

Structure, dynamics and molecular interactions of biological macromolecules by NMR

Winter School on Structural Cell Biology, CEITEC, Brno, Feb 9-13, 2015

Michael Sattler

http://www.nmr.ch.tum.de http://www.helmholtz-muenchen.de/stb http://www.bnmrz.org

Outline

Solution NMR methods to study protein complexes

- \triangleright Ligand binding: CSP
- \triangleright Optimized isotope labeling and NMR experiments
- \triangleright Spin labeling: PRE (NMR), solvent PREs (sPRE)
- \triangleright Large proteins, complexes, domain arrangements

Integrated structural biology of protein-RNA interactions

- \triangleright Intron RNA recognition by multi-domain splicing factors (splicing regulation)
- ▶ [Cooperative mRNA recognition by Sxl/UNR (translational regulation)]

Structure/imaging from molecules to animals

Why solution state NMR?

Nature 2007

LETTERS

Visualizing spatially correlated dynamics that directs **RNA** conformational transitions Qi Zhang', Andrew C. Stelzer', Charles K. Fisher¹ & Hashim M. Al-Hashimi" **ARTICLES** Nature 2007 Intrinsic motions along an enzymatic reaction trajectory Katherine A. Henzler-Wildman¹, Vu Thai¹, Ming Lel¹, Maria Ott², Magnus Wolf-Watz¹⁴, Tim Fenn²1,
Ed Pozharski²†, Mark A. Wilson⁴†, Gregory A. Petsko², Martin Karplus⁴³, Christian G. Hübner¹⁴, & Dorothe **LETTER** Nature 2011 doi:10.1038/nature10171 Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF Cameron D. Mackereth^{12,3}, Tobias Madl^{1,2}, Sophie Bonnal³, Bernd Simon³, Katia Zanier³, Alexander Gaseh³, Vladimir Rybin⁹, Juan Valcárcel^{3,8} & Michael Sattler^{3,84} LETTERS Nature 2009 **High-resolution multi-dimensional NMR** 熱 spectroscopy of proteins in human cells vitro: Kohsuke Inomata¹², Ayako Ohno¹, Hidehito Tochio¹², Shin Isogai¹, Takeshi Tenno²⁴, Ikuhiko Nakase³,
Toshihide Takeuchi³, Shiroh Futaki³³, Yutaka Ito²⁶, Hidekazu Hiroaki²⁴ & Masahiro Shirakawa^{1,225}

Biomolecular NMR

• **Structure determination of biomacromolecules**

 no crystal needed, native-like conditions: solution, macromolecular crowding, *"in cell"* **NMR (Xenopus oocyctes)**

- **nucleic acids: difficult to crystallize, affected by crystal packing**
- **Ligand binding and molecular interactions in solution**

"Band shift" in NMR fingerprint - with residue/amino acid resolution !!!

• Characterization of dynamics and mobility ($ps \rightarrow days$)

 \rightarrow **conformational dynamics ↔ enzyme turnover, kinetics, folding**

• **Molecular weight**: X-ray: >200 kDa,

NMR: de novo structure <50 kDa, but: binding/dynamics: 900 kDa

• \rightarrow NMR and X-ray crystallography are complementary

www.pdbe.org

www.rcsb.org

Effect of exchange/dynamics on NMR spectra

 v_A , v_B : resonance frequency

- Exchange process can be binding, conformational exchange, chemical reaction…
- Line widths and resonance frequencies depend on the exchange rates and frequency differences Δv of the interconverting states
- Exchange can allow transfer of magnetization in 2D NOESY-type experiments
- Rate constants can be determined, for conformational or binding equilibrium, chemical reaction, …. Göbl et al Sattler Prog NMR Spectrosc (2014)

Effect of dynamics on NMR spectra

Two-site exchange: protein/ligand interactions by NMR

This can be used to determine, e.g. residue pK_a values or **dissociation constants** K_a .

Ligand binding in NMR titrations (fast exchange)

 K_{D} > [P] (μ M-mM) $\rightarrow K_{D}$ can be fitted

Viral B2 protein dimer: inhibitor of RNAi

Ligand binding in NMR titrations (slow exchange)

Ô

Ô

⊝

 624

 \overline{u}

 K_d < [P] (nM) \rightarrow binding stoichiometry can be determined

Ligand binding - stoichiometry

• Stoichiometry can only be correct if protein concentration is accurately determined!

NMR titrations – large complexes

Binding of a small ligand to a large protein: Bound state may be broadened beyond detection.

