upstream
conservative region, the positional nucleotide frequency model
and spacer length distribution into the Viterbi algorithm. In
comparison, previously described GeneMark.hmm (9) uses the
positional frequency model of RBS at a post-processing step.

The set of heuristic models defined in the first step does not
contain a model for the conservative site located upstream to
gene start (i.e. RBS). Still, the algorithm parsed the full length
of an input sequence into coding and non-coding regions and
provided the first approximation for the gene starts (Fig. 1).
Given this information, a set of upstream sequences was

Figure 1. Step-by-step diagram of the GeneMarkS procedure.
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selected. The length of upstream sequence is an algorithm
parameter. In our computations it was chosen to be equal to
either 25 or 50 nt. Note that use of just a subset of upstream
sequences might be sufficient for model derivation. A set of
genes whose starts are located at a certain distance (i.e. at least
50 nt) from a preceding gene may constitute such a subset. The
upstream sequences of these genes presumably contain
conservative functional sites not overlapped by coding regions.
The site motif extracted from such a sequence set is a priori
expected to be more pronounced. Note that this conjecture was
found to be in agreement with sequence analysis results cited
below. A set of upstream sequences, selected by default not to
contain predicted coding regions, was aligned without gaps by
the Gibbs sampling procedure (19,24) that identified the
multiple alignment window with the highest information
content (24). From this window-wide block of the multiple
sequence alignment one could immediately define the posi-
tional frequency matrix model, a motif, for the conserved func-
tional site located upstream to translation start and called
hereafter a prestart signal. When 25 nt long upstream
sequences were used, the alignment usually revealed a motif
with consensus sequence complementary to a portion of 16S
rRNA of the species under study. However, if 50 nt long
upstream sequences were used, in some species, as shown

below, the alignment procedure identified motifs typical for
promoter related sites.

The length of the spacer defines the precise location of a
prestart signal with regard to a translation start. Therefore, two
models described the prestart signal, the motif or positional
frequency matrix, and the spacer length frequency distribution.
In each step of the GeneMarkS training, these two models were
derived by means of Gibbs sampling multiple alignment of
prestart sequences defined at a previous run of Gene-
Mark.hmm 2.0. In turn, the GeneMark 2.0 program was using
the prestart motif and spacer length distribution in all steps but
the first (Fig. 1). At this first step the program was run with just
heuristic models of coding and non-coding regions and gener-
ated the first sequence parse into coding and non-coding
regions. The Markov models of coding and non-coding regions
derived at all subsequent steps of the regular cycle are called
pseudonative models, since they were derived from real DNA
sequences classified in silico as coding and non-coding
regions. The pseudonative models capture the species-specific
oligonucleotide frequency patterns more closely than heuristic
models (13).

The set of predicted starts was used in each iteration to deter-
mine the fractions of particular types of the start codons ATG,
GTG, CTG, TTG. The updated set of frequencies was used in
GeneMark.hmm 2.0 at the next iteration.

The GeneMarkS iterations were repeated until the sequence
parse was either 99% identical to that of the previous iteration
or until the percentage of identity started to fluctuate around
some reasonably high level. The sequence parse generated in
the final iteration run was the program output along with the
models derived and refined up to that point. Note that the
Atypical gene model being a part of the original Gene-
Mark.hmm program (9) was effectively switched off in the
GeneMarkS iterations. Therefore, the Markov model of
protein-coding region produced by GeneMarkS has to be
considered as a Typical gene model. Note that there is an inter-
esting option of using the heuristic model in place of an
Atypical gene model. We address this issue below.

The GeneMarkS procedure is not restricted to deriving and
using Markov models of just the second order. It can build
models of higher orders, if deemed reasonable for applications.
However, similarly to observations reported earlier (9), in our
GeneMarkS tests no significant gain in accuracy was achieved
by using higher order models (data not shown). The robustness
of the second order models is expected for the prokaryotic type
of gene organization with frequent long non-interrupted
protein-coding regions. These genes are detectable by low
order models due to the ability of the maximum likelihood
framework of GeneMark.hmm to accumulate the ‘coding
region signal’ within a long ORF even when a lower order
model with a low signal-to-noise ratio is used.

