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Cyclin-dependent kinases (Cdks)
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Cyclin-dependent kinases (Cdks)

cyclin-dependent
kinase (Cdk)

Protein complexes that compose of 1) Kinase subunit
2) Cyclin subunit

Serine-threonine kinases-regulate function of proteins by phosphorylation of
either Serine (S) or Threonine (T)

Sequence preference motif: S/T-P-X-K/R

Both subunits needed for the kinase activity of the complex



Most Cdks usually have at least one
Cyclin partner

Cdk family member Cyelin partner
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In humans there are at least 21 genes encoding Cdks
however only about half of the Cdks are sufficiently studied
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= relatively well studied Cdks

Human cell has 21 Cdks and 29 Cyclins



The Cdk complexes regulate various processes in cells

Major functions:
-Regulation of Cell Cycle (Cdk1,2,4,6,7)

-Regulation of Transcription (Cdk7,8,9,12)

Other functions:
- regulation of pre-mRNA processing (Cdk11, Cdk9)
- regulation of neuronal cell differentiation (Cdk5)

- likely more functions to be discovered



Cdk complexes regulate various processes in cells




Regulation of kinase activity of Cdk complexes-overview

Activation of Cdk kinase activity:

-Association of Cdk with various Cyclin subunits
-Phosphorylation of threonine in the “T-loop” of Cdk
-Degradation of Cdk inhibitor proteins by ubiqgitination and proteolysis

Inhibition of Cdk kinase activity:

-Binding of Cdk inhibitor proteins to Cyc/Cdk complexes

-Inhibitory phosphorylation of Cdk

-Ubiqitination and degradation of Cyclins in proteasome

-Binding of Cdk inhibitor proteins together with small nuclear RNA to
Cyc/Cdk complex



Activation of Cdk kinase activity:

-Association of Cdk with various Cyclin subunits
-Phosphorylation of Threonine in the “T-loop” of Cdk

cyclin Cdk-activating kinase (CAK)

cyclin

ATP

= - 53

activating phosphate
(© FULLY ACTIVE

Cdk

(A) INACTIVE

T-loop blocks active site T-loop moves out of the active site P-T-loop improves binding of substrate
(active site=ATP binding site)



Activation of Cdk kinase activity-Cdk2-Cyclin A
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Inhibition of Cdk kinase activity:

-Binding of Cdk inhibitor proteins to Cyc/Cdk complexes

P

active inactive
cyclin-Cdk p27-cyclin-Cdk
complex complex

P27 binding distorts and binds into the active site of Cdk2
(for example inhibits G1/S-Cdk in G1 phase)

Sic1 (budding yeast) suppresses Cdk1 activity in Gy; phosphorylation by Cdk1 at the end of G, triggers its destruction

p27 (mammals) suppresses G;/S-Cdk and S-Cdk activities in Gy; helps cells withdraw from cell cycle when they
terminally differentiate; phosphorylation by Cdk2 triggers its ubiquitylation by SCF
p21 (mammals) suppresses G1/S-Cdk and S-Cdk activities following DNA damage

p16 (mammals) suppresses Gi-Cdk activity in Gy; frequently inactivated in cancer



Activation of Cdk kinase activity:

-Degradation of Cdk inhibitor proteins by ubiqgitination and
proteolysis

active
SCF
complex
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ubiquitin (')

& &

ubiquitylation
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Cdk inhibitor protein
(CKI)

Cell cycle-dependent phosphorylation of Cdk inhibitor is a “mark” for recognition by SCF ubiquitin ligase,
ubiquitinylation and degradation, rendering Cyc/Cdk complex more active



Inhibition of Cdk kinase activity:

-Inhibitory phosphorylation of Cdk

cyclin inhibitory phosphate
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Inhibition of Cdk kinase activity:

-Ubiquitination and degradation of Cyclin by proteasome

activating
subunit (Cdc20)
mm
active APC/C
Cdk ubiquitin (')
ubiquitylation
enzymes

polyubiquitin

inactive APC/C
& &

Mitosis-dependent activation of APC ubiquitin ligase leads to ubiquitination of Cyclin and its degradation