 $\mathbf{I}(\omega) = \text{re} \int_0^{\infty} \mathbf{W} \exp\{i(\Omega - \omega \mathbf{E})t + \mathbf{K}t + \mathbf{R}t\} \mathbf{1} dt$ (1)

Identification by NMR Spectroscopy of Residues at Contact Surfaces in Large, Slowly Exchanging Macromolecular Complexes. Matsuo, et al & Wagner (1999) JACS 121, 9903-4.

Kinetics and thermodynamics from NMR line shape analysis

- *kex* is obtained from measuring transverse relaxation / linewidth fitting
- Temperature dependence allows to determine activation enthalpy and entropy based on Arrhenius/Eyring transition state theory

Exchange spectroscopy (EXSY)

Exchange spectroscopy

Kern et al, PNAS 2002

NMR of large protein complexes: ClpP

Sprangers R et al. Kay LE PNAS 2005;102:16678-16683

Conformational exchange in ClpP

Sprangers R et al. Kay LE PNAS 2005;102:16678-16683

Ligand detected NMR screening: Saturation Transfer Difference (STD)

Figure 1. (A) Reference 1D NMR spectrum of the 120-kDa lectin RCA₁₂₀ (50 μ M in binding sites), displaying the very broad lines normal for a protein this size. The few sharp resonances arise from low-
molecular weight impurities. (B) Corresponding STD NMR spectrum showing that, by irradiating at -2 ppm, the entire protein is saturated uniformly and can therefore be efficiently used for the STD NMR the
informity and can therefore of enteriently used for the S1D NAIR
technique. One can also see that the impurities contained in the spectrum
are effectively subtracted and therefore do not give rise to signals in
the dif weight impurities remain in the spectrum. (D) Reference 1D NMR spectrum of RCA₁₂₀ (40 μ M in binding sites) in the presence of 1.2 $mM \beta$ -GalOMe, without the $T_{1\rho}$ filter. (E) Corresponding STD NMR spectrum showing that β -GalOMe yields signals and therefore binds to the receptor. (F) STD NMR spectrum as in (E) but with the T_{1p}
filter eliminating all protein background signals.

-
- Little amount of target protein needed
- No size limitation for target protein
- Provides binding epitope mapping \rightarrow SAR
- Detect micromolar binders $(K_D 10^{-3}-10^{-8})$ or competition for nanomolar ligands

B Meyer et al , Angew Chem 1999; JACS 2001

Tripsianes et al, Nature Struct Mol Biol (2011)

Isotope edited/filtered experiments

Principle combinations of editing/filtering

Editing/filtering can be applied before t_1 and/or $t_2 \rightarrow \omega_1$ and/or ω_2 -edited/filtered correlations

Isotope filtered 2D NOESY

Triple 13C filter (2x 13Caliphatic, 13Caromatic) , single 15N filter

3D edited/filtered NOESY of protein-RNA complex

¹H → ¹³C (t₁) → ¹H(-¹³C) (t₂) → NOE → filter → ¹H(-¹²C/¹⁴N) (t₃)

3' splice site recognition in constitutive splicing

- Essential early step in pre-mRNA splicing
- Regulation of alternative splicing during **spliceosome assembly**
- **Cooperative recognition** of 3' splice site by U2AF and SF1

Structural modules at the 3' splice site

Ito et al. EMBO J. (1999); Sickmier et al Mol.Cell (2006); Mackereth et al Sattler Nature (2011) *i*

Dynamics in multi-domain protein interactions

Multi-domain dynamics Multiple register binding

NMR approaches for studying large complexes

• **3D structure of subunits available (X-ray, NMR, ROSSETTA)**

Py tract RNA recognition by U2AF65 RRM1-RRM2

- U2AF is an essential splicing factor, required for intron Py tract RNA recognition
- U2AF65 RRM1-RRM2 necessary and sufficient for Py tract RNA binding
- Two structural domains, connected by a flexible linker

Subunit-selective labeling

Random fractional deuteration and methyl-selective 1H,13C labeling

Random fractional 2H-labeling

- Grow bacteria in 70-90% D₂O \rightarrow random fractional (60-80%) ²Hlabeling
- Cost-effective
- But: presence of ¹³CH_v isotopomers \rightarrow combine with CH multiplicity filters

Sibille et al (2002) *JACS* 124 14616-25 Gardner & Kay (1998) *Ann Rev Biophys Biomol Struct* 27 357-406

Ollerenshaw, et al Kay JBNMR 2005

ILV labeling: methyl-13C,1H for Ile, Leu, Val

Residual dipolar couplings (RDCs)

In anisotropic solution:

- *D*!=0 \Leftrightarrow orientation
- Weak (10-4) alignment in dilute (3-5%) liquid crystalline medium

Residual dipolar coupling

Domain orientation from RDC data

Domain orientation with two alignment tensors

Simon, et al (2010) Angew. Chem.

