On Kemnitz' conjecture concerning lattice-points in the plane

Christian Reiher

Dedicated to Richard Askey on the occasion of his 70th birthday. Received: 25 May 2004 / Accepted: 14 February 2005 © Springer Science + Business Media, LLC 2007

Abstract In 1961, Erdős, Ginzburg and Ziv proved a remarkable theorem stating that each set of $2n - 1$ integers contains a subset of size *n*, the sum of whose elements is divisible by *n*. We will prove a similar result for pairs of integers, i.e. planar latticepoints, usually referred to as Kemnitz' conjecture.

Keywords Zero-sum-subsets . Kemnitz' Conjecture

2000 Mathematics Subject Classification Primary—11B50

1 Previous work

Denoting by $f(n, k)$ the minimal number f , such that any set of f lattice-points in the k -dimensional Euclidean space contains a subset of cardinality n , the sum of whose elements is divisible by n , it was first proved by Erdős, Ginzburg and Ziv $[2]$, that $f(n, 1) = 2n - 1$.

The problem, however, to determine $f(n, 2)$ turned out to be unexpectedly difficult: Kemnitz [4] conjectured it to equal $4n - 3$, but all he knew were (1^o), that $4n - 3$ is a rather straighforward lower bound,¹ (2°) that the set of all integers *n* satisfying $f(n, 2) = 4n - 3$ is closed under multiplication and that it therefore suffices to prove this equation for prime values of *n* and $(3°)$ that his assertion was correct for $n = 2, 3, 5$, 7 and consequently also for every *n* being representable as a product of these numbers.

Linear upper bounds estimating $f(p, 2)$, where *p* denotes any prime, appeared for the first time in a paper by Alon and Dubiner [1] who proved $f(p, 2) \le 6p - 5$ for

C. Reiher (\boxtimes)

Oxford University, UK

e-mail: christian.reiher@keble.ox.ac.uk

¹ In order to prove $f(n, 2) > 4n - 4$ one takes each of the four vertices of the unit square $n - 1$ times.

all *p* and $f(p, 2) \le 5p - 2$ for large *p*. Later this was improved to $f(p, 2) \le 4p - 2$ by Rónyai [5].

In the third section of this paper we give a rigorous proof of Kemnitz' conjecture.

2 Preliminary results

Notational conventions. In the sequel the letter p is always assumed to designate any odd prime and congruence modulo *p* is simply referred to as '≡'. Uppercase Roman letters (such as J, X, \ldots) will always denote finite sets of lattice-points in the Euclidean plane. The sum of elements of such a set, taken coordinatewise, will be indicated by a preposed ' Σ '. Finally the symbol $(n|X)$ expresses the number of *n*-subsets of *X*, the sum of whose elements is divisible by *p*.

All propositions contained in this section are deduced without the use of combinatorial arguments from the following

Theorem (Chevalley and Warning; see, e.g. [6]). *Let* P_1 , P_2 , ..., $P_m \in F[x_1, \ldots,$ *xn*] *be some polynomials over a finite field F of characteristic p*. *Provided that the sum of their degrees is less than n, the number* Ω *of their common zeros (in F^{<i>n*}) *is divisible by p*.

Proof: It is easy to see that

$$
\Omega \equiv \sum_{y_1, \dots, y_n \in F} \prod_{\mu=1}^{\mu=m} \{1 - P_{\mu}(y_1, \dots, y_n)^{q-1}\}
$$

where q is supposed to denote the number of elements contained in F . Expanding the product and taking into account that

$$
\sum_{y \in F} y^r \equiv 0 \text{ for } 1 \le r \le q - 2
$$

gives indeed $\Omega \equiv 0$.

Corollary I. $If |J| = 3p - 3$, *then*

 $1 - (p - 1 | J) - (p | J) + (2p - 1 | J) + (2p | J) \equiv 0.$

Proof: Let (a_n, b_n) denote the elements of $J(1 \le n \le 3p-3)$ and apply the above theorem to

$$
\sum_{n=1}^{n=3p-3} x_n^{p-1} + x_{3p-2}^{p-1}, \sum_{n=1}^{n=3p-3} a_n x_n^{p-1} \text{ and } \sum_{n=1}^{n=3p-3} b_n x_n^{p-1}
$$

considered as polynomials over the field containing *p* elements. Their common zeros fall into two classes, according to whether $x_{3p-2} = 0$ or not. The first class consists of $1 + (p - 1)^p (p | J) + (p - 1)^{2p} (2p | J)$ solutions, whereas the second class includes $(p-1)^p(p-1|J)+(p-1)^{2p}(2p-1|J)$ solutions. \Box \bigcirc Springer

Among the following two assertions the first one is proved quite analogously² and entails the second one immedeatedly.

Corollary IIa. *If* $|J| = 3p - 2$ *or* $|J| = 3p - 1$, *then*

$$
1 - (p | J) + (2p | J) \equiv 0.
$$

Corollary IIb. $If|J| = 3p - 2$ or $|J| = 3p - 1$, then $(p | J) = 0$ implies $(2p | J) \equiv$ −1.

