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SmiTut and Minkowskit laid the foundations of an arithmetical
theory of quadratic forms in their definjtions of orders and genera
of quadratic forms. In this paper we are concerned with those
invariants of a quadratic form which characterize its order. We shall
see that of Minkowski’s invariants (o,,..., 0,_;; 0y,..., 0,,_;) the latter
n—1 are quite superfluous, after a modification in the definition of
the former. In Smith’s terminology, it ie no longer necessary to
distinguish specifically between properly and improperly primitive
forms.

For purposes of arithmetical theory the use of Kronecker’s binary
forms az?+bzxy+cy® and discriminants b*—4ac¢ has conduced to
greater simplicity than the restriction to Gauss’s forms ax2+ 2bzy +cy?
and determinants ac—b® or b2—ac. The following developments seem
to lead to a corresponding advancement in the theory of quadratic
forms in several variables.

1. The matrix and discriminant of a quadratic form. Any
quadratic form f in s variables with integral coefficients may be

written as
8

f@y,...,x,) =i,;_1aijxixj (ay = ay), (1)

where the coefficients a,; and 2a,; (i # j) are integers. The matrix of
f is the matrix (a,); the determinant |a,| of f will be assumed
(throughout this paper) to be not zero. The discriminant d of f is,
by definition, the determinant multiplied by

(=228 if 5 is even, (—)e-1e2s-1  if g ig odd. (2)

That a discriminant is an integer if s is odd, and is an integer
congruent to 0 or 1 (mod 4) if s is even, is a corollary of the following
lemma.

1+ The contents of this paper are cognate with the following: H. J. 8. Smith,
Collected Mathematical Papers, i. 412-15, 510-12, and ii. 623-36 ; H. Minkowski,
G;&ammdu Abhandlungen, i. 4-6, 8-33, 72, 76-9.
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LEMMa 1. Letk > 1; let ey (3,5 = 1,..., k) be integers such that e,
18 even and e;; = e;; for all values of + and j. Then the determinant
ley;| 8 always even if k 1s odd, and 18 congruent to 0 or (—1)*2 (mod 4)
if k ig even.
For consider the expansion of je;;| = 3 (4)ey,...¢,,. With each term
7 = (d)ey,..-€ let us associate the transpose term 7* = (4-)e;...e,;
which is equal to r. Now 7 may be its own transpose; but, if k is
odd, this happens only if  contains some factor e, whence r is
even; and, if k is even, r will contain an even number of such factors.
Hence, if k is even,
legs] = (—)m{elz‘3'34---‘31:—1,k‘f‘---}2 (mod 4), (3)
where the expression in braces is the sum of all algebraically distinct
terms e,,...e, such that all the indices p, g,..., ¢, r are unequal.

2. Notation. With certain exceptions small Latin letters will
connote integers. The exceptions are: f, g represent forms; ay, by;
denote halves of integers if ¢+ 3£ j. Otherwise the role of the various
letters will be defined.

3. Classes of forms. Index. If the transformation

z; '=jza1t‘fyj (t=1..,9 (4)
with the matrix T' = (¢;) carries f(z,,...,z,) into
IY1-sYs) = Ebuy{.’,/j (bu = bji;i:j = 1,..,8), (5)
then, representing (2a,;) and (2b,;) by 4 and B, we have
B = T*AT, (6)
where T'* denotes the transpose of matrix 7. We can then say that

‘f contains g’.

Let T be unitary, i.e. have determinant 1. Then 7! is unitary,
and (6) implies A = (T'-1)*BT-1. Thus g contains f. If fis trans-
formable into g by a transformation of determinant 1, we say that
f and g are equivalent, and write f ~ g. The relation of equivalence
is reflexive, symmetric, and transitive. All forms equivalent to a
given one are equivalent to one another, and constitute a class of
forms.

The discriminant is an invariant of a class. Another invariant is
the sndex (to be denoted by I), defined as follows. Since d # 0, f can
be expressed in the form

oy X34 4o, X3,
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where the «; are rational non-zero numbers, and the X, are linear
combinations with rational coefficients of the z,, the determinant of
the X, being not zero. The number I of negative coefficients o in
every expression of this type for f is the same, and is called the index
of f. The signature of f, defined to be s—21, is frequently taken to
replace I as an invariant of the class.

4. The g.c.d. of order k. We shall conveniently employ the letter
o to connote a subsequence of k (1 < k < 8) elements of (1, 2,...,38),
that is, a sequence of the type (i}, 1,,..., 1,) (1 < 1) <1y < ... < 1, < 8).
The minor determinant of a matrix C formed by the elements at the
intersections of rows iy, 1,,..., 1, and columns j,, j,,..., 7, will be denoted
by C[o,0,), where o, = (3y,...,3;) 8nd 05 = (Jy,---,5x)-

From the equation (6) we have, by a simple property of deter-

minants, Bloy o] = 3 4[o0')To0,)7[o's] (7)

summed for all subsequences o, ¢’. Since C[o¢’] = Clo’c] (C = A4
or B), the g.c.d. of all the A[oo] and 24[oc’] is a divisor of every

Blos] and 2Bfod’]. (8)

The g.c.d. of order k of f is defined as follows, and is denoted by

dy (k=1,..,8). Let A = (2a;), and, with Lemma 1 in mind, write

pe = 1 or 2 according as k is even or odd. Then u,d, is the g.c.d.

of all the principal minors and doubles of the secondary minors of
order k in A:

pxdy i8 the g.c.d. of all the A[oo] and 24[a0’]. (9)

For example, d, is the g.c.d. of the actual coefficients a;;, 2a;; of f.
Since d, > 0, the discriminant is equal to

d = (—)-1d,. (10)
For future expediency we shall define
dy=0 dy=1, d,,, =0. (11)

If f ~ g, A and B may be interchanged in (8). The g.c.d.’s d, are
snvarianis of a class.