RESULTS AND DISCUSSION

Accuracy of gene detection

First we discuss the accuracy of detecting genes or predicting
protein coding ORFs with ‘open starts.’ Traditionally, the
accuracy of prokaryotic gene finding tools was characterized by
their performance in identifying unique markers of prokaryotic
genes, their 3′ ends. The GeneMarkS program was run on eight

Figure 2. (A) In the process of GeneMarkS training there is no division of the
coding sequence into two clusters. However, in applying the GeneMark.hmm
2.0 program, the model of coding region derived by GeneMarkS can be used as
the Typical model along with a heuristic model used as the Atypical model (see
Table 3). For simplicity, only the direct strand is shown. (B) In this simplified
diagram of hidden state transitions in GeneMark.hmm 2.0, the state ‘gene’
represents a sequence composed of an RBS plus a spacer plus the protein-
coding sequence (CDS). Gene overlaps encompass all possible types of super-
positions: overlap of genes on the same strand (as observed in operons), over-
lap of genes on opposite strands, overlap of coding region with RBS, and so on.
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anonymous prokaryotic sequences representing the complete
genomes of A.fulgidus, B.subtilis, E.coli, H.influenzae,
H.pylori, M.jannaschii, M.thermoautotrophicum and Syne-
chocystis. Upon completing the GeneMarkS iterations, a
special run of GeneMark.hmm 2.0 was performed. In this run
the newly derived Markov model of protein-coding region was
used as a Typical gene model along with another two models
derived by GeneMarkS for a prestart signal, positional
frequency matrix and spacer length distribution. In addition, to
complete a set of models that could be used in GeneMark.hmm
2.0, we utilized an Atypical gene model and the model of non-
coding region defined by heuristic methods (13). The 3′ ends
of predicted genes were compared with the 3′ ends of genes
annotated in GenBank. The figures characterizing sensitivity
and specificity of predictions for all eight genomes are shown
in Table 2. The figures indicate quite high accuracy for a self-
trained single sequence gene finder.

Accuracy of precise gene prediction

One test of the GeneMarkS performance in precise gene
prediction was done with the complete B.subtilis genome. The

advance of the procedure through the iterations is illustrated in
the left half of Table 3. At the first iteration the Gene-
Mark.hmm 2.0 with heuristic models of the B.subtilis coding
and non-coding sequence detected 98.0% of the 4099 genes as
annotated in GenBank. However, with the RBS module of the
program switched off, gene starts were precisely predicted for
only 56.6% of the genes. Generation and addition of the RBS
model raised the percentage of genes precisely predicted to
80.8%, while the percentage of genes detected, 98.1%, was
about the same. At the next step, generation and use of pseudo-
native models allowed to make precise prediction of 83.1% of
all B.subtilis genes while the percentage of detected genes
decreased to 97.0%. This change in the number of genes
detected confirmed the earlier observation that the heuristic
models used in GeneMark.hmm program are able to detect
genes of Typical and Atypical classes (13). This increase in
sensitivity of heuristic models, however, is achieved at the cost
of some decrease in specificity. After three regular cycles the
percentage of predictions identical to the previous ones
reached 99% and the iterations stopped. At this final step 4224
genes were predicted. From comparison with genes annotated

Table 2. Gene prediction accuracy of the GeneMark.hmm program using the protein-coding model derived by GeneMarkS as the Typical gene
model and a heuristic model as the Atypical gene model, the model for non-coding sequence is also heuristically derived

aNumber of predictions that match the 3′ end of GenBank annotated genes, with possible misplacement of the 5′ end, as a percentage of the
number of annotated genes.

Genes annotated Genes detecteda Gene detection accuracy

Sn (%) Sp (%)

A.fulgidus 2406 2583 98.5 91.8

B.subtilis 4099 4445 98.8 91.1

E.coli 4288 4397 96.9 94.5

H.influenzae 1708 1807 98.2 92.8

H.pylori 1552 1753 97.7 86.5

M.jannaschii 1714 1891 99.4 90.1

M.thermoautotrophicum 1868 1935 97.9 94.5

Synechocystis 3168 3521 98.7 88.8

Average 98.3 91.3

Table 3. Parameters of GeneMarkS prediction accuracy are shown in intermediate steps of the procedure as it runs for the entire B.subtilis genome
and a set of 195 experimentally verified E.coli genes

aRefers to the case where both the 5′ end and the 3′ end predictions match the annotation.
bRefers to the case where the 3′ end prediction (and not necessarily 5′ end prediction) matches the annotation.

