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Many fields of science and industry depend on efficient production of

active protein using heterologous expression in Escherichia coli. The solu-

bility of proteins upon expression is dependent on their amino acid

sequence. Prediction of solubility from sequence is therefore highly valu-

able. We present a novel machine-learning-based model called PROSO II

which makes use of new classification methods and growth in experimental

data to improve coverage and accuracy of solubility predictions. The classi-

fication algorithm is organized as a two-layered structure in which the out-

put of a primary Parzen window model for sequence similarity and a

logistic regression classifier of amino acid k-mer composition serve as input

for a second-level logistic regression classifier. Compared with previously

published research our model is trained on five times more data than used

by any other method before (82 000 proteins). When tested on a separate

holdout set not used at any point of method development our server

attained the best results in comparison with other currently available meth-

ods: accuracy 75.4%, Matthew’s correlation coefficient 0.39, sensitivity

0.731, specificity 0.759, gain (soluble) 2.263. In summary, due to utilization

of cutting edge machine learning technologies combined with the largest

currently available experimental data set the PROSO II server constitutes a

substantial improvement in protein solubility predictions. PROSO II is

available at http://mips.helmholtz-muenchen.de/prosoII.

Introduction

Protein solubility is an important prerequisite for suc-

cess in many biophysical studies and industrial applica-

tions, including the production of the ever more

important protein-based drugs such as antibodies,

interleukins and others. Efficient production of soluble

and active proteins still remains a major challenge.

Many proteins heterologously expressed in Escherichia

coli are insoluble. Solubilization attempts are plagued

by relatively low success rates [1] and often lead to the

loss of biological activity [2]. Various experimental

approaches aimed at improving protein solubility

during heterologous expression include use of weak

promoters, low temperature, modified growth media

[3] and fusion with solubility enhancing tags [4]. Other

methods are based on large-scale screening and ran-

dom mutagenesis for solubility optimization [5].

To focus experimental work on easily soluble proteins

and avoid recalcitrant targets one can study recurrent

patterns in amino acid sequences of soluble proteins.

Under a given set of experimental conditions, including

the expression host, temperature etc., protein solubility

is a trait ultimately determined by its sequence. Since

the most widely used method for protein production is

heterologous expression in E. coli, it is particularly ben-

eficial to study factors determining protein solubility

upon overexpression in this specific host.

Abbreviations

AI, aliphatic index; AUROC, area under the receiver operating characteristic curve; FI, fold index; GRAVY, grand average of hydropathicity

index; MCC, Matthew’s correlation coefficient; PDB, Protein Data Bank; pI, isoelectric point; SVM, support vector machine.
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The correlation between protein solubility and pri-

mary structure has been the subject of active research

in the past 20 years. The first proposed methods for

deriving protein solubility from sequence were based

on the content of charged (Asp, Glu, Lys and Arg)

and turn-forming (Asn, Gly, Pro and Ser) residues

[4,6]. Those methods were trained on a sparse number

of instances (� 100) and therefore did not have suffi-

cient generalization power. With the advent of struc-

tural biology initiatives high-throughput technologies

and electronic data storage became a commodity in

protein expression and purification endeavors. This

resulted in an unprecedented increase in the amount

of experimental data documenting both successes

(soluble proteins) and failures (insoluble proteins).

Already in 2000 Christendat and coworkers [7] exam-

ined experimental results from a pilot project on 424

non-membrane proteins from Methanobacterium ther-

moautotrophicum. They observed that insoluble pro-

teins more frequently contained hydrophobic stretches

of 20 or more residues, had lower glutamine content

(Q < 4%), fewer negatively charged residues

(DE < 17%) and a higher percentage of aromatic

amino acids (FYW > 7.5%) than soluble proteins. In

2001 Bertone et al. [8] re-analyzed 562 proteins from

the same organism and confirmed that a high content

of negative residues (DE > 18%) and absence of

hydrophobic patches were correlated with improved

solubility. Moreover they showed that low content of

aspartic acid, glutamic acid, asparagines and glutamine

(DENQ < 16%) was coincident with protein insolubil-

ity. In a study of 10 167 proteins overexpressed in

E. coli, Luan et al. [9] reported that proteins homolo-

gous to those with known structures have higher

chances of being soluble. Goh et al. [10] studied 27 000

protein sequences from multiple organisms using the

decision tree formalism and found that protein solubil-

ity is influenced by a number of primary structure fea-

tures including (in decreasing order of importance)