We call d, the divisor of f or of its class. If d, = 1, the form and
class are called primitive; if d, is prime to N, they are primitive to
modulus N. The form f/d, is primitive, and f is said to be derived
therefrom.
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5. The o-invariants of f. Definition of order. For odd primes
p it is plain that if p*|d,_, then p™|d,. This is proved in § 8 for
p = 2. Hence dy_,|ds 1<k <stl),
The following two theorems are also established in § 8.
THEOREM 1. Each of the numbers o, defined by

| = Han Z’:::I’:;-l LS 41+<—l>*——’—~d"+é§‘°‘f (k=0,.,5). (12)
18 an integer. Further:
or & 2 (mod 4) (k=0,..,8). (13)
If any o, (1 < k < 8—1) 18 odd, then o,,_; = 0;,;, = 0 (mod 16).

Thus oy, = 0 =0, o0, =d,/d:. As here defined, o,,...,0,_; are
positive. '

These o, together with d;, will be chosen to replace the d, as
invariants of a class, and may be called the o-invariants. All forms
or classes in s variables with the same index I, the same divisor d,
and the same system of invariants o,,..., 0,_; constitute an order.

The g.c.d.’s d; are given in terms of the o, by the equations

d okok1...
dﬁ:% (k=1,2,.,8—1), (14)
d, being an arbitrary positive integer.

The greatest common divisor of a set of numbers Aa; (+ = 1,...,n),
where A i8 a real number differing from zero and the a; are integers,
may naturally and without ambiguity be defined to be |A|D, where
D is the g.c.d. of the a;, Thus the g.c.d. of order k of the form Af
is 4+A¥d,. Observing with a view to (12) that

(EHINE-1) e = 1,
we see that: the snvarianis o, of Af are the same as those of f.

lok

5a. Definitions of even, odd, and classical forms. An integral
quadratic form f is called even or oddt according as the primitive
form f/d, from which f is derived has all its cross-product coefficients
even or has at ieast one of them odd. A form is called classical if all
its cross-product coefficients are even. The determinant of a classical
form is an integer.

t+ It is appropriate virtually to reverse Smith’s use of these terms.
38965.8
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6. The comitant forms f, and F,. Let f be a form (1). Employ
the notations of § 4. The form f, in the ,C, variables ¢, defined by

pafill) = 3 Aloo' Kol (k= 10—1) (15)

(e =1 if kis even, p = 2 if kis odd)
is called the kth comitant of f. The divisor of f; is d: cf. (9). Also
fi=/F By§8, we have
THEOREM 2. The form f, 18 even or odd according as o, 18 even or odd.
Let us write

(—), = 1 or —1 according as the sum of the elements in ¢
18 even or odd. (16)

Replacing every £, in f,(¢) by (—), ¢, yields a new form f, differing
from f,. only in the signs of certain secondary coefficients. The forms
Fo=J/d, (k=1,.,8—1) (17)
are called the primitive comitants of f. The (s—1)th primitive comi-
tant F,_, is called the reciprocal of f/d,.
6a. Reciprocal orders. (§6a is not used in proving Theorems
1 and 2.)
The form ¢ = f,_, = d,_, F,_, is the contravariant of f. We have

8
Pe-1P(Zys.., Ty) = g Ayzzy,

where A4;; denotes the cofactor of 2a,, in (2a,). Write ¥ = (4,,).
Let rand ' dgnote subsequences of s—k elements of (1,2,.., 8), and
o and o' the conjugate subsequences consisting of the remaining &
elements (k = 1,...,8—1). Then by a simple property of determinants
Eloo'] = |2ay[*(—){—)r A[r'].
Hence, 'if s is even, the kth comitant of ¢ is seen to be
¢y = (‘)“k_lyedk_lfa—h (A)
where d is the discriminant of f, i.e. d = (—)**|2a,|. If s is odd, the
kth comitant of }¢ reduces similarly to '
() = pig(—Jo-0Xe-DiEgR-1f, (B)
From (A) and (B) we can easily write down the divisors of ¢, and
(3¢)i- Let op (temporarily) have the same signi” zance for ¢ (and
hence, by the end of § 5, for }¢) as o, has for f. Substituting for the
various g.c.d.’s in (12) we immediately find thac
op=0,, (k=1,.,8—1) (18)
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If a form f has index I its reciprocal has index I’, where

I' =1 if sis even, I’ =38—1 if sis odd. (18")
1f f belongs to the order (d, = 1; I; o,,...,0,_,), its reciprocal belongs
to the order (1; I’; 0,_4,...,0,). By (A) and (B) with k£ = s—1, f/d,

_is the reciprocal of F,_,. The primitive orders (1; I; o,,...,0,_,) and
(1; I'; 0,y,...,0,) &re called reciprocal orders. The kth primitive comi-
tant of F,_, is f,_/ds—x (kK = 1,...,8—1).

7. Canonical forms of f to modulus z*. In studying the pro-
perties of the minors of 4, to modulus N, it is expedient to transform
f into a simple equivalent form, to modulus N. Two forms f and g
of type (1) are said to be equsvalent, to modulus N, if there exists in
the class of f a form whose coefficients are congruent, to modulus N,
to the corresponding coefficients of g. Equivalence, to modulus N, is
reflexive, symmetric, and transitive.

Lrevmma 2. Let 8 > 2, f being a form (1). Let t be positive, p an odd
prime. Then f 13 equivalent, to modulus ¢f, to a form g of the type

I(Y1s-s Ys) = PUM Y HPUMyYi .+ Pm, Y,
O< <oy <..<a), (19)
the oy being integers, and the m, prime to p.
LeMma 3. Let 8 > 2,1 > 0. Then f 13 equivalent, to modulus 2,
to a form g of the type
91 rYy) = Prmnyyit+... 4 2Bem, g+
+27(n Y HmOY g Yuse R Yh) o+
-}-2‘/-(712,,_1y§_1+7n<"’y,_1y,+n2,y§), (20)
where (a) the B; and y; are non-negative inlegers, the m; and md) are

odd, and 8 = u+4+2v,u > 0,v > 0;

(b) the mY may be taken to be arbitrary odd infegers, and

T, Mg,y Migpy B0 be odd;

(c)fornOtand]waB,-{-leq'ualtoay,.