Inhibition of Cdk Kinase activity:

-Binding of Cdk inhibitor proteins and 7SK small nuclear RNA
(7SK snRNA ) to CycT/Cdk9 complex

Inactive P-TEFb Active P-TEFb

P-TEFb=Cdk9

The kinase activity of Cdk9 is inhibited by binding to several proteins and small nuclear RNA, 7SK snRNA



Regulation of Cell Cycle by Cdks
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Cell Cycle

daughter cells

1 CELL GROWTH
3 RCEUD AND CHROMOSOME
DIVISION REPLICATION

CELL
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SEGREGATION

Cell cycle leads to production of two genetically identical daughter cells



Major events of the cell cycle
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S-phase — DNA synthesis-duplication of the chromosomes
M-phase — mitosis-pair of chromosomes segregated into the nuclei
— cytokinesis- the cell divides into two identical cells



The cell cycle has four phases

M PHASE

. mitosis
' (nuclear cells in Gy
. division) cytokinesis phase
G, PHASE ' 2 g (cytoplasmic -
- , division) .-~

cells in G; and
M phases

M

number of cells
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S phase

[pmaten|

S PHASE G, PHASE

(DNA replication)

0 1 2

relative amount of DNA per cell

(arbitrary units)

G1 and G2 phases-time delay to allow the growth of the cell

-time to monitor external and internal conditions before commitment to
onset of S and M phase



The control of the cell cycle-three major
checkpomts

 favor METAPHASE-TO-ANAPHASE
.  TRANSITION .
GzIM CHECKPOINT
TRIGGER ANAPHASE AND
PROCEED TO CYTOKINESIS

/

| ENTER CELL CYCLE AND PROCEED TO S PHASE |
| START CHECKPOINT

Ise

Control of the cell cycle triggers essential processes such as DNA replication, mitosis and cytogenesis



Cell cycle control system depends on cyclically
activated Cdks

G,/S-cyclin S-cyclin M-cyclin

start_ . G,/M ./ metaphase- anaphase
“ "‘cyclin ‘ APCC
G,/S-Cdk S-Cdk M-Cdk

Cyclin protein levels change, Cdk protein levels are constant

Cyclical changes (expression and degradation) in Cyclin protein levels result in cyclic
assembly/disassembly and activation/inhibition of Cyc/Cdk complexes;
this leads to phosphorylation/dephosphorylation of proteins that initiate and regulate cell cycle events



Major Cyclins and Cdks in Vertebrates and Yeast

CiosdEnbra o
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Table 17-1 The Major Cyclins and Cdks of Vertebrates and Budding Yeast

Gq1-Cdk cyclin D* Cdk4, Cdké CIn3 Cdk1**
G1/5-Cdk cyclin E Cdk2 CInt, 2 Cdk1
S-Cdk cyclin A Cdk2, Cdk1** Clb5, 6 Cdk1

M-Cdk cyclin B Cdk1 Clb1,2,3,4 Cdk1
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Comparison of the yeast and mammalian cell cycle
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Yeast- cell cycle is directed by one Cdk-Cdk1 (cdc28)
Mammals-several Cdks (classical model), Cdk1l is essential to drive cell cycle
in the absence of other Cdk (mouse knock out model)



Evolution of cell cycle control
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Cell cycle control system is a network of
biochemical switches where Cyc/Cdk complexes
play a major role
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Activation of M-Cdk (cycB/cdkl)
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IViechanism ot cell cycCle arrest in G1 by DNA

DNA damage causes transcription of p21,
Cdk inhibitory protein, that inhibits G1-S- and
S-Cdks, arresting the cell cycle in G1 phase

4
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Deregulation of cell cycle and cancer

Chromasomal instebility
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Cells escape from the proper control of the cell cycle during cancer development:
-Increase in expression and activity of proteins driving cell cycle regulators (Cdks)
-Inactivation of inhibitors of Cdks



