Winter School on Structural Cell Biology

Protein crystallization Josef Houser

Crystal

2 m

2 mm

102 m

7 Crystal lattices

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Monoclinic $a \neq b \neq c$ $\gamma \neq \alpha = \beta = 90^{\circ}$

Triclinic $a \neq b \neq c$ $lpha
eq eta \neq \gamma
eq 90^\circ$

Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

14 Bravais lattices

C

 $a=b\neq c$ $\alpha=\beta=\gamma=90^{\circ}$ $a=b\neq c \\ \alpha=\beta=\gamma=90^{\circ}$ C b h Ρ

Tetragonal L

Trigonal R

Symmetry – Space groups

2D symmetry

3D symmetry

Proteins are chiral – no mirror symmetry

Screw axis

Combination of Bravais lattices and symmetry operations leads to **230 possible space** groups (not all for proteins).

System	Bravais	Point Group			Space (Group			Fraction
Triclinic	P	1 1	<u>Р1</u> Р1		2				1/2
Monoclinic	P C	2 m 2/m	P2 Pm P2/m	P2 ₁ Pc P2 ₁ /m	C2 Cm C2/m	Cc P2/c	P21/c	C2/c	1/4
Orthorhombic	P C F I	222 mm2 mmm	P222 F222 Pmm2 Pmn2, Ccc2 Fdd2 Pmmm Pmna Pmmn Cmmm Immm	P2221 I222 Pmc21 Pba2 Amm2 Imm2 Pnnn Pcca Pbcn Cccm Ibam	P21212 I212121 Pcc2 Pna21 Abm2 Iba2 Pccm Pbam Pbca Cmma Ibca	P2 ₁ 2 ₁ 2 ₁ Pma2 Pnn2 Ama2 Ima2 Pban Pccn Pnma Ccca Imma	C222 ₁ Pca2 ₁ Cmm2 - Aba2 - Pmma Pbcm Cmcm Fmmm	C222 Pnc2 Cmc2, Fmm2 Pnna Pnnm Cmca Fddd	1/8
Tetragonal	P	4 4 4/m	P4 P4 P4/m	P4 ₁ I4 P4 ₂ /m	P4 ₂ P4/n	P4 ₃ P4 ₂ /n	14 14/m	$\frac{I4_1}{I4_1/a}$	1/8
		422 4mm 42m	P422 P4 ₃ 22 P4mm P4 ₂ mc P42m P4b2	P42 ₁ 2 P4 ₃ 2 ₁ 2 P4bm P4 ₂ bc P42c P4n2	P4122 I422 P42cm I4mm P421m I4m2	P41212 I4122 P42nm I4cm P421c I4c2	P4 ₂ 22 P4cc I4,md P4m2 I42m	P4 ₂ 2 ₁ 2 P4nc I4 ₁ cd P4c2 I42d	1/16
		4) mmm	P4/mmm P4/nmm P4 ₂ /mbc I4 ₁ /amd	P4/mcc P4/ncc P4 ₂ /mnm I4 ₁ /acd	P4/nom P4 ₂ /mmc P4 ₂ /nmc	P4/nnc P4 ₂ /mcm P4 ₂ /ncm	P4/mom P4 ₂ /nbc I4/mmm	P4/mnc P4 ₂ /nnm I4/mcm	
Trigonal/ rhombohedral	Р	3 3	Р3 Р3	P3, R3	P32	R 3			1/6
	ĸ	32 3m 3m	P312 R32 P3m1 P31m	P321 P31m P31c	P3,12 P3c1 P3m1	P3 ₁ 21 P31c P3c1	P3 ₂ 12 R3m R3m	P3₂21 R3c R3c	1/12
Hexagonal	P same as	6 6 6/m	Р6 Рб Р6/т	P61 P63/m	P65	P6 ₂	P 6₄	P 6 ₃	1/12
	onal	622 6mm 6m2 6/mmm	Р622 Р6тт Рбт2 Р6/ттт	P6,22 P6cc P6c2 P6/mcc	P6₃22 P6₃cm Pō2m P6₃/mcm	P6 ₂ 22 P6 ₃ mc P62c P6 ₃ /mmc	P6 ₄ 22	P6 ₃ 22	1/24
Cubic	P I	23 m3	P23 Pm3 Ia3	F23 Pn3	123 5 5 T Fm3	P2 ₁ 3 Fd3	12,3 Im3	Pa3	1/24
	F	432	P432 P4,32	P4 ₂ 32 I4 ₁ 32	F432	F4132	1432	P4332	1/48
		43m m3m	P43m Pm3m Fd3m	F43m Pn3n Fd3c	143m Pm3n Im3m	P43n Pn3m Ia3d	F43c Fm3m	143d Fm3c	

+0 0+

+0 0+

m m 2

Po	sitic	ons				
Multiplicity, Wyckoff letter, Site symmetry				Co		
				(0,0,0)+		
8	ſ	ı	(1) x, y, z	(2) \bar{x}, \bar{y}, z	(3) x, \bar{y}, z	(4) <i>x</i> , <i>y</i> , <i>z</i>

Example of space group information from International Crystallographic Tables

"The 11 Laue symmetries are separated by horizontal lines.

Protein

- Big molecule
- Temperature sensitive
- Hundreds-thousands of rotating bonds
- Weak interactions mostly involved
- High solvent content (30-70 %)
- Fragile crystals

Inorganic salt (ev. organics)

- Small molecule
- Thermostable
- None/few rotating bonds
- Strong (coulombic) interactions frequent
- Low/none solvent content
- Hard crystals

Phase diagram

Precipitant Concentration

Protein crystallization techniques

Protein crystallization by vapour diffusion: (**a**) microbatch, (**b**) sitting drop and (**c**,**d**) hanging drop. In **d** and **e**, a sandwich is made of the mesophase (red) by placing a small glass coverslip (hatched) (**d**) below or (**e**) above the bolus. *From Nature Protocols*

Protein crystallization by counter diffusion in capillaries.

Protein crystallization by dialysis.

Various techniques = various path in the phase diagram

Automatization vs. manual work

- High-throughput
- Low volumes (20-150 nl)
- □ Reproducibility

- Individual design
- Immediate visual control
- Complex sample handling

Further reading

- http://journals.iucr.org/
- Naomi E. Chayen: Protein Crystallization Strategies for Structural Genomics, 2007
- Terese M. Bergfors: Protein Crystallization, 2009
- Alexander McPherson: Introduction to Macromolecular Crystallography, 2011
- etc.