In proving these lemmas we shall assume without loss of generality
that f is primitive to modulus p (greater than or equal to 2 respec-
tively), i.e. at least one of the integers a;; and 2a,; is prime to p.

In the case p = 2 and f even, at least one of the a,, is prime to
p. In the case p > 2 and every a,, divisible by p, some 2a,, is prime
to p; we apply then the unitary transformation

Syt . =Yt T=Y (I # k), (21)
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which replaces a;; by a;+-2a,,+a;,, which is prime to p. In view
of the unitary transformation P,;, where P, is

P Te=Yp L= Y =Y (F1,k), (22)
we may assume a,, prime to p.

Suppose in (1) that a,, is prime to p. The transformation

zy = Yt+heyst...+h Yy, r=y (1=22), (23)
carries f into g with a,, as the coefficient of % and with
by = 2a,+2a,, by
as the coefficients of y,y, (Il = 2,...,8). The &; can be chosen to make
each b divisible by 7/, except when p = 2 and f is odd. Thus
: 91 ¥s) = 00131+ P% (Y3, 9s)  (mod p¥), (24)
where ¢’ is primitive to modulus p, and « is an integer > 0.

Even if f is odd and p = 2, f may be equivalent to a form of
type (24). At any rate in view of transformation (22) we may assume
2a,, odd. We apply then the unitary transformation

z = Yrtheyat +hy Y,
Ty = Yotksyst... ks Y, =y (=23) (25)
This yields a form g in which the coefficient of y,y, is 2a,, hy+2a,,
and is odd; and the coefficients of y,y, and y,y, (I > 3) are re-
spectively by = 2ay, b+ 2a,, b+ 2a,y,
and by = byhy+2ay, b+ 204, k) 2ay,.
Now the congruences
2allhl+2a’12 kl = _2all } (mod.2‘)
2015 by+-2ap b = —2ay
are solvable simultaneously for A, and k, the determinant
4a,, @y,—(2a,,)? being odd. Thus
I(Y1s-: Ys) = myYi+my1 Yot noy;+2°9" (Y5, 9,)  (mod 2),
where m is odd and the notations are self-explanatory.

It is clear how Lemmas 2 and 3 (a) follow by repeated applications
of these results. Lemma 3(b) is a corollary of the following result.

LEMMA 4. Let m be odd, nq, ny be integral, and t be positive. Then
n, T +mx, 2,1y 25 18 equivalent to a like form tn whick n, 8 odd and
m has any desired odd residue, to modulus 2.1

t It should be noted that then n, is odd or even according as the dis-
criminant m?— 4n,; n, is congruent to § or 1 (mod 8).
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If n, is not odd, but n, is odd, we employ P,,; if 7, is even also,
we employ S,,. Suppose n, to be odd. By the unitary transformation
x, = y,+hy,, z, =1y, m goes into m' = m+2hn,;, and A may be
chosen to give m’ any desired odd residue, to modulus 2.
To prove Lemma 3 (¢} we have
Lemva 5. Let m, m' be odd, n,, n, be integral, and t be positive.
The form ma?+2(n, 2t +m'z, x5+ n, 22) 18 equivalent, to modulus 2, to

@ form my Y3+ myys+my yl (26)

i which m,, my, my are odd.

Replacing z, by y,+v,, ; by y;, ;3 by y;, we obtain

My Yi+ 20, Y, Yo+ 2m'y, Y3+ 20, Y3+ 2m Yo Y3+ 2mp 4,
where m; = m+2n, is odd. Now write
Y1 =21+hezs+hyzs, Yo = 2y, Ys = 23

The coefficients 2m, h,+2n, and 2m, ky+2m’ of 2,2, and 2,24 can be
made divisible by 2! by choice of an odd %5 and an integral h,. The
new form is congruent, to modulus 2!, to m,z}+8, where § is a binary
form in z,, z; in which the coefﬁclent of z% is odd and that of 2,2,
is even. 1

After arranging the 8 numbers

Bi+1,B:+1,..., Byt 1, YuYu Y2 Y Yer Ve (27)

where no ;41 is equal to any y;, in order of magnitude, we denote
them by a;, «5,...,,. Thus o < ap < ... < o, and each o is either
a B+1 or a y. Let the number of distinct values among the «; be
g, and arrange them into ¢ sets X, (r = 1,..., ¢) of elements of equal
value, thus:

2 = (o, ag,...,otsl), 2, = (0‘3,+1r~-:%,):---’ = (Cggy 4117+ %)- (28)
We may write 8, = 0, 8, = 8.

The variables y; in (20) may be rearranged accordingly: thus
with each X, there is associated a form 2%y, in the variables y,
(k = 8,_;+1,...,8,), where e,+1 is the constant value of the elements

of ¥,. If these elements are of type B+1,
Yol Yoo g My Yis

where the m, are odd. But if the elements are of type y, 8,—s,_, is
necessarily even, say 8,—s,_; = 2k, and

‘)l'r(---: yk:"') = 2¢1+2¢2+-"+2¢h1
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where the ¢, are odd binary quadratic forms of the type in Lemma 4,
in the successive pairs of variables y,. By Lemma 3, every f is equi-
valent, to modulus 2/, to a canonical form of the type
¢ = 2994+ 299, +... + 2%, (29)

These results should be expressed in a form analogous to Lemma 2:

LemMa 6. Let t > 0. Any classical, integral quadratic form in 8
variables 18 equivalent, to modulus 2, to a form of the type (29), where
Py,..., b, are classical, integral quadratic forms, each in variables dif-
ferent from those of the remaining forms, and each of odd determinant;
and the e, are integers (0 < e; < e, < ... < ).

LemMMA 7. Let t > 0. Let o be a classical, integral quadratic form
in v variables, of odd determinant. Then, if s 18 even, ¢ 18 equivalent,
to modulus 2, to a form of the type

myxi-fmyxi+ .. m,ak, (30")
where the m; are odd integers. If i 18 odd, then v 18 even, say v = 2r,
and ) 18 equivalent, to modulus 2!, to a form of the type

2(m,y a2+ mWz, 2ot n, )+ ...+ 2(m, 22 +mPx,_ z,+n,22), (307)
where the m; are odd snlegers, the n, are mteger& and the m® are arbitrary
odd integers.

