Analytical chemistry -sampling strategies

Dr. Pernilla Carlsson; carlsson@recetox.muni.cz, room 209, RECETOX

Outline

- Sampling strategies
 - -general limitations
 - -bioaccumulation and sampling strategy
- Your hypothesis and how to address it
- "Chemical tools"
 - -chirality: environmental processes and different sources
 - -transport processes
 - -fate of POPs
- Case study discussions

General issues

- Amount and type of data
- Seasonal distribution
- Instrumental limitations and infrastructure
- Legislation

Biomagnification

- Who eats who?
- Benthic/pelagic couplings?

Your hypothesis and how to address it

- Clear research questions!
- Data needed
- Financial and time frames

Your hypothesis and how to address it

An example:

Does fish from the Baltic Sea contain higher concentrations of PCB and dioxins compared to fish from the Atlantic ocean?"

Fish and POPs

- Study design:
- Fish –species
- Sampling: fishing or buying?
- Transport
- Analyses
- Data interpretation
- Literature comparison

Chemical "tools"

- Relative distribution
- Degradation and metabolites
- Chirality
- Isotopes

Relative distribution

- PCBs: different mixtures had different ratio between congeners
- Low-chlorinated PCBs: Easily undergo longrange transport.

Relative distribution –technical PCB mixtures

PCB flux to the Arctic

Carrizo, D.; Gustafsson, O. Distribution and Inventories of Polychlorinated Biphenyls in the Polar Mixed Layer of Seven Pan-Arctic Shelf Seas and the Interior Basins. *ES&T* 2011.

Carrizo, D.; Gustafsson, O. Pan-Arctic River Fluxes of Polychlorinated Biphenyls. ES&T 2011

PCB flux to the Arctic

Carrizo, D.; Gustafsson, O. Distribution and Inventories of Polychlorinated Biphenyls in the Polar Mixed Layer of Seven Pan-Arctic Shelf Seas and the Interior Basins. *ES&T* 2011.

Carrizo, D.; Gustafsson, O. Pan-Arctic River Fluxes of Polychlorinated Biphenyls. ES&T 2011

Tri-PCB

Tetra-PCB

Penta-PCB

Hexa-PCB

Hepta-PCB

Octa-PCB

Relative distribution

- Long-range transport: Will favour light, easy volatile compounds
 - =>Changed ratio in Arctic compared to technical mixture
 - =>"Non-changed ratio": Local sources

Degradation and metabolites

- Hydroxy-PCBs: Metabolism of PCBs to facilitate excreation of the compounds
- Oxychlordane: Common, stable metabolite from trans-/cis-nonachlor and –chlordane
- DDE: Stable metabolite from DDT. Affect eggshell thickness among birds

Degradation of POPs

- Cytochrome P450 (commonly known as CYP)
- A superfamily of proteins (enzymes) found in the entire kingdom of life
- They can transform the structure of organic chemicals
- CYP1A1 responsible for oxidation of many POPs
- By affecting chemical structures, CYP may make a given compound nontoxic.
- Or, drastically increase its toxicity...

CYP1A

- Most important subfamily among the P450.
- 2,3,7,8-TCDD, benzo(a)pyrene and dioxin-like PCBs (non- and mono-ortho-PCBs) can induce the transcription of CYP1A genes via the aryl hydrocarbon (Ah) receptor.

Isotopes

Who eats who?

Trophic positions: "place in the food web"

 $^{15}N/^{14}N = \delta^{15}N$

Illustration: Eldbjørg Heimstad

Chirality

—tracing environmental processes and sources

Chiral pesticides: a-HCH, trans-, cis-, and oxychlordane

Enantiomer selective analyses

GC-MS (ECNI, SIM)

α-HCH: -, +

- Enantioselective column: BGB-172 (chiral separator: 20% *tert*-butyldimethylsilyl-β –cyclodextrin)
- Enantiomeric fraction; $EF = \frac{[(E_+)]}{[(E_+) + (E_-)]}$

100 80 60 40 40 20 8,49 8,62 40 20 8,0 Time (min) 8,5 +Oxychlordane (OC), -OC,

+trans-chlordane (TC), +cis-chlordane (CC), -CC, -TC

Enantiomer fractions of chiral pesticides in plankton as a tool to differentiate between water masses

