1. MFNP & Optical methods - in situ UV-vis growth monitoring - global approach to separation and analysis - applied NP - ligand strategies Eco/Life sciences: - surface chemistry, - plasmon, luminescence Inorganic nanoparticulate materials: Characterization and applications L. Spanhel 3. ICT sector (Information and communication technology) - Transparent conductors - electrochromy/electroluminescence - planar wave guides and web amplifiers 4. Fractal approach to analysis - introduction to fractals - concept of fractal dimension - examples of Df determination 2. Solar sector - NP-thermodynamics/kinetics - Photocatalysis - Solar cells L. Spanhel Ch 1. Optical monitoring, total analysis and tailoring multifunctional nanoparticles MFNP (sizes << 100 nm) Absorption Scattering (Rayleigh, Hyper-Rayleigh), Raman nD l Fluorescence Lasing Transmission new excitation Incident wave SPR: surface plasmon (metals or doped oxides) “exciton”e e e e e Multi-electron emission e+ l/2 phonons L. Spanhel CdSe Eg + + hn Bande de valence Bande de conduction nano macro Nanostructures semi-conductrices : Le gap optique varie avec la taille des particules!! 1.7 nm 4 nm macro l [nm] 300 400 500 600 700 0.0 0.5 1.0 1.5 2.0 nano E(eV) ~ 1240/ l (nm) L. Spanhel Optical absorption in ZnO et TiO2 ZnO size ~ 5 nm turbidité singles Aggregation TiO2 size ~ 5 nm L. Spanhel Size dependent spectral shift for R(particle) < R (exciton) “Gap-Size” correlation function E = gap energy (eV) µeff = effective exciton mass er= dielectric constant e0 = vacuum permittivity = 8,854 10-12 Fm-1 Dp, Rp = particle diameter , radius) (m) e = elementary charge = 1,602 10-19 As h = Planck constant = 6,626 10-34 J s     prpeff bulk gnano R e R h eVEeVE 0 2 2 4 8.1 8 ee    DD eVE ZnO pp nano 2 47.835.1 37,3 :  Now even more general L. Brus 1983 L. Spanhel   D C D B AeVE ZnO pp nano 2 :  A,B,C: coefficients to be determined via linear regression   )( 1240 nm eVEnano l  Optical absorption spectrum XRD/HRTEM Meulenkamp’s finding, JPC B, 1998   DD eVE ZnO pp nano 2 29409.1 3.3 :  1.37 8.47 L. Spanhel P = property N = atomic number in cluster a, b = empirical coefficients Joshua Jortner, 1991: Pnano(N) = Pmakro + - b a N Power law relationship 1 3 3 4   mAp p Arp a VNV NMR N   Number of molecules per particle Vp =particle volume NA = Avogadro number Vm = molar volume L. Spanhel 225 205 276 l (nm) Densitéoptique Nucleation chaos 2 nm 200 300 350l (nm) Densitéoptique Growth period l [nm] 200 300 400 500 600 opt.Absorption M4 M10 M34 Q-CdSe Q-ZnO 2 nm 4 nm L. Spanhel -logDE log N 0 1 2 3 4 5 6 logDE -1,4 -1,0 -0,6 -0,2 0,2 0,6 ZnO CdSe b aD   NE a, b = ? Physical meaning of a,b remains to be searched !! M4 M10 M34 Chemical elemental analysis, MS, etc..needed to identify the clusters L. Spanhel Absorption laws IT / I0 = T = e - ax Photophysics Photochemistry a [cm-1] = absorption coefficient x = mean light path a = 2,3 e / Vm I0 IT film I0 IT sol IT / I0 = T = 10 – D.O. Vm = molar volume x solvent e [Lmol-1cm-1] = molar extinction c [molL-1] = molarity d = cell thickness Recall: L. Spanhel 200 300 350l (nm) Densitéoptique 1 nm 2 nm 5 nm Nucleation Growth Eg (eV) = 1240 / l(nm) ~ f(R-2, R-1, R-b) Optical monitoring of the particle size