A canonical form, (19) if p > 2, and (29) if p = 2, of f is called
a princiypal ressdue of f to modulus p'. :
In connexion with (29) it is useful to define
0, =0,if o is a8 B+1
1, if «, i8 an initial y , (31)
—1,’if , is & terminal y
An initial y denotes a term &, of type y occupying an odd place of
its set Z_ in (28), that is, for which s,_, < k < 8, and k—s,_; is odd;
a terminal y occupies an even place. An initial y = «, and its suc-
ceeding terminal y = ay,; may be called fwins.
With each pair of twin terms oy, oy, of type y is associated a
matrix 2 b '
(b c) '
where y = o = a4y, @ = 2¥1im, b= 2ym’, ¢ = 2¥*ln, m and m’
being odd, n integral. If ¢ is a principal residue of f, to modulus %,
the matrix of 2¢ consists of a series of single terms 28+lm, (o), = B-+1)
and binary matrices (32) situated along and symmetric with the

(32)



ON INTEGRAL QUADRATIC FORMS 39
principal diagonal, all remaining elements being zero. Further,
&,..., &, are in order of magnitude, and any o of type y is unequal
to the nearest preceding and succeeding «’s of type B-+1. It should
be noted that ac—b% = 2%+u+: M, where M = 4mn—m’? is odd.

8. Proof of Theorems 1 and 2. With Minkowski let us dencte
the exponent of the power of p dividing d, by 8, = ék(p). By (11),
9, = 0. Forms which are equivalent, to modulus ¢/, for a sufficiently
large ¢ have the same values 9,. It will suffice to have ¢t > o, in
(19) and (29).

(i) p > 2. By (19) we have

o = oytagt... oy (+=1,...,3).

Hence 0;, > 0,_;. The numbers w, defined, when p > 2, by
wp = (41— ) — (8 — 1) (k=1,.,8—1), (33)
are also positive or zero, since in fact
Wy = gy — (34)
Plainly, w, is the exponent of the power of p dividing o, in (12).
(i) » = 2. The exponent of the power of 2 dividing o, is
wp = Oy — 204+ O +2{1H(— 10 (b =1,.,8—1). (35)
Let us write .
P = 0y tag+...Fay, (36)
€, = 0, if a; i8 a B+1 or a terminal y, )

= 1, if oy i8 an initial y. (37)
Hence, by (31), 8, = e,—e;_;.

By the sequel to (32), the exponent of the power of 2 dividing the
leading principal minor determinant of order k (in the matrix of 2¢)
i8 p,t-¢;, and this is the greatest power of 2 dividing all the principal
‘minor determinants of order k. Further, the exponent of the greatest
power of 2 dividing the doubles of all the secondary minors of order
k is never less than p,4-1, and is p,+1 if «, is an initial y. Conse-
quently we have (20 = 2Pt (38)

fi 18 odd or even according as e, = 1 or ¢;, = 0. (39)

Hence, at once, by (9), (38), (38), and (37),

Opr1— 0 = oy —(—1)¥ 40,4y (k=10,1,.,8—1). (40)
Except possibly when ., = Oor 1and 6,,, = —1, it is now obvious

that 9,,,—d, > 0. This is true even in that case, for then ay,, is
of type y and equalto «,, whence k is odd.
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‘Finally, by (35) and (40),

wy = gy —+2+0;4,—0,. (41)
Since o4, = ay, and, by (31),
wy = 0, if and only if oy is an initial y, (42)

ie. if and only if ¢, = 1,
ie. if and only if f, is odd.
This completes Theorem 2. Also, for k = 1,...,8—1, (41) yields
w, =0 or w,>=2; } (43)
ifw, =0, thenw,,>4(k>2), wpy>4Fk<s—2).
These facts involve Theorem 1.
Corresponding to (31) we now have the following values for 8,:
ek = —l, if We1 — 0,
=1, ifw,=0, (k=1,.,8—1). (44)
=0 otherwise
We can thereby determine «,,..., «, and the type S+1 or y of each «y,
uniquely in terms of 9, and w;,..., w,_;. For we have
a = wy+ ...t wp_ —2k—0,+3+2,, (45)
ay i8 of type y, if and only if w, = 0 or w;_, = 0. (46)

8 a. The correspondence with the Minkowski-Smith in-
variants. By (41), oz, = oy, if and only if
w, = 2; or w;, = 0; orwy =0, w,=4, wp,,=0 (47)
Thus ., is the first element of its set Z, in (28), only for the values
k not satisfying (47).

It is to be observed that the classical Minkowski’s 0, and Smith’s
I, which are identical and which we denote temporarily by Smith’s
notation I, are related to ours by the equation

0 = 4oy Iy 0p [0} (48)
where o, is 1 or 2 according as o, (or f;) is even or odd. It is easily
verified by use of (13) that the cases (47) are precisely those in which
I, is odd.

9. A special condition if o, o,..., 0,_, are odd, s even. Let
0y, 0s,..., 0,_, be odd, s even, whence, in (20), 8 = 2y, u = 0. We may
suppose d, = 1. Then (29) is of the type

9 = 2oy 2t 2y, (49)
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where each ¢, is an odd, primitive binary quadratic form in the
variables ¥,, ¥;;;- By (10) and (14) the determinant of 2g is of the

form (—)0,05...0,_; N8M+1),
where A and M are non-negative integers. But the product of the

determinants of the 2y, is the product of }s numbers of the form
4n—1. Since the modulus 2 can be taken arbitrarily large, we

must have (—)6-2M20, 0,...0,_; = 1 (mod 4). (50)

THEOREM 3. The condition (50) is satisfied by the signature s—21
of any order of forms (1) tn which s is even and o;, os,..., 0,_, are odd.