Step B.subtilis (whole genome) E.coli (verified set)

Genes precisely
predicteda (%)

Genes
detectedb (%)

Potential new
genes (%)

Genes precisely
predicteda (%)

Genes
detectedb (%)

2 56.6 98.0 11.7 67.2 100

4 80.8 98.1 7.2 85.1 99.5

4.1 83.1 97.0 6.3 94.4 100

4.2 83.5 96.8 6.4 94.4 100

4.3 83.2 96.7 6.4 94.4 100
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in GenBank it appeared that 83.2% of B.subtilis genes were
predicted precisely while 96.7% of the annotated genes were
detected. The RBS motif and the spacer length distribution as
derived by GeneMarkS are shown in Figure 3A and B in the
form of a sequence logo (42) and a line graph, respectively.
Previously reported figures of the accuracy of precise predic-
tion of B.subtilis genes were as follows. Frame-by-frame
program (15) identified 85.8% of gene starts and ORPHEUS
(14) predicted 80.2% of gene starts in a test set of 346 genes.
Comparison of the accuracy figures indicates that GeneMarkS,
a self-training procedure, is a reasonable alternative to both the
frame-by-frame program, which utilizes for training a signifi-
cant number of previously annotated sequences, and
ORPHEUS, which utilizes for non-supervised training datasets
compiled from sequence comparisons to a comprehensive
database of known protein sequences.

A similar test on the entire E.coli genome showed that Gene-
MarkS predictions matched the GenBank annotation of gene
starts in only 69.7% of cases. However, given the lack of data
on verified gene starts this figure should be taken with caution.
In a more realistic test we used the set of 195 E.coli genes
whose starts were experimentally validated by protein
N-terminal sequencing (41). Table 3 (right half) presents a
detailed account of this test, iteration by iteration. At the final
step, 184 of the 195 genes were precisely predicted (94.4%)
and all 195 (100%) were detected. Here the following reserva-
tion should be noted. Analysis of the GeneMark scores for
these 195 E.coli genes (5) showed that the proportion of genes
with high scores, indicating higher codon usage bias and,
presumably, higher expression level, was slightly elevated in

comparison with an average score distribution for E.coli gene
set of the same size. Therefore, the accuracy figures might be
slightly elevated as well.

Short genes

To distinguish short genes from random ORFs is notoriously
difficult. In order to test the ability of GeneMarkS to find short
genes, we used 476 B.subtilis genes with lengths of 300 nt or
shorter, as annotated in GenBank. Three subsets of this set
were compiled with regard to the results of the analysis of their
protein products by BLAST (43). The first set included 123
genes whose protein products possessed at least one significant
sequence similarity with known proteins (with E-value <1e–4).
Note that any hits to B.subtilis proteins or to proteins annotated
as ‘putative’ or ‘hypothetical’ were ignored. The second set
comprised 72 genes with at least two strong similarities at a
protein level. The third set, with 52 genes, included those
genes whose protein products had at least 10 strong similarities
to known proteins.

The percentage of genes precisely predicted and genes
detected by GeneMarkS in each of these sets are cited in Table 4.
It is seen that the accuracy parameters do not change notice-
ably for short genes as compared to the whole gene set. There-
fore, these data demonstrate the robustness of the program
performance with regard to gene length.

Comparison with other programs

To compare GeneMarkS performance with that of Glimmer
and ORPHEUS we had to download and run these two
programs. Glimmer 2.02 was run following the instructions

Table 4. Comparison of the GeneMarkS, Glimmer 2.02 and ORPHEUS gene prediction programs on the following test sets: the B.subtilis genome as annotated in
GenBank (A); three sets of B.subtilis genes shorter than 300 nt with at least one (B), at least two (C) and at least 10 (D) significant homologies determined by
BLAST analysis; and a set of 195 experimentally validated E.coli genes (E)

Numbers in bold indicate the highest number of genes detected or genes precisely predicted for each test set.
aRefers to the case where both the 5′ end and the 3′ end predictions match the annotation.
bRefers to the case where the 3′ end prediction (and not necessarily 5′ end prediction) matches the annotation.