Chiral pesticides

⇒ non-racemic EFs: indicate biological transformation processes

Plankton

⇒ non-selective metabolism, reflect EFs of pesticides in the water mass

Sample	2007	2008	2009	2010	2011	Dominating	Winter ice
area						water mass	conditions
Kongs-	Hallanger et	Hallanger et	Carlsson et		Carlsson	Atlantic	None/partly
fjorden	al., 2011a	al., 2011b	al., 2014		et al., 2014		covered
Liefde-		Hallanger et	Carlsson et			Atlantic/	March-July
fjorden		al., 2011b	al., 2014			Arctic	
Rijp-			Carlsson et		Carlsson	Polar surface/	Ice cover until
fjorden			al., 2014		et al., 2014	Arctic	July
Pack ice				Carlsson	Carlsson	Meltwater/	Annual ice
				et al.,	et al., 2014	Atlantic	cover
				2014			

Median enantiomeric fractions in Calanus spp.

ICE = Ice stations (also represented by ag=Apherusa glacialis, gw=Gammarus wilkitzkii in 2010).

Chiral pesticides and water masses

- •Ice cover and α -HCH
- \Rightarrow (hindering of) volatilisation
- Chlordanes and 2011
- ⇒Large deviations from racemic *trans*-chlordane
- •Water masses and ice cover are important for the EF distribution.
- •Impact from benthic-pelagic processes not completely understood yet.

Case studies of environmental pollution

PCBs in a changing Arctic: Towards understanding their input, transfer and uptake into Arctic biota and humans

under climate change

- John Munthe, Hanna Andersson, Crispin Halsall, Roland Kallenborn, Pernilla Carlsson, Henry Wöhrnschimmel, Matthew MacLeod, Ian Cousins, Deguo Kong, Gerhard Lammel, Arja Rautio, Khaled Abass

Aim of PCB-case study:

- •Synthesize ArcRisk results using PCBs as model substances
- •Link sources and pathways to transfer processes and uptake in biota and assess human exposure and effects
- •Effect of future climate change on uptake processes

Describing the full sequence from emissions to exposure

- Review of the current status
- What will happen when the climate changes?

PCB emissions and pathways to the Arctic

- Sources, releases
- Air and water transport and deposition fluxes
- Key intercompartmental transfer

PCB occurrence in the Arctic

- Levels in abiotic matrices and biotic matrices (key biota)
- Time-series of concentrations

Human exposure of PCB

Policy, directives

WHY PCBs?

- ☐ Banned, but still present in large quantities in the environment.
- ☐ Studied extensively in the Arctic for more than three decades.
- Well-understood physical-chemical properties, emissions, pathways and environmental concentrations
- => PCBs are perfect to evaluate models and as a benchmark for assessment of how other substances are influenced by climate change.

PCB emissions (tons/year)

Global primary emissions of PCB-28 and PCB-153 to air (high-end estimate), according to Breivik et al. (2007).

- Primary emissions from constructions and waste dumps.
- Secondary emissions of PCBs will become more important than primary sources.
- Climate change will most likely increase these secondary emissions.

Identification of the most important pathways of PCBs to the Arctic

- ☐ Atmospheric long range transport is the major route for global distribution of PCBs to the Arctic.
- ☐ Long-range transport via oceanic currents is also of high importance.
- □ Climate change is likely to affect these pathways and therefore the environmental fate of PCBs.

Atmospheric concentrations of PCBs

Long term monitoring of PCBs are carried out in Arctic and Europe

AMAP- and EMEP databases hosted by NILU EBASE (www.ebas.nilu.no).

Eva Brorstrøm-Lundén, Swedish Environmental Research Institute, IVL

Atmospheric concentrations of PCBs

- Long term monitoring

Arctic inter-compartmental transfer of PCBs-Processes of importance for climate change

- ☐ Precipitation: Important factor for PCB levels in snowpack surface
- ☐ Climate change related effects: Changes in precipitation patterns and snow melt periods

Arctic inter-compartmental transfer of PCBs -Processes of importance for climate change

- ☐ Accumulation of PCBs in sea ice =>"chemical storage"
- ☐ Ice melting: Release of PCBs to the water and the marine food web, especially during early spring.
- ☐ Climate change will affect pathways and mobility of PCBs in Arctic sea ice.

Arctic inter-compartmental transfer of PCBs

-Processes of importance for climate change

PCB-52 declines when the air temperatures increase above 0°C.

The heavier PCB-153/-132 do not show this trend.

Concentrations of PCB-52 and PCB-153/132 in the ice-rafted snowpack of the Beaufort Sea (Canada) during late winter.