content of serine (S < 6.4%), fraction of negatively

charged residues (DE < 10.8%), percentage of S, C, T

or M amino acids, and length (< 516 amino acids). In

2006 Idicula-Thomas et al. [11] presented a solubility

prediction method based on a support vector machine

(SVM) trained on a small (62 soluble and 130 insolu-

ble proteins) unbalanced data set. According to the

authors the method is able to predict correctly the

increase ⁄decrease in solubility upon mutation. The

method was discussed and evaluated in Smialowski

et al. [12]. Our previous method for solubility predic-

tion PROSO [12] was built upon � 14 000 instances

(half soluble and half insoluble) from the structural

genomics database TargetDB [13] and the Protein

Data Bank (PDB) [14]. The classification algorithm

was organized as a two-level structure with an SVM

on the first level and a naive Bayes classifier on the

second level. Proteins were represented by frequencies

of k-mers of 20 amino acids and by compressed alpha-

bets. The accuracy of this method was 71.1% as

calculated using 10-fold cross-validation. Using a for-

malized feature evaluation algorithm [15] we identified

the content of R, D, E, G, S, C, M and L to be rele-

vant for the solubility of single and multiple domain

proteins. Amongst dipeptide frequencies, five of them

(RE, EG, KG, QA, HM) seem to be the most impor-

tant in solubility determination.

Magnan et al. [16] published a solubility prediction

method (SOLpro) based on 17 000 instances with a clas-

sification algorithm of the same architecture as used in

PROSO (SVM on the first and naive Bayes on the sec-

ond level of classifier). Similar to the PROSO approach

frequencies of k-mers as well as reduced amino acid

alphabets were used as input. In addition to frequencies

some other sequence derived features were included:

length, molecular weight, grand average of hydropathic-

ity index (GRAVY), aliphatic index (AI), fraction of

turn-forming residues, absolute charge per residue, frac-

tion of beta, alpha and exposed residues, and the num-

ber of domains. The authors found that the best single

group of features was the content of the 20 amino acids.

The overall accuracy of SOLpro was 74%, but as we

discuss below this result may be due to a missing correc-

tion for length distribution. In 2011 Agostini et al. [17]

presented the CCSOL method which utilizes 28 physico-

chemical properties in a sliding window to predict pro-

tein solubility. Their study was based on a data set of

3034 E. coli proteins for which solubility was measured

experimentally in vitro [18]. The authors found that fea-

tures most important for solubility were disorder, coil,

hydrophilicity, b–sheet and a–helix.
In this paper we present a novel prediction server

PROSO II constructed to assess the chance of a pro-

tein being soluble upon heterologous expression in

E. coli. Our method exploits the experimentally mea-

sured solubility of 82 299 proteins, five times more

data than any other available method, and thus pro-

vides better coverage of the currently known protein

sequence space. PROSO II employs a model based on

a logistic function and an adapted Parzen window

algorithm trained on experimental data extracted from

the pepcDB [19] and PDB [14] databases. It is superior

in discriminatory ability (accuracy 75.4%) on data

with the same soluble ⁄ insoluble class distribution as

observed in pepcDB. Additionally, we analyze the sig-

nificance of features and their correlation with protein

solubility.

P. Smialowski et al. PROSO II
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Results and Discussion

Performance of primary classifiers

The performance of the primary classifiers and of the

entire PROSO II method is presented in Table 1. The

primary classifier built on frequencies of dimers was the

single best performing method in this comparison with

accuracy, Matthew’s correlation coefficient (MCC) and

area under the receiver operating characteristic curve

(AUROC) equal to 68.6%, 0.379 and 0.753, respec-

tively. It was followed by the Parzen window method.

The low performance of the sequence-length-based

model confirmed the absence of any length bias in our

data sets. Simple protein features such as isoelectric

point (pI), length, fold index (FI), AI and GRAVY did

not perform well. Even their combination reached

merely 53.1% accuracy and an MCC of 0.063. There-

fore, we believe that none of these simple features is

significantly correlated with protein solubility.