NMR restraints from paramagnetic effects

How to make your protein paramagnetic:

Metal-binding proteins

- **Paramagnetic metals binding sites**
- **PRE, PCS, RDC**

Paramagnetic tags (spin labels)

- **nitroxide radicals**
- **lanthanide-binding peptide tags**
	- **protein fusions with LBTs**
	- **covalently linked to cysteines,**
- **4-thio-uracyl, 2' amino (RNA)**
- **PRE, PCS, RDC**

Soluble paramagnetic agents

- **nitroxide radicals, ions, chelates**
- **Solvent PRE**

Madl. et al Angew Chemie (2009, 2011); Otting JBNMR 2008 Göbl et al Prog NMR Spec (2014)

Spin labeling of proteins and nucleic acids

Protein spin labeling:

Recombinant protein with single Cys mutant proteins \rightarrow site-directed mutagenesis

MTSL often used (EPR, NMR) IPSL chemically more stable, but also less reactive

RNA spin labeling:

Interdomain distance restraints from PREs

(paramagnetic relaxation enhancement)

• **PRE ~** *r***⁶ (electron-spin distance)**

$$
R_2^{PRE} = \frac{1}{15} S(S+1)\gamma_H^2 g^2 \mu_B^2 \frac{1}{r^6} \left(4\tau_c + \frac{3\tau_c}{1 + \omega_H^2 \tau_c^2} \right)
$$

- \bullet \rightarrow long-range distance restraints (<20 Å)
- \rightarrow multiple single-Cys mutants of protein (\rightarrow molecular biology)
- Measure transverse PRE R_2^{PRE} from sample with oxidized (l_{para}) and reduced (l_{dia}) spin label

Battiste & Wagner Biochemistry (2000); Simon, et al Angew. Chem. (2010); Madl et al J Struct Biol (2011)

Measuring 1HN PRE as ² directly

$$
\boxed{\Gamma_2 = R_{2,\text{para}} - R_{2,\text{dia}} = \frac{1}{T_b - T_a} \ln \frac{I_{\text{dia}}(T_b) I_{\text{para}}(T_a)}{I_{\text{dia}}(T_a) I_{\text{para}}(T_b)}}
$$

- Set $T_a=0$,
- $T_b = 1.15/(R_{2,\text{dia}} + \Gamma_2)$ to minimize error in Γ_2

Fig. 1. Pulse sequence for ${}^{1}H_{N}$ - Γ_{2} measurements. The delay T is changed for the relaxation measurement. Thin and bold bars indicate rectangular 90° and 180° pulses, respectively. Phases are along x unless indicated otherwise. Short bold bars represent soft rectangular 90° pulses (1.4 ms) selective for the ¹H₂O resonance. A half-bell shape for ¹H represents a half-Gaussian 90° pulse selective for water (2.0 ms). Delays are as follows: $\tau_a = 2.7$ ms; $\tau_b = 2.25$ ms; δ = (length of ¹³C WURST pulse). Phase cycling: $\phi_1 = (y, y, -y, -y)$; $\phi_2 = (x, -x)$; $\phi_3 = (x, x, -x, -x, y, y, -y, -y)$; receiver $=(x, -x, -x, x, x, -x, x, x, -x)$. The receiver phase and ϕ_2 were incremented for states-TPPI quadrature detection in the t_1 domain. Field gradients are optimized to minimize the solvent signal. Although ${}^{3}J_{H\text{N-Hz}}$ is active for non-deuterated proteins during the period T, the resulting modulation is cancelled out when Γ_2 is calculated as described in the main text.

Donaldson et al Kay, J.Am.Chem.Soc. (2001)123, 9843–9847. Iwahara et al.Clore J Mag Res (2007) 184,185–195

PRE in the presence of exchange/dynamics

Assume: $k_{\rm ex} \gg |\Gamma_{2,B} - \Gamma_{2,A}|$

Otherwise, if: $|\Omega_A - \Omega_B| \ll k_{ex} \ll |\Gamma_{2,B} - \Gamma_{2,A}|$ need to now $\Delta\Omega$ and k_{ex} PRE may become independent of *r*

Paramagnetic Relaxation Enhancement (PRE)

• **Distance calibration:** linear approximation for 0.2 < $\text{I}^{\text{o}x}/\text{I}^{\text{red}}$ < 0.8

 $(-R,^{PRE} \tau)$

• **Estimate** τ_c from $(R_2/R_1)^\text{ox}$ and $(R_2/R_1)^\text{red}$

para

I

Note: τ_c refers to the electron-nuclear spin vector!