distribution (PDS) 0 2 4 6 8 10 0.5 1 1.5 2 particle size [nm] vol.distr./nm-1 L. Spanhel Structural/optical monitoring of NP’s Up-scaling processes Precursors in Y-shaped micromixer Surface modifiers or precursors Microfluidics SAXS: small angle X-ray scattering (gyration size, aggregate structures) Raman analysis of phonons (lattice and superficial molecular vibrations, fs-Laser induced non-linear optical signals Precursors in T-shaped micromixer Linear optical signals: UV-vis/NIR absorption, back-reflection, transmission, fluorescence NP’s Collection of shape-tuned bioactive NP’s Laminar flow of NP’s L. Spanhel Spinning disc processor SDP: a way to nano-ZnO Up-scaling Zn-precursor LiOH, NaOH or KOH Continuous flow reactor Hartlieb et al, Chem. Mater. 2007 SDPSDP Fiber optical spectrometer Increasing rpm accelerates nucleation ra Temperature increase L. Spanhel Reactant 2 Moving position of the flow cell UV/Vis detector HRS detector Pump 2 Ti:Sa laser IR Filter Nd:YVO4 λ=800 nm, 80 MHz, 80 fs per pulse, 15nJ/pulse Pump 1 Reactant 1 NP’s Coupled linear UV-vis and non-linear optical (HRS) nanocolloid growth monitoring Schürer, Segets, Peukert, 2010 University of Erlangen, Germany Laser, ω 800 nm SHG, 2ω 400 nm Fiber optics Hyper Rayleigh Scattering L. Spanhel P [C/m2] = Polarisation χ(1) = F(n, er) Input intensity Output χ(1) χ(2) χ(3) linear optics non-linear optics Linearity Non-linearity n, e = cte n, e ≠ cte P = e0 (χ(1)Elin + χ(2)E2 + χ(3)E3 + …….) fs - Laser : E ~ 109 V/cm (Sun: ~ 10 V/cm) + ind = a E _ Ligands permanent or induced oscillating dipoles Essentials of non-linear optics = el. susceptibility n = refractive index er= dielectric coefficient L. Spanhel In our case: ZnO ω 2ω LiOH + Zn-precursor UV HRS L. Spanhel Isolation and total chemical analysis of monodispersed NP’s Goal: quantification of atoms and molecules inside and in shells ligand exchange and addition processes tailoring for biomedicine (theranostics) and standardizations T. Hyeon et al in Nano Today 2014 L. Spanhel sample nA (ns/nA) 100 [%] A = 3/Rp [m2/g] Vm= M/ cm3/moL SiO2 92 R3 82 1132 60,08 / 2,648 TiO2 99 R3 81,7 750 101,96 / 4,00 Al2O3 126 R3 78 709 79,86 / 4,23 ZnO 174 R3 74 535 81,4 / 5,6 Ag 245 R3 68 285 107,86 / 10,49 Pt 277 R3 67 139 195,08 / 21,45 Rp = 1 nm Rp = radius Mr = molar mass p = density A = spec. surface area Vm = molar volume “agglomeration number” molecules per particle p Lrp A NMR n   3 4 3    3 2 As nn  Characteristic parameters of spherical nanoparticles Number of surface molecules L. Spanhel FFF Forced Field Fractionation ppb-range! L. Spanhel FFF-ICP-MS in comparison with HRTEM and DLS Note!: FFF-ICP-MS : ~ µg/L HRTEM-DLS : ~ mg/L Ag L. Spanhel L. Spanhel Inorganic nanostructures and Solartech Introduction to renewable energy resources Theory and applications of nanoscaled photocatalysts Classical photovoltaics and future solar cells on the nanoscale Chapter 2 solar sector L. Spanhel + hn Red Ox Heterogeneous Photocatalysis Photovoltaics Electrochemistry Analytics Photochemistry Photonics Inorganic chemistry Materials science Catalysis Spin-offs L. Spanhel Energy resources of 21 century decentralized energy CO2/H2 storage CH4/CH3OH storage Slunce Nuclear