Regulation of transcription by Cdks

CDK1  CDC2

CDK2  CDK2

| CDK3  CDK3

CDK5  CDK5

CDK14  PFTK1

| CDK15 PFTK2

— | CDK16  PCTK1

] CDK17  PCTK2
CDK18 PCTK3

, CDK4  CDK4

' CDK6  CDK6
L [CDK7  CDK7 |
] CDK20 CCRK
 |CDK11A CDC2L2

L |CDK11B CDC2L1

CDK10  CDK10
, CDK12 CRK7
L———| CDK13 CDC2L]
. CDK9  CDK9
CDKl|family ——LCDK8  CDK8
L—— CDK19 CDC2L6




Transcriptional Cyc/Cdk complexes

Cell cycle-related (Multiple cyclins)

S, cerevisiae Human
Cdks Cdks Cyclins
Cdc28 —— Cdki CycA
Cdk?2 —— CycB
Cdk3 CycE
CycC?
Cdk4
cdkg —— CycD
PhoBs J--— o Cik5R1
Cdkis Cdk5R2
Cdk1e CycD
Cdk17 CycY
Cdk18

Transcriptional (Single cyclins)

S, cersvisiae Human

Cdks Cdks Cyclins

Kin28 |-------- Cdk7 —— CycH
Cdk20 —— CycH
Cdk8

So10 |- cdklas CycC
Cdk11 Cycl
Cdk10 CycM

Burl |-------- Cdk9 —— CycT

Otk e, Cdki2) | CycK




Major differences between Transcription and Cell
Cycle Cyc/Cdk complexes

Trancription Cyc/Cdks complexes:
1)Cdk has usually only one Cyclin partner
2)Usually in multi-protein complexes

3)The Cyclin levels in cells do not oscilate
(Cdks need to be constantly active for basal transcription)

4)Regulated at the level of recruitment to specific gene



Ad 4) Examples of recruitment of P-TEFb (Cdk9)
to genes

@ 1) artificial tethering
2) co-activator
@ 3) DNA bound activator
4) RNA bound activator (Tat)

5) chromatin bound activator
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Differences between Cell Cycle and Transcription
Cyc/Cdks-structure

Sparse number of contacts btw Cyc and Cdk in transcription Cyc/Cdk complexes
More contacts in Cell Cycle Cyc/Cdk complexes - important for Cdk activation



Differences between Cell Cycle and Transcription
Cyc/Cdks- Cyclin structure

1 100 200 300 400 500 600 700
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CycA

All Cyclins have 2 canonical cyclin-boxes responsible for Cdk binding
Each cyclin-box consists of 5 helixes
The cyclin-boxes conserved in all Cyclins

Cell Cycle and Transcription Cyclins differ significantly in sequence and structure
outside of the cyclin boxes (binding to other proteins)



Differences between Cell Cycle and Transcription
Cyc/Cdks- Cyclin structure
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Comparison of Cdk9 and Cdk?2

Cdk9 (green) /Cdk2 (orange) T-loop (T186/T180)

Structures very similar, sequence similarity 40%



Transcription (Gene expression)
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Transcription- synthesis of RNA from DNA template



Transcription in eukaryotes Is tightly linked to co-
transcriptional mMRNA processing

RNA polymerase
capping \

factors
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P\ f
Whrys
2 5" end
of mRNA
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3’ end processing
proteins

The co-transcriptional mMRNA processing (capping, splicing, 3" prime end processing)



Transcription of protein-coding genes by RNA polymerase |l

(RNAPII)
Pre-initiating Initiation Elongation Termination
RNAPII
CTD CTD CTD CTD
Promoter Promoter Gene

Pre-mRNA

C-terminal domain (CTD) of RNAPII plays a crucial role in regulation
of transcription and co-transcriptional mRNA-processing MRNA



CTD consists of 52 repeats of heptapeptide YSPTSPS
In which individual amino acids get phosphorylated
to form a “CTD code”

P P iso pP P iso P

(|Y1-|SZ-P3--||_4-|S5-P6-|S7)X52

-52 repeats in humans (21 consensus, 31 non-consensus)
-26 repeats in yeast
-evolutionary conserved-important!