Program Test set Genes in test set Genes precisely predicteda Genes detectedb (3′ end)

Glimmer A 4099 2556 (62.4%) 4023 (98.1%)

ORPHEUS A 3028 (73.9%) 3484 (85.0%)

GeneMarkS A 3412 (83.2%) 3962 (96.7%)

Glimmer B 123 70 (57.0%) 112 (91.1%)

GeneMarkS B 102 (82.9%) 113 (91.9%)

Glimmer C 72 41 (57.0%) 66 (91.7%)

GeneMarkS C 64 (88.9%) 68 (94.4%)

Glimmer D 51 26 (51.0%) 45 (88.2%)

GeneMarkS D 46 (90.2%) 48 (94,1%)

Glimmer E 195 139 (71.3%) 195 (100%)

ORPHEUS E 148 (75.9%) 181 (92.8%)

GeneMarkS E 184 (94.4%) 195 (100%)
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given in the distribution file. Note that as far as gene detection
is concerned, the Glimmer 2.02 run with default parameters
detected significantly more genes than annotated both for
B.subtilis and E.coli. While some of these predictions might
detect real genes not annotated in GenBank, it might be unreal-
istic to assume that the percentage of real genes omitted in
GenBank is so large. Still, we did not change the default
parameters of Glimmer chosen by its authors as a design deci-
sion (7). To get precise gene predictions, Glimmer 2.02 uses
ribosome-binding free energy computations. This feature
requires prior data on 16S rRNA sequences for a given species.
The 16S rRNA sequence was supplied for each species. The
option of using ribosome-binding free energy is commented on
in Glimmer documentation as ‘not fully tested.’ However, we
observed that Glimmer results always improved when this
feature was turned on; thus, this option was turned on.

Before running ORPHEUS, a non-redundant protein data-
base was created by merging the updated SWISS-PROT,
TrEMBL and PIR databases aided by the NRDB2 software
(W.Gish, unpublished material). The default parameter
settings of ORPHEUS preclude finding genes <105 nt.
However, there were no genes <210 nt in the E.coli test set as

well as in the set of short B.subtilis genes: the shortest was
114 nt long.

For the whole B.subtilis genome Glimmer 2.02 detected
98.1% of the annotated genes, while GeneMarkS detected
96.7% and ORPHEUS detected 85% (Table 4). In turn, Gene-
MarkS precisely found 83.2% of the genes while ORPHEUS
made precise predictions for 73.9% of the genes and Glimmer
for 62.4%. Note that GeneMarkS at an intermediate step (step
4.1, Fig. 1) produced nearly identical results to those of
Glimmer, in terms of genes detected (Table 3). At this step
GeneMark.hmm 2.0 used heuristic Markov models and
detected 98.1% of the annotated B.subtilis genes. Still, Gene-
Mark.hmm 2.0 at this step made 4316 gene predictions
compared to 5075 predictions made by Glimmer 2.02.

For the 195 experimentally verified E.coli genes, both Gene-
MarkS and Glimmer 2.02 detected all of the genes (Table 4).
GeneMarkS identified precisely 94.4% of gene starts, while
ORPHEUS and Glimmer 2.02 precisely predicted positions of
gene starts in 75.9 and 71.3% of cases, respectively.

For the sets of short B.subtilis genes (as shown in Table 4)
predictions made by GeneMarkS appeared to be more accurate
than those made by Glimmer.

As far as gene detection is concerned we performed one
more comparative test using genomes of E.coli and B.subtilis.
We have already pointed out the transition from less precise
predictions of a larger number of genes to the more precise
prediction of smaller number of genes as the GeneMarkS
iteration progress. This change is accounted for by a gradual
transition in a process of training from more sensitive and less
specific heuristic models to more specific and slightly less
sensitive pseudonative models. Essentially, this transition
gives GeneMarkS more power to find genes of the typical class
while losing some of the ability to find atypical genes.