What will happen when the climate changes?

- Model results: relative increases in PCB concentrations in the Arctic atmosphere and ocean. Mainly due to the temperature effect on volatilisation.
- ☐ The absolute concentrations by 2090 are forecasted to be several orders of magnitude below present levels in all scenarios.
- ☐ Atmospheric PCB concentrations in the Arctic have shown a continuous decreasing trend over the past decades.

Eva Brorstrøm-Lundén, Swedish Environmental Research Institute, IVL

What will happen when the climate changes?

Modeled relative change of PCB-153 and PCB-28 concentrations in the Arctic and European atmosphere.

PCB-153 in the Arctic: relative increase of \sim 1.5.

PCB-153 in Europe:relative increase of 2.

PCB-28: less sensitive to climate change, the effect is within the parameter uncertainties.

Eva Brorstrøm-Lundén, Swedish Environmental Research

Institute, IVL

Concentrations of PCBs in biota (food items)

Median (ng/g lw). Samples from Nuuk, Greenland (2010).

Bioavailability, food web transfer of PCBs

Bioavailability

Major climate change impact on bioavailability: distribution changes in matrices, changed partitioning of PCBs in water due to increased temperatures.

Food web transfer acts as a link between the abiotic environment and human exposure

Health effects: Human exposure of PCBs

PCB-153 TREND DATA IN PLASMA LIPIDS (μg/kg), IN PREGNANT WOMEN LIVING IN DISKO BAY (GREENLAND), NUUK (GREENLAND), AND NUNAVIK (QUEBEC, CANADA) DURING YEARS 1992 – 2007.

- In general, levels of PCB in humans populations have declined over the past 20-30 years.
- Declining trends of PCB-153 are seen in all these regions in plasma lipids in Inuit women.

Health effects

- -Human exposure of PCBs in a warmer Arctic
- The impact of changes in contaminant concentrations in food will be small relative to the impact of changes in dietary behaviour.
- Consumption and type of fish and other seafood are the most important factors for contaminant exposure, also in the future.

Summary and conclusions

- -PCBs in a changing Arctic
- ArcRisk results provides an overall picture of PCBs in the Arctic.
- Understanding of relationships between sources, transport, bioaccumulation, exposure and health impacts of PCBs in relation to climate change.
- Long term monitoring of PCBs and other POPs in air, sea water and biota is important both for evaluation of time trends and for detection of responses to environmental change.
- Models are useful tools to predict future concentrations of contaminants in environmental media and human exposure.
- Future needs: High quality datasets with simultaneously sampled biotic and abiotic samples, which can be used to evaluate and improve model performance.

Salmon

Lowering risk of cardiovascular diseases. Omega-3 fatty acids =>Salmon farming

Farmed salmon (Hites et al. 2004)

Higher concentrations of POPs compared to wild salmon

Cause: the feed used

Risk assessment

- × Only cancer considered as effect
- × Positive outcome of fish eating not included
- × PCB and dieldrin concentrations ok according to US Food and Drug Administration
- × EPA guidlines: Combined concentrations of PCBs, toxaphenes and dieldrin were cause for concern.

x =Eating farmed salmon 0.5-2 meals/month ok.

But...

The combined effect of PCBs, dieldrin and toxaphenes are not well known.

Benefits of omega-3 fatty acids (reducing cardiovascular diseases) are larger compared to the backdraws of POPs

Salmon feed today (Norway)

More vegetabilic feed =>less POPs compared to fish-based feed. However, also less fatty acids...

Norwegian farmed salmon in 2004:

ΣPBDE: 2.5 ng/g ww in salmon, BDE-47 and -99: 1.9 ng/g ww. BDE-47 and -99 in (wild) mackerel and herring: 0.5-1.8 ng/g ww.

PCB-153

BDE-47

Study design of your projects

- Laboratory/field experiment
- Analytical methods
- •Interpretation of data –limitations?
- •Time limitations?
- Suggestions for larger scale project

Summary -sampling strategies

- Plan your work: clear hypothesis, limitations of data, seasonality, time and financial frames
- Chemical "tools": stable isotopes, chirality, relative distribution
- Important to link models with empirical data
- Identify limitiations in literature

References

AMAP, 2011. Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. in: AMAP (Ed.), Oslo, Norway, p. xii +538.