Human “CTD code”

.E' 5 10 15 20 25 30 39 40 45 a0 KE',I':

16 combinations

Phosphorylation state Proline isomerization state
[}
c
"IFSPTEPE none g ?E’FJTEEE l:f'ﬁ, ﬂ'i"ﬁ
v8pTsPS 52 X Z
YSPTSPS  Ta S YSPTSPS s, trans
[ ]
[ ]
TSPT&’; 85 < YSPTSPS  frans, cis
YSPTSP 8T
| I ?EETEEE trans, trans
YSPTSPS S2,T4 -
e o
YSPTSPS  §2,55 e — _
?gPTSPg 82, 57
X 52 repeats in
‘H’EFﬁPE T4,55 g
P?S g mammals
YSPTSP T4,87 [minus the changes in the
fspTgpg S5, §7 non-consensus repeats
YSPTSPS 52,74, S5 (Figure 2]
vSpTspS  s2,7a, 57 X 26 repeats in
o oo
YSPTSPS  S2,S5,S7 yeast
o0 O
YSPTSPS T4, 85,57
R R
YSPTSPS 82, T4, S5, S7

m Consensus
0O Mon-consensus
A Site-specific modification (R1810)



Repeats of the CTD get phosphorylated by the Cdks

P P iso P P iso P

(Y :-So-Ps-To-So-Pe-S s

[

Cdk9 phosphorylates Serine (Ser) in the position 2
Cdk7 phosphorylates Serine (Ser) in the position 5



For the regulation of transcription cycle the
phosphorylations of the CTD by the Cyc/Cdks are essential

Pre-initiating - : o
% H
RNAPII Ser5p Initiated RNAPII Elongation ——— Termination

Co

Promoter Promoter
Mediator Capping enzyme Splicing/Chromatin remodeling Cleavage/PolyA

factors factors



Modified CTD is a binding platform for transcription factors,
RNA-processing factors and histone modification factors
(code readers)

Histone modification factors

RNA- processmg factors

Transcription

factors Phosphorylation of the CTD mediates:

Transcription

MRNA-processing

Chromatin modifications

RNA export

Transcription-coupled genome stability

Histones



CTD code readers

(@) Protein-coding genes
(yeast and mammals)

Histone
modification,
RMA 5" end
capping

Histone
modification,

splicing,
elongation

RMA 3" end

processing and

termination

End

Start

Transcription cycle

Mediator (1MDa)
+
TBP

YSPTSPS

Capping enzyme
(Cgti, Mced, Head)

YSPTSPS'S

—»  Scpi, Rirt
YSPTSP Fpdas

Pin1/Ess1,

51:]11 Prp40, C.MED
RecQ5, U2AFES, Set2,
S=di, Hrr25, Yrad

—»=  Spt6, Mpl3

YSPTSPS

YSPTSPS

— S3UT2
YSPTSPS

—»= Pcfid

YSPTSPS

—» Rtt103

YSPTSPS



Distribution of phosphorylated Serine 5 and Serine 2 in the
CTD of RNAPII along the human protein coding genes

180

RNAPII
(Total)

RNAPII

Ser5-P Cdk7 (initiation)

RNAPII Cdk9 (elongation)

Ser2-P




Roles of new Cdks in the CTD modification (CTD code)

oo

(Y 1-So-Pa-Ti-So-Pe-S Yo

[



Cdks and their roles in transcriptional cycle of yeast and

human
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Deregulation of transcription by Cdks leads to the
onset of human diseases

-Cancer - aberrant kinase activity of Cdk9 , Cdk12

\ 4

defective transcriptional elongation, mRNA processint

-HIV transcription- HIV Tat protein “steals” Cdk9
from its cellular complex to
transcribe HIV genome




Cdk9 is recruited to most of RNAPII promoters
and is present in catalytically active (small) and inactive
(large) complexes and regulates transcriptional elongation

anti-growth pro-growth

Hypertrophic/stress

sigﬂ,aﬂs
inactive »
P-TEFb 47
7SK RNA - 1 xS T HMBA-induced

B differentiation '

mRNA
Abortive Elongation Productive Elongation



Cdk9-dependent transcriptional elongation is a highly
regulated process and its deregulation can lead to the
onset of cancer
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Cdk12 is one of the most often mutated genes in ovarian
carcinoma
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The mutations probably lead to the aberrant kinase activity and defective transcriptional
elongation and/or mRNA processing of certain genes