power light heat transport Eolien Soleil Green synthetic chemistry UV protection Detox of ecosystems Photovoltaics Photocatalysis Bio Geothermie Cosmic neutrino field L. Spanhel History of solar technology environmental applications Fujishima & Honda 1972 1980 20101839 A. Becquerel Photoelectric effect membranes preparative org. synthesis TiO2, ZnO, Fe2O3, CdS, ZnS, … Chapin, Fuller, Pearson PV 1. generation mono-Si nanotechnology PV 2. generation a-Si, CdTe, CuInSe2 PV 3. generation nanostructures metamaterials 1954 H2O H2 + O2 TiO2 O2 H2O2 ZnO Veselovskii & Shub 1952 L. Spanhel Semiconductor (SC) nanoelectrodes in solar sector Photocatalysis Open circuit Solar cells Closed circuit + Ox Red Red* Ox* + Red* Ox* Charge lumière lumière L. Spanhel Sun spectrum E = hc/l Space Terre Emission spectrum of our sun L. Spanhel Ox Red Ox Red 2 16         D   p R e kT + < 20 nm Energy VB CB + 0,1 - 1 µm Ox Red 2 12         D   B e kT B D Band bending Space charge SC - Electrochemistry: from micro to nano scale L. Spanhel + Ox light Thermodynamics and kinetics of semiconductor photocatalysis 1. Driving force of interfacial red ox processes ECB,VB, E° (red ox) 2. Elementary processes in photoexcited nanoparticles: diffusion, recombination, transfer, reaction Red L. Spanhel E°SHE [ V ] 0 +1 +2 -2 -1 +3 -3 -4 0 1 2 3 4 E [ eV ] Vacuum level, efree Electrochemical scale Physics scale ZnS 3,7 eV CdS 2,4 eV VB CB TiO2 3,2 eV eA Photoreduction: EBC < E°(A/A-) !Eu2+/3+ Photooxidation: EBV > E°(D/D+) !Co2+/3+ Note: EBC = E° + 0,059 pHei Quantum effects Nanosize related shift L. Spanhel Kinetics and photocatalysis h,e p D D R   2 2   De,h ~ 10-5 m2/s: Energy BV BC + A = 2 D t 10 nm D10nm = 10-9 m2/s DA = 10-7 m2/s 1 fs 1 ps 1 ns 1 s Recombination/Relaxation of charge carriers 10 100 fluorescence Brownian motion log t Life time of physical processes governing the photocatalytical performance L. Spanhel light + D = ? Rp he p D D R , 2 2     D ~ 10-5 m2/s: Rp: 5 nm D : 250 fs 20 nm 4 ps énergie BV BC + trap trap r t r,t t ~ D ~ nr r,t > r > nr Aad A L. Spanhel Nanophotocatalyst optimization strategies ►spectral profile visible light active nano’s are needed (400 – 600 nm) ►longe distance charge separation heterostructures, dopings and surface modifications ► morphology of immobilized nanostructures particle shapes, aggregate architectures and mesoporosity ►integration into photoreactor prototypes on various scales nanocolloids, powders, thin coatings, photoreactor design L. Spanhel Note: Avoid photo-corrosions CdS, ZnS, Fe2O3 Photocatalysts of choice L. Spanhel Doping delivers better charge separation relevant oxides: TiO2, ZnO, ZnTiO3 Energie VB CB „charge transfer“ S0 S1 W6+, Fe3+,… S2-, N3- L Cn+ An- 3 eV 2 eV Ru, Rh, Pt- complexes L. Spanhel Rapid separation of electron-hole pairs blocks their thermal deactivation (nr, e-h recombination) Energie TiO2 + VB CB + Pd, Pt,.. TiO2 Anatas Brookit + + TiO2 CdS L. Spanhel Photocatalysis applications 1. Organic preparative synthesis 2. Environmental detoxification 3. Self-cleaning windows 4. Solar water splitting (solar fuels, hydrogen technology) 5. Carbon dioxide transformations 6. Biosystems in photocatalysis ZnO/Fe3+ TiO2 ZnO coatings L. Spanhel O2 O2 .