In addition to k-mers of 20 amino acids we also

tested (data not shown) compressed alphabets Sol07,

Sol14, Sol17, We2 and We4 from our previous work

[12]. Their performance was similar but not better than

the use of the original 20 letter amino acids. Therefore,

for simplicity we decided not to use them. Neverthe-

less, it should be noted that they were not much worse

and that in the case of huge amounts of data it could

be sensible to switch to compressed alphabets for com-

putational reasons. We also tested frequencies of trip-

eptides using 25% sequence identity clustered data

(data not shown) and decided not to use them as they

did not perform substantially better than dimers and

the use of tripeptides required much more computa-

tional power.

Feature selection results

The set of the best performing k-mers of length 1 and 2

was selected using the wrapper method [15] as described

in Methods. There were 18 amino acid frequencies that

were correlated with protein solubility (R, N, D, C, Q,

E, G, H, I, K, M, F, P, S, T, W, Y, V). This result of

feature selection combined with relatively low perfor-

mance of the single amino acid based classification

implies that protein solubility cannot be attributed to a

single or a small group of amino acid frequencies.

Sixteen out of 400 dipeptide frequencies were

selected as most important for model performance:

AK, CV, EG, GN, GH, HE, IH, IW, MR, MQ, PR,

TS and WD. Eight out of 13 selected dimers contain

electrically charged (negatively, D, E; positively,

R, H, K) side chains, which is in good agreement with

Wilkinson–Harrison work [4]. Other frequently occur-

ring amino acid groups include hydrophobic aromatic

(F, W, H, Y) and hydrophobic aliphatic (I, M, P) resi-

dues. Five out of 13 dimers contain aromatic amino

acids. As demonstrated before by Christendat et al. [7]

a high percentage of aromatic residues FYW > 7.5%

is coincident with insolubility. Also a high content of

hydrophobic dimers seems to be an important factor

for protein solubility although we removed from our

data all proteins containing even a single transmem-

brane segment (as predicted by tmhmm 2.0c).

Table 1. Performance of different methods for predicting protein solubility. We evaluated both primary classifiers and the complete PROSO II

method at a level of sequence identity equal to 90%. An additional holdout set was used to further examine the performance of threshold-

adjusted PROSO II. We also evaluated how strongly protein solubility is correlated with simple sequence features: AI, FI, GRAVY and pI.

All values are provided for 90% identity clustered data if not stated differently in the column header. Except for the holdout set all values

presented were obtained using stratified 10-fold cross-validation as described in the text. The letters P and N in parentheses refer to the

positive (soluble) and negative (insoluble) classes, respectively.

Amino acid

frequencies

Dipeptide

frequencies

Parzen

window Length pI

AI, FI,

GRAVY,

pI PROSO II

PROSO I on

holdout

data set

SOLpro on

holdout

data set

PROSO II

on holdout

data set

Instances 82 299 82 299 82 299 82 299 82 299 82 299 82 299 1764 1764 1764

Accuracy 59.7 68.6 64.3 52.9 53.7 53.1 71.0 66.0 65.0 75.4

MCC 0.194 0.379 0.286 0.081 0.075 0.063 0.421 0.127 0.068 0.390

TP rate 0.598 0.783 0.617 0.184 0.481 0.467 0.754 0.459 0.389 0.731

TN rate 0.596 0.589 0.669 0.874 0.594 0.596 0.666 0.700 0.698 0.76

Precision (P) 0.597 0.655 0.651 0.59 0.542 0.536 0.693 0.234 0.192 0.377

Gain (P) 1.194 1.311 1.302 1.189 1.084 1.072 1.386 1.406 1.233 2.263

Precision (N) 0.597 0.730 0.636 0.517 0.534 0.528 0.730 0.866 0.861 0.934

Gain (N) 1.194 1.461 1.272 1.035 1.067 1.055 1.460 1.039 1.020 1.121

AUROC 0.635 0.753 0.688 0.520 0.541 0.548 0.785 – – –

PROSO II P. Smialowski et al.
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Performance of the entire method

The performance of our entire method (PROSO II) was

first evaluated by 10-fold cross-validation (Table 1). It

achieved an accuracy of 71%, AUROC of 0.785, MCC

of 0.421, sensitivity of 0.754, specificity of 0.666, preci-

sion (soluble) of 0.693, gain (soluble) of 1.383, precision

(insoluble) of 0.73 and gain (insoluble) of 1.46.