Corollary III (Alon and Dubiner [1]). *If J contains exactly* 3*p elements whose sum is* ≡ (0, 0), *then* $(p, J) > 0$.

Proof: Intending to construct a contradiction thereof we assume that $(p|J) = 0$. This obviously implies $(p | J - \mathfrak{A}) = 0$, where $\mathfrak A$ denotes an arbitrary element of *J*. But as $|J - \mathfrak{A}| = 3p - 1$ we obtain $(2p, J - \mathfrak{A}) \equiv -1$, which entails $(2p | J - \mathfrak{A}) > 0$ and in particular $(2p | J) > 0$. The condition $\Sigma J \equiv (0, 0)$, however, yields $(2p | J)$ = $(p | J)$ and hence $(p | J) > 0$.

The next two statements are similar to IIa and may also be proved in the same manner.

Corollary IV. $If |X| = 4p - 3$, *then*

$$
-1 + (p | X) - (2p | X) + (3p | X) \equiv 0.
$$
 (a)

and

$$
(p-1|X) - (2p-1|X) + (3p-1|X) \equiv 0.
$$
 (b)

Corollary V. *If* $|X| = 4p - 3$, *then*

$$
3 - 2(p - 1 | X) - 2(p | X) + (2p - 1 | X) + (2p | X) \equiv 0.
$$

Proof: The first corollary implies

$$
\sum \{1 - (p - 1 | I) - (p | I) + (2p - 1 | I) + (2p | I)\} \equiv 0,
$$

where the sum is extended over all $I \subset X$ of cardinality $3p - 3$.

² The polynomials to be used are both times exactly the same ones as in the preceeding proof, except for the replacement of the upper summation index by $3p - 2$, $3p - 1$ resp. and the omission of the term x_{3p-2}^{p-1} . \bigcirc Springer

Analysing the number of times each set is counted one obtains

$$
\binom{4p-3}{3p-3} - \binom{3p-2}{2p-2} (p-1|X) - \binom{3p-3}{2p-3} (p|X) + \binom{2p-2}{p-2} (2p-1|X) + \binom{2p-3}{p-3} (2p|X) \equiv 0.
$$

The reduction of the binomial coefficients leads directly to the claim. \Box

3 Resolution of Kemnitz' conjecture

Lemma . *If* $|X| = 4p - 3$ *and* $(p | X) = 0$, *then* $(p - 1 | X) = (3p - 1 | X)$.

Proof: Let χ denote the number of partititions $X = A \cup B \cup C$ satisfying

$$
|A| = p - 1, \quad |B| = p - 2, \quad |C| = 2p
$$

and furthermore

$$
\Sigma A \equiv (0, 0), \quad \Sigma B \equiv \Sigma X, \quad \Sigma C \equiv (0, 0).
$$

To determine χ, at least modulo *p*, we first run through all admissible *A* and employing Corollary IIb we count for each of them how many possible *B* are contained in its complement:

$$
\chi \equiv \sum_{A} (2p \mid X - A) \equiv \sum_{A} -1 \equiv -(p - 1 \mid X)
$$

Working the other way around we infer similarly

$$
\chi \equiv \sum_{B} (2p \mid X - B) \equiv \sum_{X - B} -1 \equiv -(3p - 1 \mid X).
$$

Therefore indeed, by counting the same entities twice, $(p - 1 | X) \equiv (3p - 1 | X)$.

 \Box

Theorem . *Any choice of* 4*p* − 3 *lattice-points in the plane contains a subset of cardinality p*, *whose centroid is a lattice-point as well.*

Proof: Adding up the congruences obtained in the Corollaries IVa, IVb, V and the previous Lemma one deduces $2 - (p | X) + (3p | X) \equiv 0$. Since *p* is odd this implies that $(p | X)$ and $(3p | X)$ cannot vanish simultaneously which in turn yields our assertion $(p | X) \neq 0$ via Corollary III. \Box

It was already known to Kemnitz [4], that the above result is also true for $p = 2$, which is easily seen by means of the box-principle. As according to fact $(1[°])$ mentioned in \bigcirc Springer

our first section the general statement $f(n, 2) = 4n - 3$ (for every positive integer *n*) immedeatedly follows from the special case where *n* is a prime, we have thereby proven Kemnitz' conjecture.

References

- 1. Alon, N., Dubiner, D.: A lattice point problem and additive number theory. Combinatorica **15**, 301–309 (1995)
- 2. Erdős, P., Ginzburg, A., Ziv, A.: Theorem in the additive number theory. Bull Research Council Israel **10F**, 41–43 (1961)
- 3. Gao, W.: Note on a zero-sum problem. J. Combin. Theory, Series A **95**, 387–389 (2001)
- 4. Kemnitz, A.: On a lattice point problem. Ars Combin. **16b**, 151–160 (1983)
- 5. R´onyai, L.: On a conjecture of Kemnitz. Combinatorica **20**, 569–573 (2000)
- 6. Schmidt, W.M.: Equations Over Finite Fields, An Elementary Approach. Springer Verlag, Lecture Notes in Math (1976)