10. Necessary and sufficient conditions on (1, I, o,,...,0,_,) for
an order to exist. Smith’s enumerationf of the further rela-
tions, in addition to (13) and Theorem 3, which the invariants
defining an order must satisfy in order that corresponding forms may
exist, is incomplete; his specification of certain relations to be satis-
fied by the generic characters probably covers this omission, but is,
of course, complicated to apply. Minkowski’s discussion, covering
the generic characters, is rather intricate.f The relations in question
take a distinctive form in our notations. In view of these circum-
stances we shall now present a direct investigation for the simpler
case of an order. The extension to a genus is then in fact more
perspicuous.

Analogously to § 4, let

o= (1,..,k), o =(,.,k—1,k+1),

p=(l..,k=1), = (1,.,k+1) (0 < k < 8).
Then we have the identity

Aloo]A[o’0’'|—A[od’]4[0’a] = AlpplA[rr], (51)
for any square matrix 4 of order s, a well-known relation for a
second-order minor in the adjoint of the determinant A[r7].

Let A be the matrix of 2f, whence A{oo’] = A[o’c]. The leading
principal minor determinant of order k, namely, 4[oc], is of the form
4.1, where [, is an integer. In particular, by (10) and (11),

=11 = (=1 (52)
The sequence of numbers lolyseonly (53)
forms a_ reduced leading chain of minor determinants of f; I, is the
leading coefficient of ¥, (k = 1,...,8—1).
t Loc. cit. 512-13. 1 Loc. cit. 78-9.
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We require the following theorem of Minkowski and Smith:

Lemma 8. In the class of forms equivalent to f there are forms in
whose reduced chain (53)
l, 18 prime to 2, _ 1, ,,0,0,...0, (k=1,.,8—1). (54)
The proof, which is worth our while to review, is based by
Minkowski (whose preof, pp. 21-2, is faulty) on the lemma that if
é1,..-» ¢, are any r forms in the class of f, and N,,..., N, are any r non-
zero integers which are relatively prime in pairs, then there exists
a form ¢ in the class of f such that ¢ = ¢; (modN,) (1 =1,.,7).
Smitht gives a satisfactory proof of a more fundamental lemma,
from which Minkowski’s follows: if a determinant [t;| = 1 (mod N),
we can alter the elements ¢;; by multiples of N to secure a deter-
minant actually equal to 1; the extension to moduli N,,..,N,
relatively prime in pairs is obvious,
Consequently, by Lemmas 2 and 3, there exists in the class of f
a form ¢ which is, to modulus p}, a principal residue of f to the
same modulus for any number of powers of different primes. Such
a form is called a principal representativel of f to modulus ] p. We
shall include among the p, all the primes dividing 2o, ...0,_,, and
shall always suppose n; > «,(p,). The latter convention ensures that
the leading principal minor determinant of order k in the matrix of

24 is of the form
¢ kapj'("’)m'j’

where m; is prime to p,, for each j; hence it is of the form p,d.l,,
where [, is prime to all the p;.

It remains to secure that I, be prime to [,_,. Minkowski’s treat-
ment at this point (p. 72) seems to be not quite complete, but is
supplemented by Bachmann.§ We have l, = 4+1. If k is the largest
integer for which [, is not prime to I,_,, consider

Gy, 2) = d(zq,.., %4, 0,..., 0).

Then d,,...,d,._, are the same for y as for ¢, but d,(y) = idklk. If
we apply to f any unitary transformation 7' leaving Zpiqyees Ly UN-
altered, the determinants of ¢ and of ¢(zy,...,2;,0,...,0) (£ <+ < 8)
are unchanged, whence /.., I,.,,,..., I, are unchanged. We employ such
a transformation 7' which carries ¢ into a principal representative

1 Op. cit. ii. 635-6.

+ The determination of a principal representative in a finite number of

btelh is discussed by Minkowski (pp. 33-5).
§ P. Bachmann, Die Arithmetik der quadratigchen Formen, i. 452-3.
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of itself for the primes dividing I, as well as 20,0,...0,_,. Then the
new [/, , will be prime to /,, and we have reduced the problem to
a lower value of %.
To proceed: by (9), we may write (51) in the form
(e B L) (e i 1) — e d)?2% = (proy By L) (k2 Biia i),
where z and I, are integers; and hence by (12) we have
~Ocly by = 22 —4L 1. (55)

Consequently Lemma 8 implies

LemMma 9. If the order (1;1;04,...,0,_,) actually confains forms, there
exist indegers Iy = 1, 1,,...,1,_,, 1, = (— 1) satisfying (54) and such that
the congruences —0 by by sy = 2§ (mod 4,) (56)
are solvable in tntegers z, (k = 1,...,8—1).

The index I of f is equal to the number of consecutive sign-changes
in a chain of principal minor determinants and hence in the sequence
(563). We shall hereafter assume (54), so that none of the [, are zero.
We write ¢, = +1 or —1 according as [, is positive or negative,
whence ey, =1, ¢, =10, = (—1), €l >0 (k=0,..,3).

Since (54) holds, (68) implies both of

b= (—opli1lealely) =1 k=1,.,8—1) (57)
and —0ply 3l = 1 (mod 4), if o, is odd. (58)
It is easily verified that
Cimledd)(—lilegiabing) = xed (t=0,.,8—1), (59)
where
oy = (—1)0HXa-14 ) — (— 1)@+HIXer+-1i4 (1=0,..,8—1);
(60)

and it is plain that {,...{,_, is the product of the s left-hand members
of (59) by the 8—1 numbers '

ve = (0glexly) (b =1,..,8—1). (61)

Consequently, by (57), (56) requires {, ...{,_, = 1, that is,
Koo Kg_qAg-eeAg_qVy - Vg = L. (62)

Now [ is the number of consecutive sign-changes in (e,...,€;). (63)
To each change from 4 to — corresponds a factor A, = —1. Hence

Do -dymy = (—1Y0+0,
and (62) reduces to

Koor Ky Vg e Vgoq = (— 1JT+1R2], (64)
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We shall now show. that, if there exist integers {, = 1,1,,...,1, ,,
I, = (—1)* (the sign +1 of [, being represented by ¢,) satisfying

(54), (58), (63), and (84), (P)
then there exist other integers I, having the same properties and
signs and also satisfying (56); and hence we shall be able to construct
a form in the order (1; [;0,,...,0, ;).