To further improve our method we adjusted the

threshold of the classifier to 0.6 using a separate data

set derived as described in Methods to account for

non-equal distribution of soluble and insoluble

instances in pepcDB. In other words any query

sequence with a PROSO II score ‡ 0.6 is classified as

soluble. This threshold was selected to balance sensitiv-

ity and specificity. Based on our analysis of pepcDB

(Methods) we see that approximately one out of six

proteins is soluble upon heterologous expression in

E. coli. In the next step we tested PROSO II using a

holdout set of sequences with this real-life class distri-

bution (one in six proteins are soluble). The holdout

set was not utilized at any point of method develop-

ment. On these data our server attained higher perfor-

mance values (Table 1) compared with another recent

method – SOLpro [16]: an accuracy of 75.4% versus

65%, MCC of 0.39 versus 0.068, sensitivity of 0.731

versus 0.389, specificity of 0.759 versus 0.698, precision

(soluble) of 0.377 versus 0.192, gain (soluble) of 2.263

versus 1.233, precision (insoluble) of 0.934 versus

0.861, and gain (insoluble) of 1.121 versus 1.02. High

values of MCC and gain suggest that PROSO II is a

better performing and better balanced method. Given

the unequal class distribution in the holdout set MCC

or gain are much better suited to quantify classifier

efficiency than accuracy.

In order to better assess the accuracy of SOLpro we

studied its input data and features. The authors of

SOLpro trained and evaluated a two-level k-mer fre-

quencies based model (similar to the one reported by

our group in 2007 [12]) over 17 407 sequences (half

soluble, half insoluble). They reported an accuracy of

74.1% and an AUROC of 0.742. Because the authors

chose not to adjust the data for sequence length distri-

bution we tested whether any part of the performance

can be attributed to this single feature. To this end we

calculated sequence length for all proteins from the

SOLpro data set and used it as input to build a solu-

bility classifier. A naive Bayes model [20] was trained

and evaluated using 10-fold cross-validation. This

experiment yielded an accuracy and AUROC of

58.3% and 0.618, respectively. Adding pI values as

a second input feature led to a slight increase in

accuracy (58.8%) and AUROC (0.621). This means

that between one-third (accuracy-wise) and a half

(AUROC-wise) of the SOLpro performance can be

achieved using a simple naive Bayes classifier and the

sequence length as the only input. The same experi-

ment on our data led to an accuracy of 52.9% and an

AUROC of 0.52. We believe that in real-life applica-

tions, when scientists need to select a target protein

amongst orthologous sequences originating from differ-

ent species or protein variants designed to improve solu-

bility by point mutations, it is crucial to have a

solubility prediction method which operates in a

sequence-length-independent fashion. If the classifier is

mainly or substantially driven by protein length it could

be less reliable when confronted with such a problem

then would be expected based on the evaluation on a

length-biased data set. Therefore, we believe that it is

beneficial to normalize the length distribution even

though it leads to a more difficult classification prob-

lem. To check for easily detectable biases in our data we

evaluated the classification performance of five simple

global protein features (pI, length, FI, AI and GRAVY)

using the same naive Bayes classification method [20]

and found that the combination of all five features

yielded an accuracy of 53.1% and an AUROC of 0.548.

We were thus unable to find obvious biases in our data.

We evaluated the performance of the CCSOL

method on our holdout set. Since CCSOL only pro-

vides numerical scores and does not categorize

instances into soluble ⁄ insoluble class we assign the sol-

uble label to each sequence with a CCSOL score of 70

or greater and insoluble to those with lower scores.

This particular threshold was chosen to minimize the

difference between the sensitivity and specificity values.

All performance measures for threshold values ranging

from 40 to 100 are provided in Table S1. Both the

accuracy (55.1%) and MCC (0.0659) of CCSOL were

lower then those of PROSO II (accuracy 75.4%, MCC

0.39) and SOLpro (accuracy 65%, MCC 0.068). How-

ever, we note that this comparison is not fully justifi-

able as CCSOL was trained only on prokaryotic

sequences while our data set contains both prokaryotic

and eukaryotic proteins. We next compared PROSO II

with CCSOL based on the data set used to construct

the latter method (initially created by Niwa et al. [18]).