Becker, S., Halsall, C.J., Tych, W., Kallenborn, R., Schlabach, M., Manø, S., 2012. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere. Atmospheric Chemistry and Physics 12, 4033-4044.

Borgå, K., Saloranta, T.M., Ruus, A., 2010. Simulating climate change-induced alterations in bioaccumulation of organic contaminants in an arctic marine food web. Environ. Toxicol. Chem. 29, 1349-1357.

Gouin, T., Armitage, J.M., Cousins, I.T., Muir, D.C.G., Ng, C.A., Reid, L., Tao, S., 2013. Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environ. Toxicol. Chem. 32, 20-31. Grannas, A.M., Bogdal, C., Hageman, K.J., Halsall, C., Harner, T., Hung, H., Kallenborn, R., Klan, P., Klanova, J., Macdonald, R.W., Meyer, T., Wania, F., 2013. The role of the global cryosphere in the fate of organic contaminants. Atmospheric Chemistry and Physics 13, 3271-3305.

Hung, H., Chi Lee, S., Wania, F., Blanchard, P., Brice, K., 2005. Measuring and simulating atmospheric concentration trends of polychlorinated biphenyls in the Northern Hemisphere. Atmos. Environ. 39, 6502-6512. Hung, H., Kallenborn, R., Breivik, K., Su, Y.S., Brorstrom-Lunden, E., Olafsdottir, K., Thorlacius, J.M., Leppanen, S., Bossi, R., Skov, H., Mano, S., Patton, G.W., Stern, G., Sverko, E., Fellin, P., 2010. Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993-2006. Sci. Total Environ. 408, 2854-2873.

IPCC, 2013. Fifth Assessment Report (AR5). in: Intergovermental Panel on Climate Change, W., UNEP (Ed.). Jantunen, L.M., Helm, P.A., Kylin, H., Bidleman, T.F., 2008. Hexachlorocyclohexanes (HCHs) In the Canadian Archipelago. 2. Air–Water Gas Exchange of α - and γ -HCH. Environ. Sci. Technol. 42, 465-470. Kallenborn, R., Halsall, C., Dellong, M., Carlsson, P., 2012a. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. Journal of Environmental

Monitoring 14, 2854-2869.

References

Kallenborn, R., Reiersen, L.O., Olseng, C.D., 2012b. Long—term atmospheric monitoring of persistent organic pollutants (POPs) in the Arctic: a versatile tool for regulators and environmental science studies. Atmospheric Pollution Research 3, 485-493.

Macdonald, R.W., Harner, T., Fyfe, J., 2005. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total Environ. 342, 5-86.

Malanichev, A., Mantseva, E., Shatalov, V., Strukov, B., Vulykh, N., 2004. Numerical evaluation of the PCBs transport over the Northern Hemisphere. Environmental Pollution 128, 279-289.

Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., Levin, E.D., 2009. The toxicology of climate change: Environmental contaminants in a warming world. Environment International 35, 971-986.

Toose, L., Woodfine, D.G., MacLeod, M., Mackay, D., Gouin, J., 2004. BETR-World: a geographically explicit model of chemical fate: application to transport of α -HCH to the Arctic. Environmental Pollution 128, 223-240.

UNEP/AMAP, 2011. Climate Change and POPs: Predicting the Impacts. in: UNEP/AMAP (Ed.).

Wong, F., Jantunen, L.M., Pucko, M., Papakyriakou, T., Staebler, R.M., Stern, G.A., Bidleman, T.F., 2011. Air-Water Exchange of Anthropogenic and Natural Organohalogens on International Polar Year (IPY) Expeditions in the Canadian Arctic. Environ. Sci. Technol. 45, 876-881.

Wöhrnschimmel, H., MacLeod, M., Hungerbuhler, K., 2012a. Global multimedia source–receptor relationships for persistent organic pollutants during use and after phase–out. Atmospheric Pollution Research 3, 392-398.

Wöhrnschimmel, H., MacLeod, M., Hungerbuhler, K., 2013. Emissions, Fate and Transport of Persistent Organic Pollutants to the Arctic in a Changing Global Climate. Environ. Sci. Technol. 47, 2323-2330. Wöhrnschimmel, H., Tay, P., von Waldow, H., Hung, H., Li, Y.F., MacLeod, M., Hungerbuhler, K., 2012b. Comparative Assessment of the Global Fate of alpha- and beta-Hexachlorocyclohexane before and after Phase-Out. Environ. Sci. Technol. 46, 2047-2054.