For set my = I, = 1. Without affecting the validity of (P) we can
replace I; by m,, where ¢;m, is a positive prime (or 1) and m, =1,
(mod 80,). Next, by (54) and (58), we can replace I, by m,, where
€, M, 18 & positive prime, m, = I, (mod 80,), and the congruence

—0,mym, = z% (mod 4m,)
is solvable for an integer z,; the truth of (P) being retained. We can
proceed in this fashion until we have chosen ¢,_;m,_, to be a posltlve
prime (or unity) satisfying

— 04 My_gM,_y = 7;_» (mod 4m,_,), m_y = l,_; (mod 8o,_,);
while the system lo>1, L, >my, .y Lyy>my_y, l,>my,=(—1)1
satisfies (P). Further with the m; substituted for the I,
{Li=..=0 =1,

whence (64) shows that {,_; = 1, and hence that the last of the
congruences

— 0 My_y My = 2% (mod 4m,) (k=1,...,8—1) (65)
is solvable for an integral z,_;.

We ghall now try to construct a form ¢ in the order (1; I;o0,,...,0,_,)
with a matrix for 2¢ of the type
[ 2v, w,

wy, 2v;  w,

wy, 20, Wy

66
wy; 2vg (66)

2y, |

with zeros elsewhere. Let M, denote the leading principal minor
determinant of order k. We wish to identify M, with u,d,m,. Thus
My=1, M, = 2y, = 2d,m,, whence vy =m,, and generally, if
0<k

<r<s My =20, M —wi M, _,,

Pear ey Mpy +WR iy ey My = 20, ppdymy. (67)
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Now, since by (12) or (14)
e dy = 20,05 ... Oy Py By, (68)
we must have (for £ = 1,...,8—1)

42-2%ko2 | 0% oMyt Wi = 42 %0, ...0,_ v, m,. (69)
We shall therefore, in view of (85), writet
Ox My 1 +My 128 = dmyty, Vo = My,
w, = 41"%, ... 0,_, 2, v, = 4%, ...0. 8, (k=1,..,8—1). (70)

By this construction the leading minor M, has the value p.d, m,,
(k = 0,...,8). Hence the index, determined by the signs of the m,, is I.
Since m,, is prime t0 pyyq @4y Mpyy = My, we have merely to see
that all the remaining principal minors and twice all the secondary
minors of (66), of order k, are divisible by u,d,, to ensure that d, is
the g.c.d. of order k. Every such minor M’ of order k is obtained by
bordering some M, (0 < r < k < 8) with k—r rows and columns,
the first row being at least the (r+-2)th, the first column at least the
(r+1)th.

On bordering M,_, with the (k+2)th row and column, we obtain
a determinant having the value 2v;, p;._, d;_ym;_,. The quotient of
this by u, d, 18 }m;_, 0, L, 1y, by (68) and (70), and must be integral. By
(70), if oy,, is even, 4|z, , if and only if 4{t,,,; hence we need

4|z, ., and 4|t ,, for each k such that o, is odd (0 < k < s—1). (71)
To satisfy this condition we replace z,,, by 2|m,,|—2;,,, which is
also a solution of (65), if z;,; = 2 (mod 4). Condition (71) is finally
seen to be sufficient.

For, generally, the minor M’ is equal to u,d, m, multiplied by zero,
or by a sum of terms of a type 4w, ... u,_, characterized as follows:
letr4+2 < by < by < ... < by, < 8; u,; is one of the numbers

Wh,-1» 20p,-1, W,
chosen from the A;th row, no two factors u,,..., u,_, belonging to the
game column in (68). The terms of a secondary minor M’ are dis-
tinguished by containing at least one factor »; = w, such that neither
%, NOT %,_, i8 &l8o w); in such a case we can prefix a factor 2 to
" each term. '

1 Minkowski (loe. eit., 77) introduces an extra factor o in his definitions
corresponding to vy and wy, in order to simplify his discussion. But this
weakens the analogy with the best treatment for 8 = 2 and 3, and hampers
an extension to the case m; not prime to og.
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By (68)’ F’kdk = F'rdr 2£r+1 2fr+2 szf where

£ =0;...05_1/441 h=1,.,s). (72)
Hence we have merely to prove the integrality of
(af (28,12} . (e /(2£00), (73)
or of its double, if M’ is secondary. We abbreviate
£y = braslbrn = Oppq - Opy /¥ (0 <E <GS 8—0) (74)
By (70), wy = &2y, v, = €ity, and the sth factor of (73) is of type
20,15(2,00) = Eislras OF 0,44/(260) = ¥y2z,y.  (70)
Now, by (13), £, is an integer unless
Opii) Opiyips s Opijy BT@ 0dd  (j—1 odd); (76)

and in this case 4£; is an integer, and hence {,,¢,,;, &;;2,,4 are still
integral by (71). If then there is only one factor of type #{;2,.; in
(73), M’ is secondary and the prefixed factor 2 erisures the integrality.

Finally, if there are two or more such factors, consider any of
them other than the last, say $£,2,.;. If o, is even, z,,, is even
by (70), and £;; is an integer save in case (76); if o, is odd, 160, ;_;
and hence, by (13), §; is a multiple of 4 unless

Ortg) Opiitas --» Opyj—g &T€ 0dd  (j—1% even), (78")
in which case £, i#”still an integer. Thus }£;z,,; may be half an
integer only in case

Orris Orsiags -y Oprj—ye (& = 0 or 1) are odd. (77)
The succeeding factor in (73) may be (i) $£;4142,4; (6 <Jj < 8—71),
(i) ¥igenzegen 6 <J <J+h < 8—r), or (il) &4y yintrsjen In
case (i), (77) implies that 18|o,,;,, whence either £;,,, or z,,, is a
multiple of 4 and both are integral; in case (ii) or (iii) similarly,
(77) and (71) compel the factor to be a multiple of 4.