Following the approach of Niwa et al. we derived the

sets of ‘aggregation prone’ and ‘highly soluble’ pro-

teins, defined as one-third of all proteins having the

highest and the lowest experimental solubility, respec-

tively. The CCSOL threshold for the soluble class was

set to 50. The CCSOL method scored higher in terms

of accuracy (76.1% versus 63.9%), MCC (0.519 versus

0.26) and gain (soluble) (1.623 versus 1.42) than

PROSO II (Table S3). Although on this specific data

P. Smialowski et al. PROSO II
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set CCSOL performed better than PROSO II our

method still achieved quite good performance which

can be seen on comparing MCC and gain values. The

crucial difference between these two tests – CCSOL on

the PROSO II data and PROSO II on the CCSOL

data – is that the PROSO II data set is a holdout data

set never used for training PROSO II while the com-

plete CCSOL data set was used to train the CCSOL

method. This naturally gives the CCSOL method

advantage when tested on its own training data set;

the performance of PROSO II on the CCSOL data set

was somewhat weaker, although still quite good.

Because of ongoing extensive genome sequencing

efforts the protein sequence space is expanding rapidly.

It is crucial to include the highest possible amount of

data into protein classification models. By virtue of

relying on a five times larger sequence data set PROSO

II has better coverage of the protein universe and is

therefore expected to be more reliable and robust than

other methods when confronted with a newly discov-

ered sequence.

Interestingly, we found that the performance of our

method was only slightly dependent on the clustering

level of the training ⁄ evaluation data. For example, the

accuracy for the data clustered at 25% and 90% iden-

tity was 69.99% and 71%, respectively, with an MCC

of 0.401 and 0.422 (Table 2). It seems that our classifi-

cation approach is well adapted to both stringent and

relaxed levels of sequence clustering. Because the 90%

clustered data set had the highest number of instances

and supposedly provided the biggest coverage of

sequence space we chose it when building the PROSO

II web server.

Conclusions

We provide a public web server implementing a novel

sequence composition and similarity-based model to

classify proteins into ‘soluble’ and ‘insoluble’ classes.

Our approach allows us to categorize proteins with

low or no sequence similarity to the training data.

PROSO II outperforms (accuracy of 75.4% and gain

on soluble class of 2.263) previously reported methods

as demonstrated using the holdout set with a real-life-

like class distribution. Based on the fact that it relies

on the largest experimental data set we expect it to be

particularly robust in selecting soluble proteins as well

as in filtering out recalcitrant targets. Moreover, in our

work we identified the subset of sequence features hav-

ing the strongest impact on protein solubility.

An apparent limitation of PROSO II is that it is

only applicable to non-membrane proteins of size

between 20 and 2004 residues. It is also unable to take

into account factors unrelated to protein sequence such

as buffer composition, temperature or presence of

nucleic acids. In the future it would be interesting to

integrate our prediction algorithm with the methods

evaluating the impact of point mutations on protein

stability [21–23].

The PROSO II server is available with no registra-

tion requirements under http://mips.helmholtz-muen-

chen.de/prosoII.

Methods

Data

The pepcDB database [19] (http://pepcdb.sbkb.org/) stores

target and protocol information contributed by Protein

Structure Initiative centers as well as targets imported

from the TargetDB database. Each protein target can be

associated with multiple amino acid sequences correspond-

ing to different constructs. For example, full-length pro-

tein, N- or C-terminal truncated proteins and single

domains are amongst available constructs. For each con-

struct experimental results and status history are recorded.

The status description includes the following principal

stages: Selected, Cloned, Expressed, Soluble, Purified,

Crystallized, HSQC (heteronuclear single quantum coher-

ence), Structure, and In PDB. All constructs that achieved

the Soluble status or subsequent stages (including

native_diffraction-data, NMR_assigned, phasing_diffrac-

tion-data, diffraction, in_BMRB, NMR_structure, crystal_

structure, diffraction-quality_crystals, in_PDB, crystallized,

HSQC) may be considered soluble. Comparing the experi-

mental status at two time points, September 2009 and

May 2010, we were able to derive a set of insoluble pro-

teins defined as those which were not soluble in September

2009 and still remained in that state 8 months later. We

did not consider ‘test’ targets as some of them were

entered in the database just to test the IT infrastructure.