- OH- H2O .OH +2.3 V H+ +2H+ H2O2 +1.35 V O.+2.7 V Ti3+ -0.4 V + UV TiO2 pH = 7 CxHyClz + y - z 4 x + O2 hn TiO2 xCO2 + zHCl + y - z 4 H2O Photomineralisation of organic pollutants L. Spanhel Solar decontamination of industrial waters in the VW company in Taubate (Brasil) since 1999 Total surface: 50 m2 Turnover : 1 m3/jour CATA: Hombikat-TiO2 (Anatase) L. Spanhel Florence Benoit, Toulouse L. Spanhel Super-Hydrophilicity via photocatalysis TiO2 Asahi Pilkington St. Gobain PPG L. Spanhel UV O2Ti TiTi O2- O2- OH Ti O2- OH Ti OH Ti O2-O2-O2Ti TiTi O2- OH Ti O2- OH Ti OH Ti O2-O2-O2- Cavities hydrophilichydrophobic 2O2- + 4h+ O2 Ti4+ + e- Ti3+ +H2O - H+ Ti TiTi O2- OH Ti O2- OH Ti OH Ti O2-O2-O2- OHOHOH super-hydrophilic dark Mechanistic view of the formation of Super-Hydrophilicity L. Spanhel Super-Hydrophilicity in the car industry Super-Hydrophilicity in building constructions Bacteria killing Self-cleaning and sterilisation of textiles L. Spanhel ZnxTiyOz Spinel-Nanostructures Zn2TiO4 = Zn8 T(Zn8 Ti8)OO32 ZnTiO3 = Zn8 T(Zn8/3 Ti32/3 3)OO32 Zn2Ti3O8 = Zn8 T(Ti12 4)OO32 Fd3m a = 840 - 844 pm Ilmenite h-ZnTiO3 ZnO6 TiO6 R3 a = 549 pm Cubic inverse spinels ZnO4 ZnO6 TiO6 Recall normal spinel: AB2O4 = A8 TB16 OO32 L. Spanhel Zn(Ac)2 2H2O Ti(OBut)4 Synthesis of 2 M “polymeric” ZnxTiyOz Sols EtOH 100°C 4 Zn(Ac)2·2(H2O) + [Zn4O](Ac)62 HAc + 7 H2O Hydrolysis Condensation „Ti-O-Ti“ „Ti-O-Zn-O-Zn“ Z. Phys. Chem. 2007 G. Starukh et al. Adv. Mater. 2006 F. Grasset et al. Complexation Esterification L. Spanhel 20 30 40 50 60 XRD-intensity(a.u.) 2q (deg) c- Zn2TiO4 c- ZnTiO3 h- ZnTiO3R-TiO2 Zn/Ti = 2 Zn/Ti = 2/3, 3/5 Zn/Ti = 1 Thermal growth of ZnxTiyOz nanocrystals > 350°C L. Spanhel 0 20 40 0,04 0,08 0,12 0,16 3000 2960 2920 2880 2840 Wave number (cm-1) FTIRIntensity h-ZnTiO3/r-TiO2 films in Photocatalysis Photodegradation of Fetty Acids, Xe-lamp, air, rel. humidity: 80% Norm.Integ.FTIR Irrad. time, min 0 20 40 60 80 100 120 0 1 C22 C18 C10 C18 Phys. Chem. Chem. Phys. 2010 Krylova et al. L. Spanhel l (nm) 400 500 600 700 0,0 0,5 1,0 O.D. „ZnTiON“ 0’ 80’ Methylene Blue photodegradation on “ZnTiON”-Spinel layers (lex > 430 nm, Xe – Lamp, humid air) Rel.ReflectanceIntensity 1600 1400 1200 1000 Wave number (cm-1) Si - wafer 0 min 170 min terminal amines conjugated double bonds „ZnTiON“ +MM L. Spanhel « Nanotechnology for hydrogen industries » L. Spanhel light + Hydrogen evolution Oxygen evolution nanophotocatalysts Required photocatalytic efficiency: 10% storage H2 L. Spanhel Hydrogen storage In the car industry: 5-13 kg, ~ 500 km 1. Metal hydrides (chemisorption) Mg + H2 (g) MgH2 DadH < 0 Capacity: 0,076 kg/kg (0,101 kg/L) with nano-Pd T , p 2. Physisorption on MOF metal organic frameworks [M4O](OOCR)6 M: Mg, Zn, Be Capacity: 5-10 % w. L. Spanhel K. Maeda et al, Nature 2006 Best result on solar water splitting so far (f ~ 5%) L. Spanhel Other Photoreduction processes on combined SC-M hereterojunctions MV2+ MV+. alcohol TiO2 CdS Vis-light M(OH)2 ketone L. Spanhel TiO2 AuCB VB CO2 photo-transformations via surface plasmons D. Astruc, Univ. Bordeaux RSC-Chem. Soc. Rev. 2014, 43, 7188 540 nm LED CO2 CH4 H2O O2 L. Spanhel D. Astruc, Univ. Bordeaux RSC-Chem. Soc. Rev. 2014, 43, 