What, finally, are the conditions on I and the o,, beyond (13) and
Theorem 3, that there shall exist integers [y = 1,1,,..., {,_;, I, = (—1)!
{with signs e,...,¢,), satisfying (P)?

We can choose infinitely many sets of integers {,...,l,_,, with
arbitrary signs ¢, and arbitrary odd residues 41 (mod 4), to satisfy
(64). Condition (58) limits the possible residues, to modulus 4, but
leaves the choice of signs unrestricted except when o,,0;,...,0,_, are
odd and s is even; then (58) requires that

(—)'20,05...0,_1 1y, = 1 (mod 4),
where [, = 1 and !, = (—1), which is condition (50).
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With this one restriction on I satisfied, we consider the effect on
v of replacing I, by l,+4n, where n is an integer of the same sign
as I, and (54) still holds. If o, is not a square there are infinitely
many values n for which v, =1 and infinitely many for which

v, = —1. Consequently (64) can be satisfied except when
all of 0, 0,,...,0,_, are perfect squares. (78)
When (78) holds, v, = ... = v,_; = 1 and (38), (64) become
Uy & 1, (mod 4) whenever o, is odd, (79)
KoKy oo Kooy = (— 14D (i, = (—1)0+Diei-IH) - (80)

Evidently x;, = —1, if and only if /; = 1 and /,,, = 3 (mod 4). We
call such a consecutive pair 1;,/,,, a (1, 3)-change. Then (80) gives
the number of (1, 3)-changes in [,,...,[, is congruent, to
modulus 2, to [(141)/2]. (81)

Given an index I and square invariants o,,...,0,_;, the remaining
question is: can we choose odd /., whose signs ¢, agree with (63), to
satisfy (79) and (81)? We shall now. see that such a choice can be
made, if there are three different values of k (0 < k& <{ 8—1) such
that o0, = 0,,, = 0 (mod 4); and that, when there are not more than
two such values of k, the choice can be made if and only if

s—2I # 3,4,5 (mod8). (82)

For the only restrictions on the residues of the /; to modulus 4 are
(79) and the values [, = 1 and I, = (—1)!. We are free to assign to
any particular /, either residue 4-1 (mod 4), unless either oy, 0,,...,0;_,
are odd, in which case I; = (—1)"2, or 0,,,,0;43,...,0,, are odd,
whence [; = (—1)/+6-i¥2,

To expedite the counting of (1, 3)-changes consider the case of

O 4+2,Op4ase-3 0415 0542, 05445---, Op—q 0dd (83)

(whence o, and oy, are even), where —1 K1 <j < k < 8, and j—1

and k—j are odd. The number of (1, 3)-changes in 1,.,,1;,,.... ;. i8

independent of j, and depends only on %, %, and the choices of /;,,
and l.; it is therefore the same as in the case

01490445, Op—p 0dd, 0., and o, even, (84)

with the same choices of /;,, and . For the residues of [;,,,1;5,....1;
and of [,l, ,,...,1;,, are alternately 1 and 3, or 3 and 1, depending
on l;,, and [; the values of [;,5,0;,4,....0;_o and lj,5,0;4,.... 05 are
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therefore immaterial and may be disregarded in counting (1, 3)-
changes. If now j < k—1 and we replace j by j+2, the number of
(1, 3)-changes is unaltered: e.g.

131,313 > 1313,13; 131,1313 - 1313, 313.

Suppose then that o, and o,,, are even for the three values
h =1,5,k at least, where 0 < i <j <k < s—1. Employing the
preceding transformation we can suppose that there are four con-
secutive even o, 8aY 0y_s, Ox_1, Oi» Oxsq- Since the residues 1 or 3 of
I, and [, are unconstrained, we can satisfy (81), whatever be the
values of [,_, and [, ,,, as is plain from the following schemes:

1111 or 1331; 3113 or 3333; 1133 or 1313; 3131 or 3311.

Next let there be only two values 4 for which 0, =o0,,, =0
(mod4), say ¢ and j (0 <1 <j << s8—1). Then o,,04,...,0;_4,0;4,
Of44s+++) 041> Oj49, 05145+, 05—y &T€ 0dd; 4—1, 5, 8—j are odd, 8 i8 even.
By the above transformation we can suppose (without loss) that
01, Og;.. ,, 5 are odd; o,_,, 0,_;, @nd o, even. Then I,_, = (—1)6-d72,
l, = (—1 . If §(s—2) = I (mod2) the choice /,_, =1 or 3 gives
at will an even or an odd number of (1,3)-changes. If, however,
8—2] = 0 (mod 4) the number of (1, 3)-changes is }{s+41—(—1)1},
whenee (81) excludes only s—27 = 4 (mod 8).

If o,,0s,...,0,_; are odd, s—2I = 0 (mod4) by (50), and, as the
number of (1, 3)-changes is again }{s+1—(—1)7}, 8s—21 = 4 (mod 8)
is the only excluded possibility.

Finally, if o, and o,,, are even for only one value of k, we can
transform it to be A = s—1. Then s is odd, and the number of
(1, 3)-changes is }s+2—(—1)'}, and (81) thereby rejects only
8§—2I = 43 (mod 8).

THEOREM 4. Let 0 < I < 8, let 0,,...,0,_, be positive integers, and
let 0y = 0, = 0. Then a form exists having these snvariants, if and
only if

(i) 0, # 2(mod4) (0<k<s)
(i) +f o, 18 odd, 0p_, = 044, = 0 (mod 16);
(iii) f 0,05...0,_; 18 odd, & even, then (—)i®-2Do,0;..0, ;=1
(mod 4);

(iv) of all the o, are squares, and if o = 0,,, = 0 (mod 4) for not
more than two values of k (0 < k < 8), then 8—2I £ 3,4,5
(mod 8).
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1t is worth while to remark the special result:

If s =2, 3, or 4, and I = 0, and if all the o, are squares,
then none of the o, can be odd. (85)

11. The o-invariants of the comitants of the comitants.
Smith, who was apparently the first to recognize the intermediate
concomitants [comitants] f,,...,f,_,, left an interesting point un-
settled. This we now propose to elucidate.