To remove targets dropped as a result of competitors

Table 2. Basic performance measurements of the PROSO II

method for four levels of sequence clustering at 25%, 50%, 75%

and 90% identity. We evaluated the PROSO II method at four dif-

ferent levels of sequence identity. All results presented were

obtained using stratified 10-fold cross-validation as described in the

text. The letters P and N in parentheses refer to positive (soluble)

and negative (insoluble) class, respectively.

Level of

sequence identity

clustering (%) Accuracy MCC AUROC Gain (P) Gain (N)

90 71.0 0.422 0.785 1.386 1.460

75 70.5 0.414 0.777 1.354 1.484

50 70.0 0.405 0.77 1.345 1.475

25 69.9 0.401 0.766 1.356 1.450

PROSO II P. Smialowski et al.
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having a structure submitted to the PDB [14] all proteins

with 100% identity to any PDB sequences were removed

from the insoluble set. Although many proteins from pep-

cDB lack a description of an expression system it was

shown before [12] that more than 75% of those proteins

that reach the ‘In PDB’ status are indeed produced by

heterologous expression in E. coli. An additional set of

heterologously expressed soluble proteins was derived from

the PDB database (release July 2010). We selected all

proteins with the annotation ‘Expression Organism:

ESCHERICHIA COLI’. The majority of proteins from

pepcDB are expressed as single proteins. Around 5% of

the final soluble data set originate from PDB entries of

heterologous complexes. There is no obvious way to find

out whether they were co-expressed or expressed as single

proteins and then mixed. Therefore we decided to keep

them in our analysis.

Each of the described data sets was refined by removing

proteins with one or more transmembrane segments as pre-

dicted by tmhmm 2.0c [24] and those sequences containing

more than one contiguous ‘X’ character. The number of

instances and other details on each data set used in this

work can be found in Table S2. Finally we reduced

sequence redundancy of the soluble and insoluble sets sepa-

rately by homology clustering at the 90%, 75%, 50%, 25%

sequence identity level using the cd-hit program [25]. We

abstained from doing any cross-class clustering because it

artificially simplifies classification leading to overoptimistic

estimates of performance.

To prevent sequence length and class distribution from

becoming prevalent features in our model we adjusted class

and sequence length distribution of soluble and insoluble

data sets such that length alone was non-decisive in classifi-

cation and both classes were equally represented. To this

end insoluble and soluble sequences were sorted and

divided into eight bins (equal ranges) according to protein

length. For each bin, the number of sequences from the

least populated class was used as a limit for the number of

sequences to be considered in each of the two classes. Both

soluble and insoluble sequences fall into the length range of

20–2004 residues (proteins outside this range were very few

and therefore rejected). This preprocessing step helps assure

similar length distributions between insoluble and soluble

classes and thus removes any significant length-related bias.

Length-adjusted soluble and insoluble data sets clustered

at four different sequence identity levels were used for

model building and evaluation by 10-fold cross-validation.

A separate data set was built to model the real-life class

distribution with a ratio of 1 to 5 between soluble and

insoluble proteins, as observed in the pepcDB database

releases between May and December 2010. To do this we

used insoluble sequences removed during the adjustment of

length distribution described above from the data set clus-

tered at 25% maximal allowed identity. We made sure that

no sequence was identical to either soluble or insoluble

sequences used in the 10-fold cross-validation. Moreover,

all proteins identical to soluble sequences from pepcDB

(December 2010) or PDB (December 2010) were removed.

The soluble data set consisted of new PDB entries from

October and November 2010. All new PDB sequences had

been heterologously expressed in E. coli, and their

sequences were filtered against sequences used in the cross-

validation and transmembrane segments (tmhmm 2.0c).

After an additional 50% sequence identity clustering using

cd-hit, half of the proteins from both soluble and insoluble

data sets were saved to form a holdout set and the rest

were used for threshold selection. The holdout sets of solu-

ble and insoluble proteins were derived to allow for addi-

tional evaluation of our classification model.