7188 In most cases: Yield > 50% Selectivity > 90% TiO2 AuCB VB 540 nm LED Pt,Pd Cr6+ O2 CO2 H2O ●OH Theory of Solar Cells of the 1. and 2. generation Diode hn n p anode cathode n-Si/p-Si n-GaAs/p-GaAs (InP) n-CdS/p-CdTe n-CdS/p-CuInSe2 el. contacts Glass Transparent conducting electrode Al@ZnO, F@SnO2 n-SC p-SC Graphite, Au, Mo, … + L. Spanhel Pin = 1 kW / m2 η = conversion efficiency (0 - 1) FF = fill factor VOC = open circuit voltage (V) ISC = short circuit current (A/m2) Pin = solar input power (W/m2) in maxmax in scoc P IV P IV FF  Vmax Imax L. Spanhel Polycrystalline Thin Film Cells Cell Type η (%) Area cm2 VOC mV JSC mA/cm2 FF % Lab / Company Date CdTe (cell) 3.5 mm CSS 16 1.0 840 26.1 73.1 Matsushita 1997 CIGS submodule 14.2 51.7 6808 3.1 68.3 Showa Shell 1996 GaInP/GaAs monolithic 30.3 4.0 2488 14.22 85.6 Japan Energy 1996 Si (large thin film) 16 95.8 589 35.6 76.3 Mitsubishi (77µm on SiO2) 1997 a-Si (submodule) non stabilised 12 100 1250 1.3 73.5 Sanyo 1992 in maxmax in scoc P IV P IV FF  L. Spanhel Origin of losses in solar cells 1. Dissipation de la lumière limitée 2. Relaxation thermique 3. Perte lors de la séparation de charges 4. Contacts électriques non-idéales 5. Désactivation thermique (recombinaison) losses L. Spanhel Cellules à base de Si Mono-Si poly-Si amorphe Si 12-16% 11-13% 6-10% L. Spanhel soda lime borosilicate SnO2:FZnO:Al 80-300 nm, Eg=2,4 eV 1-8 m, Eg=1,5 eV Au, Ti, Ag-graphite CdTe module Conversion efficiency > 21% p-CdTe/n-CdS heterojunction L. Spanhel Solar Cells of the 3. generation L. Spanhel substrate TCO- electrode Electron transfer region Hole transfer region catode + Nanostructured solar cells – 3. generation cells e- + - hn solar nano-antenna design Oxides, M-Chal., fulerenes, dyes org. polymers PPV, PEDOT-PSS nano- composites anode L. Spanhel Same approach to nanostructured solar cell and photocatalysts „Man-made“ micro-électrodes selon le principe de la nature M + SC + SC1 SC2 + SC N N Ru L. Spanhel 2. SC-polymère org. 4. Cellule de Grätzel 3. SC-SC1. Jonction SC-métal Adopted from P. Kamat et al ND National Lab, USA L. Spanhel 1. Jonction SC-métal eRendement : 1 - 4% Kamat et al, Notre Dame National Lab L. Spanhel CdSe CdTe Nanocomposites based on Q-CdSe, CdTe (antenna) and organic Poly(3-hexylthiophene) (hole conductor) eη ~ 5% Alivisatos et al, Berkeley L. Spanhel 3. SC-SC Rendement ~ 8 % L. Spanhel TiO2 Cellule de Grätzel (1988) η ~ 10-12 % L. Spanhel Why and how actually is Grätzel cell functioning? Organic dye antennas Macrocrystal TiO2 or ZnO Sol-gel derived membrane 10 microns thick Nanocrystals: TiO2 or ZnO O.A.% < 1% ≈ 100% ! 1. Morphology ! L. Spanhel 10 m 300 nm ZnO TiO2 nanotubes L. Spanhel 2. Antenna ! L. Spanhel 3. Cell kinetics ! 1 ps 1 ns 1 s 1 ms 10 100 réaction du chromophore avec les ions d’iodure transfert d’électrons vers TiO2 recombinaison interfaciale Ligand Ru2+/Ru3+ transfert d’électrons à travers des agrégats de TiO2 I3 - 3I- 1 2 3 4 1 2 3 4 L. Spanhel Construction d’une cellule d’après Grätzel Degussa P 25 TiO2 Verre avec FTO Dye infiltration Carbone electrode Infiltration du KI3 Mesure photoélectrique L. Spanhel L. Spanhel L. Spanhel L. Spanhel L. Spanhel E L LL L 10:00 – 11:45, 14:00 – 16:00H