If s > 3, there are, besides the fundamental concomitants f,,..., f,_;,
an infinite number of others, namely the concomitants of the con-
comitants, and so on indefinitely. Their invariants being also in-
variants of f, Smith remarksf that ‘it is important to know whether,
in order to obtain the distribution into orders, it is, or is not, necessary
to consider these other concomitants’. He states that ‘it can be
shown that it is unnecessary to consider any concomitants other than
the fundamental ones, as regards the primary divisors’ [the g.c.d.’s
of all the minor determinants of any given order]. ‘It is probable
(but it seems difficult to prove) that the same thing is true for the
secondary divisors’ [the g.c.d.’s of all the principal and doubles of
the secondary minors of any given order].

By our Tesults (Theorem 2) the primary divisors are completely
_determined by the secondary divisors, and it is required only to show
precisely how to find the o-invariants of f; from those of f,.

The simplest relationship among these invariants, namely,

olfi) =olfy) (k=1,.,8-1), (86)
is of some importance and easily proved otherwise. The index I’ of
fi i8 readily expressed by the following formula in terms of the index
I of fl: @

, 1 s—1
r- 3
To proceed, denote by p« the power of p dividing o f,)
(1 =1,...,8~—1), and by p«x the power of p dividing o,(f,), where
O<k<sand 0 <h <A (A=,0)).
In (19) or (29), there are A sums of the numbers «,,...,a, taken
k at a time. Arranged in ascending order of magnitude they may be
denoted by §,,...,8); thus 8, = o, +...+ a4, 8 = ay+ ..o F oy,
(0 <3, <8 < .o < By).
First, suppose p > 2. If we take the kth comitant of the canonical

t Loc. cit., 415.
3695.6
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form (19) of f we obtain a canonical form y of like pattern for f,, the
modulus 2* being sufficiently large. It is plain from x and (34) that

Whe — 8h+l—-8h (h = 1,.'..,A—1). (88)

In particular as regards (86), wy = apy—op = wg.

Secondly, suppose p = 2 and ¢ sufficiently large. The kth comitant
of (29) is not in general in the pattern of (29), but we shall-see how
to put it into that form.

Each sum §, is of the form

ooy tte, (1K<l <L < X98). (89)
With the sum §; we associate the subsequence (3;,..., t;), and denote
this subsequence by o,. The A subsequences of (1,...,8) of k elements
are, in a certain order, oy,...,0). )

There is an indeterminacy in the arrangement of equal sums (89).
Each «;, of type y is associated with its twin, which i8 oy Or o),
according a8 o, is an initial or a terminal y. If r (= 0) terms o
(h = hy,..., b,, 8ay) occur in a sum (83) without their twins, that sum
forms part of a system of 27 twin sums, obtained by replacing some
or all of the terms «,, (b = h,,..., },) by their twins. The sums §; may

“be 8o ordered that a system of twin sums occurs consecutively.

Let M denote the matrix of (29). The matrix of the kth comitant
"~ of (29) has as its element in the ith row and jth column the value
of the determinant M[o;0,]. Now the elements of one row of M[o,0,]
are all zero unless 8, and 3, belong to the same system of twin sums.
Consequently the matrix of the kth comitant consists of a series of
square matrices situated one after the other down and symmetric
with the principal diagonal, with zeros everywhere else; one
square matrix of order 2" corresponding to each system of twin
sums (89).

Consider such a system of 2 twin sums, and denote the corre-
sponding matrix of order 27 by B. We may suppose r > 2. Neces-
sarily r < k. Let I,...,I,_, be the indices 1+ of those «; which are
common to all the twin sums of the system; and let oy, (b = h,,..., k,)
be the initial y’s of the system, so that «y (B = k,+1,...,h+1) are
the terminal y’s of the system. Then all the elements of R have
a common factor of the type

rm (7= ottty ),
where m is an odd integer. Write R’ for the matrix R/(27m) obtained
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by removing this factor. Then R’ may be described as follows. We
may set a b

Yi= Opy = Op41y Vg = (b‘ C:)’ (90)

¢

where a; = 2vi+lm, b, = 2vm®, ¢, = 2rHin, (s = 1,...,,r), the m; and
m? being certain odd integers, the n, certain integers. The elements
of R’ are the 47 possible products of r elements, one chosen from each
of the matrices v;. Thus the first row consists of all products in which
one element is taken from the first rows of each of v,,...,v,; the second
row employs similarly the first rows of v,,...,»,_; and the second row
of v,; and so on, the selection of rows being parallel with the selection
of columns:

a,8y...a8, ay..a,_,b a .a_zb _a . . . bby..b

C@y.. @b, ay..a._jc, ay..a._pb._ b . . . b ..b._c,

In the notations (90), if we set = y,+4...+9,, then 74-5 is the
common value of the sums 3, of the system. The factor 27 can now
be removed from every row of R’. The matrix left behind is evidently
the matrix of a classical, odd form, since the diagonal elements are
all even while at least one secondary element (b, ... 5,/27) is odd. The
form is, in fact, also of odd determinant, rince, reducing the elements
to modulus 2, we substitute 0 for e, and ¢;, 1 for b;in (90) s = 1,...,7),
and obtain in place of R’ a matrix in which a unique elgment in
each row and column is 1, tHe rest zero.t Thus Lemma 7 applies
and shows that the form of matrix R is equivalent, to modulus 2,
to a form of the type (30"), multiplied by 27+7.

Among the sums §; in (89) certain ones may have no twin sums;
these correspond in R to an isolated term 2%+lm; (m; odd) as the
jth element on the principal diagonal. If any such isolated term
exists with 8,4-1 equal to the value 747 of a system like that con-
sidered above, that system together with the isolated term can be
brought as in Lemma 5 to a diagonal form.

The kth comitant of (29) is thereby transformed into a form of
the same kind as (29), in a manner which determines uniquely the
powers of 2 dividing the various quantities o0,(f;) in terms of the
powers of 2 dividing o,,...,0,_,.

t It can indeed be shown that the determinant of R’ is equal to the product
of the determinants 4m;n;—m"" each raised to the (2'~!)th power.