To combine the strength of heuristic and pseudonative
models, we used the models simultaneously in an additional
run of GeneMark.hmm 2.0 as described above (see Table 2).
The results obtained with this program setting for the B.subtilis
and E.coli genomes are also illustrated in Figure 4 where
GeneMark.hmm 2.0 predictions are compared, in gene detec-
tion terms, with GenBank annotation of these two bacterial
genomes and with predictions made by Glimmer 2.02.

Figure 3. (A) Sequence logo representing the RBS positional frequency pat-
tern detected by GeneMarkS in the analysis of B.subtilis genomic data. The
total height of the four letters in each position indicates the position specific
information content, while the height of each letter is proportional to the
nucleotide frequency (42). (B) Graph of probability distribution of spacer
length, the sequence between the RBS sequence and the gene start.

Figure 4. Venn diagram showing group relationships between the GenBank
annotation and sets of genes detected by GeneMark.hmm 2.0 and Glimmer
2.02 for the B.subtilis genome (A) and the E.coli genome (B).
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Functional and evolutionary variability of motifs in
upstream sequences

GeneMarkS provides new opportunities for studying sequence
patterns in regions situated upstream to gene starts. In many
prokaryotic genomes, the upstream sequence carries a functional
site (i.e. an RBS site) characterized by both nucleotide
frequency motif (Fig. 3A) and the spacer length distribution
(Fig. 3B).

Interestingly, the GeneMarkS derived model of upstream
signal may vary depending on the genome under study and on
the setting of program parameters. As is shown below, the set
of upstream sequences might be inhomogeneous. In general, if
different subsets of the set of upstream sequences contribute to
different sections of the sequence motif, the ungapped multiple
alignment via Gibbs sampling is not quite suitable for deriving
the pattern. However, there might be some interesting pattern
configurations where the method still works. Below we discuss
the details of the analysis separately for bacterial species and
for two groups of archaeal species, Euryarchaeota and Crenar-
chaeota.

In studied bacterial genomes multiple alignment of either 25
or 50 nt long upstream sequences led to extraction of a
pronounced RBS motif, similar to one shown for the B.subtilis
genome (Fig. 3). However, there are still several concerns. One
is a possible variability of RBS sequences within one genome.
To explore this possibility we performed additional analysis of
several data sets. We selected a set of gene starts overlapped by
a preceding gene on the same strand. Note that a same strand
gene overlap of 4 nt was observed as the most frequent gene
overlap. We scanned and characterized hexamers in the set of
upstream sequences by log-odds scores derived from the RBS
motif and the background model. The background model was
an ordinary Markov model of a coding region for the case of
overlapping genes. For non-overlapped starts it was an ordi-
nary Markov model of non-coding sequence. By identifying
the putative RBS as one with a maximum score within 50 nt
upstream region, we made the following observations for the
B.subtilis, E.coli and M.jannaschii genomes. The distribution of
scores of RBS sites overlapped by the preceding coding region
did not differ significantly in comparison with non-overlapped
ones (Fig. 5). The spacer length distribution of overlapped
RBS did exhibit a three periodicity (data not shown), which the
overall spacer length distribution is lacking completely (Fig. 3B).

As an extension of this analysis we derived RBS motifs for
sets of upstream sequences related to overlapped gene starts. In
several cases significant differences between these motifs and
ones derived for non-overlapping starts were observed. Inter-
estingly, for the M.tuberculosis genome the RBS motif derived
for genes overlapped by 4 nt by the preceding gene was more
pronounced than RBS motif derived for non-overlapping
genes. Note that the G+C richness of the M.tuberculosis
genome makes RBS patterns difficult to detect (30,39).