Cdk12 proposed to be a novel tumor suppressor



HIV transcription is dependent on the Cdk9 (P-TEFDb) protein

HIV Tat protein “steals” Cdk9 from its complex with inhibitory Hexim1/7SK snRNA; resulting
Tat/Cdk9 complex binds to HIV -TAR RNA element and drives HIV transcription in human cells



Regulation of transcription (gene expression)
by cyclin-dependent kinases

Cyclin K/Cdk12-an emerging player in the
transcription-coupled genome stability

Role of Cyclin K/Cdk12 in the onset and
maintenance of ovarian cancer



Historically, Cdk9 and one of the cyclins (CycT1, CycT2 and
CycK) were thought to form positive transcription
elongation factor b (P-TEFb)-situation in 2008
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CycK binds Cdk12 and Cdk13 in two separate complexes:
CycK/Cdk12 and CycK/Cdk13
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Cdk12 and Cdk13 proteins have similar kinase domains
(similarity 93%), but the other domains are different
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Cyclin-dependent kinase (cdk) family (according to similarity
of kinase domains)
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Cdk12 is atranscription-associated kinase phosphorylating
the C-terminal domain (CTD) of RNA polymerase Il (RNAPII)
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CDK12 is a transcription elongation-associated CTD kinase, the

metazoan ortholog of yeast Ctk1
Bartlomiej Bartkowiak, Pengda Liu, Hemali P. Phatnani, et al.

Genes Dev. 2010 24: 2303-2316
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Dalibor Blazek, Jiri Kohoutek, Koen Bartholomeeusen, et al.

Genes Dev. 2011 25: 2158-2172

The Cyclin K/Cdk12 complex maintains genomic stability via
regulation of expression of DNA damage response genes
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Transcriptional cyclin-dependent kinases phosphorylate the C-
terminal domain (CTD) of RNA Polymerase Il (RNAPII) and
other factors to regulate individual steps of transcription
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Depletion of CycK/Cdk12 decreases the expression of a
small subset of genes
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Depletion of CycK/Cdk1l2 changes the expression of crucial
DNA damage response genes
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...... and depletion of CycK/Cdkl1l2 leads to accumulation of
cells in G2/M phase of cell cycle
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BRCAL, Fanconi anemia proteins, ATR-guardians of genome
stability

DNA Double
Strand Break
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anemia Other

I - Fanconi

anemia
proteins

BRCA2
FANCD1

Error-free\DNA repair,

Maintenance of genome stability

Friedenson, BMC cancer 2007



Loss of CycK/Cdk12 causes sensitivity of cells to a variety of
DNA damage agents
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Conclusion |

CycK- binds Cdk12 and Cdk13, but not Cdk9

Cdk12 - is a major Ser2 kinase in the CTD of RNAPII
-directs expression of a small subset of genes

-regulates optimal expression of DNA damage
response genes (BRCAL, ATR, FANCI, FANCD?2)

-is crucial for the maintenance of genome stability

-candidate tumor suppressor gene



Cdk12 was found among the most often somatically mutated
genes in HGSOC

Integrated genomic analyses of ovarian
carcinoma

The Cancer Cenome Atlas Besearch Network®

A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploving ﬂu:nl;m:s thatwill
nnprmrl: patients” lives. The Cancer Genome Atlas project has amalysed messenger RNA expression, microRNA
expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the
DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high- grade serous ovarian
cancer is characterized by TP53 mutations in almost all tumours (9%6%); low but statistically recumrent
somatic mutations in nine further genes including NF1, BRCAL BRCAZ, RBI and 113 significant focal DNA
copy number abermations; and promotéer methylation events involving 168 genes. Analvses delineated four ovarian
cancer ranscriptional subtypes, three microll NA subtvpes, four promoter methylation subtypes and a transcriptional
signature associated with survival duration, and shed new Light on the impact that tumours with BRCAL/ 2 (BRCAl or
BRCAZ and CCNE] aberrations have on survival. Pathway amalvses sugrested that homologous recombination is
defective in about half of the tumours analysed, and that NOTCH and FOXMI signalling are involved in serous ovarian

