Lineární algebra a geometrie II
13. a 14. přednáška
Aplikace JKT na soustavy diferenciálních rovnic s konstantními koeficienty. Výpočet eA pro matici A diagonální, v Jordanově tvaru, podobné matici v Jordanově tvaru.
Základní myšlenka důkazu věty o JKT. Definice nilpotentního operátoru. Kořenové podprostory a jejich vlastnosti. Pro daný operátor splňující předpoklady Jordanovy věty je prostor direktním součtem kořenových podprostorů. Pro daný nilpotentní operátor najdeme jeho rozklad na direktní součet podprostorů, z nichž na každém je operátor cyklický. Tím dostaneme řetězce, které dávají bázi potřebnou pro Jordanův kanonický tvar.