The results of the GeneMarkS analysis of archaeal genomes
were compatible with the notion that the transcription and
translation machinery in Archaea is a complex mixture of
eukaryotic and bacterial traits (44). The transcription initiation
machinery of Archaea contains much similarity to Eukarya.
Particularly, basic initiation factors TFIIB and TFIID as well
as eight ‘small’ subunits of the RNA polymerase show
homology to their eukaryotic counterparts. Also, the eukaryotic

TATA-box binding protein was shown to have homologous
proteins in several archaeal species. On the other hand, transla-
tion initiation mechanisms in Bacteria and Archaea, although
made up of different components, have long being considered

Figure 5. Distributions of log-odds scores of RBS sites, as detected by Gene-
MarkS, in sets of overlapping and non-overlapping of genes of (A) B.subtilis,
(B) E.coli and (C) M.jannaschii. As can be seen, the overlapping genes, which
are likely to be located inside operons, frequently have strong RBS sites. Still,
most strong sites of ribosome binding precede the non-overlapping genes
(stand alone genes and genes leading operons). This tendency is much more
apparent in the case of the archaeal genome of M.jannaschii than in the E.coli
and B.subtilis genomes.
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functionally similar, centered on the processing of bacterial
type polycistronic mRNA (45). The important difference
between the archaeal and eukaryal mechanisms for translation
initiation is the absence of archaeal homologs of proteins
involved in eukaryotic mRNA CAP recognition.

The GeneMarkS application to several archaeal genomes
resulted in extracting either a TATA box or an RBS type motif
as the model of the conservative site located in upstream
sequence. This particular outcome was apparently related to
the proportion of the first in operon and isolated genes relative
to genes internal in operons. Competition of RBS and promoter
sites in the alignment procedure could be excluded by a simple
restriction of the length of upstream sequences. In particular,
the length had to be at least 50 nt to detect the TATA box
related pattern. For 25 nt long upstream sequences of non-
overlapped genes the multiple alignment procedure usually
produced the RBS type pattern. This result was observed for
many archaeal species, but not for all of them.

In Crenarchaeota such as A.pernix and P.aerophilum we
found that the TATA box was the only consistent pattern
derived for the upstream sequences of non-overlapped genes.
This result corroborated the experimentally observed strong
bias to leaderless transcripts in P.aerophilum (M.Slupska,
A.King, S.Fitz-Gibbon, J.Besemer, M.Borodovsky, J.Miller,
in press). On the other hand, the set of upstream sequences for
the sample of overlapping genes, presumably those internal in
operons, was shown to exhibit the motif complementary to a
portion of 16S rRNA. Note that for overlapping genes of
A.pernix, GeneMarkS predicted almost equal frequencies of
start codons ATG and GTG, an interesting bias not observed in
any other species. Genomic sequences of another Crenar-
chaeote, Sulfolobus solfataricus, were analyzed earlier and
detected duality of motifs found in upstream sequences
suggested the presence of two distinct mechanisms for trans-
lation initiation (46).

Similarly, in upstream sequences of the hyperthermophile
euryarchaeote A.fulgidus GeneMarkS detected both transcrip-
tion and translation initiation related motifs (Figs 6 and 7). In
particular, the predominant conservative motif in 50 nt long

upstream sequences did not appear to be an RBS motif due to
its incompatibility with any portion of 16S rRNA and localiza-
tion around position –30 (Fig. 8). This motif has a consensus
[G/A, G/A, A, A, A, A] and could be interpreted as a eukaryotic
type promoter motif. This result was in striking contrast with
that obtained for hyperthermophilic euryarchaeon M.jannaschii
whose upstream motif, as determined by GeneMarkS, had a
preference for locating on much shorter distance from gene
start (Fig. 8) and was recognizable as an RBS motif by its
consensus complementary to 16S rRNA sequence.

In a search for the RBS motif in the A.fulgidus genomic
sequence, we performed Gibbs alignment for 25 nt long
upstream sequences of overlapping genes which are more
likely to reside inside operons. The A.fulgidus genome
containing a relatively large number of gene overlaps allowed
for further reduction of the set of selected upstream sequences
by using only genes overlapped by their upstream neighbors by
exactly 4 nt. Indeed, the Gibbs sampling alignment of this set
of upstream sequences detected a motif with consensus
complementary to the 3′ end of the A.fulgidus 16S rRNA (Fig. 7).
This finding indicates that leaderless transcripts observed in
Crenarcheota may also be present in some euryarchaeote
species, while the fraction of leadered transcripts seems to be
much higher.