cancer pathophysiology.
Gene No. of Somatic Mutations (%) No. of Pubmed Papers Function
P53 302 (96%) 63852 tumor suppressor
BRCA1 11 (3%) 9231 tumor suppressor
NF1 13 (4%) 3064 tumor suppressor
CDK12 9 (3%) 27 ?
BRCA2 10 (3%) 5793 tumor suppressor

RB1 6 (2%) 2050 tumor suppressor



Survival (%)
0 20 40 60 80 100

Ovarian cancer

204 000 new cases worldwide

results in 125 000 deaths per year

relatively low incidence rate, but extremely lethal

highest death-to-incidence ratio among cancers

overall five-year survival probability in about 42%

70% of deaths are patients with advanced-stage high-grade serous
ovarian carcinoma (HGSOC)
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Vaugham et al., Nat. Rev Cancer, 2011



High-grade serous ovarian carcinoma (HGSOC)

- Narrow mutational spectrum - p53 mutated in 96% of patients
- recurrent mutations in eight genes including BRCA1/2

~ 50% of patients have a defect in homologous recombination (HR) DNA repair pathway
potentially sensitive to PARP inhibitors therapy

- Defect in HR - BRCA1/2 mutations and BRCA1 epigenetic silencing
- Fanconi anemia genes mwations (FANCI, FANCD2, FANCA)
- Rad family genes mutations
- DDR genes mutations (ATR, ATM, Chek1, Chek?2)

What is the role of CDK12?77?7?7?

Vaughan et al, Nature Rev Cancer 2012



—> CDK12 (12) I

HGSOC-related mutations in Cdk12 are clustered in its
kinase domain and lead to potential loss of Cdk12 function
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Cdk12 forms a complex with its activating Cyclin, Cyclin K
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Most of Cdk12 mutations in HGSOC abrogate the kinase
activity of Cdk12 and some lead to defective interaction
between CycK and Cdk12
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Structural insights into the detrimental effects of Cdk12
mutations on the kinase activity of Cdk12
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Cdk12 mutations in HGSOC decrease the transcriptional
activation by Cdk12 in reporter assay
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Cdk12 mutations in HGSOC patient samples cause down-
regulation of genes of the homologous recombination (HR)
repair pathway
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Depletion of Cdk12 results in downregulation of HR genes in
cell lines
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Cdk12 is recruited to the DDR genes and regulates Ser2
phosphorylation of the CTD of the RNAPII

Cdk12 total/Ser5-P RNAPII Ser2-P RNAPII
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Double-strand breaks are repaired by HR or by non-

Proteins
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Cdk12 lesions disable the frequency of the repair of double-
strand breaks in DNA by HR
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PARP inhibitors selectively kill HR-deficient cancer cells by
inhibiting alternative NHEJ pathway
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Depletion of Cdk12 sensitizes ovarian cancer cells to PARP
Inhibitors
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Cdk12 mutations cause a defect in HR pathway by collective
down-regulation of critical HR genes

Individual Mutations
in HR-related Genes:

BRCA1/2
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Farmer et al, Nature, 2005

McCabe et al, Cancer Research, 2006
Morrison et al, EMBO J, 2007

The Cancer Genome Atlas, Nature, 2011
Lord and Ashworth, Nature, 2012
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Conclusions Il

Most HGSOC Cdk12 mutations interfere with Cdk12/CycK complex
formation

Mutations likely cause structural rearrangements detrimental to Cdk12
activation

Patient samples containing the Cdk12 mutations have diminished
expression of HR genes (ATM, ATR, Rad51D, FANCI)

Cells with Cdk12 mutations fail to repair DNA double-strand breaks
via HR

Cdk12 mutations have a potential to be markers of PARP inhibitor
therapy in patients with HGSOC
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