 $\exp(-R_2^{PRE})$

• Grid search for correlation time τ_c for each SL

$$
r = 370 \text{\AA} * \sqrt[6]{\frac{1}{R_2^{PRE}} \left(4\tau_c + \frac{3\tau_c}{1 + \omega_H^2 \tau_c^2}\right)}
$$

 $\sigma_2^{PRE} = \frac{1}{15} S(S+1) \gamma_H^2 g^2 \mu_B^2 \frac{1}{r^6} \left(4\tau_c + \frac{3\tau_c}{1 + \omega_H^2 \tau_c^2} \right)$

 $R_2^{PRE} = \frac{1}{15} S(S+1) \gamma_H^2 g^2 \mu_B^2 \frac{1}{r^6} \left(4\tau_c + \frac{3\tau_c}{1 + \omega_H^2 \tau_c^2} \right)$

 \parallel $\overline{}$ ſ $\overline{}$ J $\left(\right)$

 H ^{*c*}

Battiste & Wagner *Biochemistry* (2000), Simon et al Angew Chem (2010)

Spin label flexibility and τ_c **of the electron - H_N vector**

Flexibility of the spin label

- Consider internal flexibility and conformational space sampled by the spin label by a ensemble representation (i.e. 4 copies per spin label site)
- ensemble averaged distance restraints during structure calculations

Iwahara, Schwieters, Clore JACS (2004) 126,5879-5896

Estimation of the electron-spin correlation time τ_c

- Need to determine/estimate τ_c from $(R_2/R_1)^\text{ox}$ and $(R_2/R_1)^\text{red}$
- Grid search for correlation time τ_c for each SL

Simon, et al Angew. Chem. (2010); Hennig et al, Sattler Methods Enzym (2015)

Structure calculation from RDC + PRE data

Domain arrangements from PRE data

- Individual domain structures available
- Spin labeling \Leftrightarrow paramagnetic relaxation enhancements (PRE)
- \cdot \rightarrow distance restraints to define interdomain arrangement

Simon, et al Angew. Chem. (2010); Madl et al JACS (2010) ; Mackereth et al Nature (2011) Iwahara, Schwieters, Clore, JACS 126, 8579 (2004); Clore & Iwahara, Chem Rev (2009);

PRE data define the domain arrangements

Open and closed conformations of U2AF65

Solution conformation differs from crystal structure

Conformational shift measures Py tract "strength"

Population shift of distinct domain arrangements

Pre-existing "bound" conformations in free RRM1-RRM2

Free U2AF65 samples non-compact conformations

- Small Angle Scattering data indicate non-compact conformations in free RRM1,2
	- \rightarrow free RRM1,2 is an ensemble of compact and non-compact states
- In contrast, RRM1,2/RNA is compact

Ensemble of RRM1,2 based on NMR and SAS data

Ensemble of free states selected from NMR & SAXS

Ensemble of free states selected from NMR & SAXS

~50% of conformations are encounter-like, i.e. compact domain arrangement (consistent with 15N NMR relaxation data)

Modulation of encounter-like domain interactions

- PRE for spin-labeled A318C RRM1,2 at different salt concentrations
- Encounter-like charged interactions are salt dependent

Complex mechanisms of RNA recognition in solution

Autoinhibition by linker → proof-reading **Dynamic ensemble** of inactive states \rightarrow conformational entropy

Key recognition elements in the ternary complex

Large induced fit of the RNA ligand and Sxl/CSD domain arrangement

Structure validation in solution by NMR – UNR-CSD1

Relative domain orientations in solution from NMR RDCs

RDC data in ternary complex agree with domain orientation in crystal structure

Structure validation in solution by SAXS and SANS

Summary

- Structure and dynamics of protein complexes in solution:
	- RDCs for relative domain arrangements
	- PREs/ spin-labeling for long-range distance restraints
	- PELDOR/DEER to measure specific distances and detect dynamics
		- Sensitive, no limitations by molecular weight, spin-labeling required
- Solvent PRE to detect and refine domain interfaces
	- Simple to measure, no protein modification required, dynamics affects analysis
- SAXS as complementary technique
	- Detect conformational equilibria/dynamics
	- Joint structural refinement
	- Need to combine with additional experimental data to reduce/resolve ambiguities

Conclusions

- Structural dynamics of multi-domain RNA binding proteins is important for their functional activity
- Cooperative binding of multiple RNA binding domains (RBDs) expands the protein-RNA interaction network to regulate diverse biological functions with a limited set of RBDs: \rightarrow protein-RNA recognition code

• Integrated structural biology –solution techniques, i.e. NMR, SAXS, SANS to study dynamics of multi-domain proteins and complexes

Funding