Figure 6. Sequence logo representing the upstream sequence motif detected by
GeneMarkS for A.fulgidus. This consensus sequence is rather indicative of a
eukaryotic-like promoter element, than an RBS signal as often found in
prokaryotes. Sites that match this pattern are ubiquitous in A.fulgidus, although
further analysis of a subset of upstream sequences reveals a second motif (see
Fig. 7) complementary to the 3′ terminal section of the A.fulgidus 16S rRNA.

Figure 7. Sequence logo representing the RBS motif observed in a subset of
upstream sequences of the A.fulgidus genome. This subset consisted of 50 nt
long upstream sequences overlapping the 3′ end of the preceding gene. The
consensus of this motif is complementary to a section of the A.fulgidus 16S
rRNA.

Figure 8. Distributions of spacer length for two species with strong RBS
patterns, B.subtilis and E.coli (solid and dashed lines, respectively), and one
species with a strong eukaryotic promoter-like pattern, A.fulgidus (dotted line).
The promoter-like pattern of A.fulgidus is localized much further upstream of
the start codon than the RBS patterns of B.subtilis and E.coli.
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Interestingly, in the recent NCBI annotation of euryarchaeote
species Thermoplasma volcanium (ftp://ncbi.nlm.nih.gov/
genomes/Bacteria/Thermoplasma_volcanium/), GeneMarkS
program was used with the default length of the upstream
sequence as 50 nt. Our test of running the GeneMarkS with a
25 nt long upstream sequence length led to very close results,
with 98.4% of gene starts predicted at the same location.

In bacterial genomes we have observed that the Gibbs
sampling alignment of 50 nt upstream sequences for non-over-
lapping genes converged to an alignment carrying the RBS
motif. This observation suggested that promoter related motifs
are pronounced to a lesser degree than the RBS motif.

Results generated by GeneMarkS in some cases reveal non-
homogeneity of the set of sequences carrying RBS motif. We
illustrate these results for the B.subtilis and M.thermoau-
totrophicum genomes in Figure 9A and B. In the case of
B.subtilis two hexamers, AGGAGG and AGGTGA, can be
superimposed within the Gibbs sampling multiple alignment of
upstream sequences. Both hexamers are complementary to
overlapping sections of the B.subtilis 16S rRNA. The
hexamers have distinct preferences for location within mRNA
with regard to gene starts (Fig. 9A). These preferences, inci-
dentally, are such that binding of 16S rRNA to one or other
hexamer will position the ribosome at the same linear distance
from the translation initiation site. This interpretation of the
observed data is also supported by the results of experimental
mutational studies of the efficiency of translation initiation
(47).

Note that splitting the set of upstream sequences into two (or
more) homogeneous subsets alludes to the fact that the whole
set of genes of a particular species can be divided into two (or
more) homogeneous classes, i.e. classes of Typical and
Atypical genes. Still, further analysis did not provide any
distinct evidence that use of a particular hexamer correlates
with a gene type (data not shown).

For the archaeal genome of M.thermoautotrophicum the
GeneMarkS analysis led to a similar observation of non-homo-

geneity of a set of upstream sequences, as illustrated in Figure 9B.
Two hexamers, GGAGGT and GGTGAT, can be superim-
posed within the Gibbs sampling multiple alignment. Both
hexamers are complementary to overlapping sections of the
M.thermoautotrophicum 16S rRNA. Interestingly, in contrast
with the B.subtilis case, more frequently the GGTGAT
hexamer is located at a shorter distance from gene starts.

WWW resources

GeneMarkS is accessible via the Internet at http://
dixie.biology.gatech.edu/GeneMark/ genemarks.cgi. The input
sequence is analyzed by GeneMarkS and the final predictions
are returned to the user through email. A database of
the predictions made by GeneMarkS for many publicly
available prokaryotic genomes is available at http://
dixie.biology.gatech.edu/ GeneMark/GeneMarkS/. The three
sets of short B.subtilis genes with strong homology to known
genes used for testing are available at this location as well as
the set of experimentally validated E.coli genes.
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