In summary, in the process of careful and restrictive data

selection from the pepcDB and PDB databases we built the

currently largest available (more then 82 000 proteins) input

data set used for model building and evaluation. Further-

more, we constructed a holdout set with the natural class

distribution as observed in pepcDB and used it for an inde-

pendent model validation.

Features

Amino acid sequences were represented by the frequencies

of monopeptides, dipeptides and tripeptides. Although the

final classifier uses only frequencies of monopeptides and

dipeptides we also tested a compressed alphabet representa-

tion described in our previous publications [12,26]. Addi-

tionally, we calculated the following global sequence

features: length, pI, GRAVY [27,28], AI [29] and FI [30].

A separate naive Bayes classifier was trained and evaluated

with these features to check whether any of them could

result in a reasonably good classification performance.

Additionally, the set of AI, FI, GRAVY and pI was also

used.

Classification

We classified data using the two-level framework described

in detail in our previous publications [12,26] but this time

we used the threshold selector classifier [31] (optimized for

accuracy by an internal 10-fold cross-validation using only

the training data) with a multinomial logistic regression

model [32] on both levels. Briefly, the input data were first

classified using k-mer-based and Parzen window classifiers.

A second-level classifier aggregates results of primary classi-

fiers. Ten-fold stratified cross-validation over input data

was performed over both levels to obtain class assignment

for each protein and to estimate the accuracy of the entire

method.

We built a sequence-similarity-based model using an

adapted Parzen window approach [33]. It relies on a blastp

[34] score to calculate a local approximation of the prob-

ability function [33] using the modified Cauchy kernel. For
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each query ⁄ test protein, blastp scores to the soluble and

insoluble data sets (training data set in the case of 10-times

cross-validation) were calculated. Moreover, for each mem-

ber of the soluble and insoluble data sets themselves, the

same score was calculated against both data sets (Fig. 1).

Each query ⁄ test protein is then characterized by two

similarity values:

similarity to soluble data set

SS ¼ 1

hn

Xn

i¼0

1

p
1þ a� ci

h

� �2

þ b� ei

h

� �2
" #

similarity to insoluble data set

SI ¼ 1

hm

Xm

j¼0

1

p
1þ b� dj

h

� �2

þ a� fj

h

� �2
" #

where i, j are elements and m, n are sizes (equal in our case)

of the soluble ⁄ insoluble training sets, respectively; SS and

SI reflect the similarity of the query sequence to the soluble

and insoluble data sets, respectively; a, b, c, d, e and f are

blastp scores (Fig. 1) when comparing a, the query

sequence against the soluble data set; b, the query sequence

against the insoluble data set; c, a soluble instance against

the soluble data set; d, an insoluble instance against the

insoluble data set; e, a soluble instance against the insoluble

data set; and f, an insoluble instance against the soluble

data set; h is the bandwidth or smoothness parameter

which was set to 0.65.

Solubility was then computed using the following equation:

f ðtÞ ¼ SS

SSþ SI

When the value of the function was higher than the thresh-

old (0.5) then the instance was marked as soluble by the

Parzen window classifier.

Feature selection

For feature selection we used the wrapper method [15] with

the threshold selector model configured as described above

for the first level of classification as a classification procedure

and the ‘best first’ approach [15] as a search algorithm. The

detailed procedure can be found in Smialowski et al. [12].

Classification evaluation

In order to quantify the performance of the classifiers the

following measures were calculated.
l AUROC: The receiver operating characteristic curve por-

trays the relation between the true positive rate and the

false positive rate of the classifier. AUROC measures the

discriminating ability of the model and it takes values

between 0.5 for random drawing and 1.0 for perfect clas-

sifier. It is often interpreted as a probability that if you

randomly draw one positive and one negative instance

the one scored higher by the model will be actual posi-

tive. It was calculated using the algorithm implemented

in the weka package [31].
l Accuracy: the number of correctly classified instances

divided by the total number of instances.
l True positive rate (TP rate) (also called sensitivity or

recall of the positive class): the number of correctly clas-

sified instances from the positive class divided by the

number of all instances from the positive class

(TP + FN).
l True negative rate (TN rate) (also called sensitivity or

recall of the negative class): the number of correctly clas-

sified instances from the negative class divided by the

number of all instances from the negative class

(TN + FP).
l Specificity: the ratio of the number of correctly classified

negative (TN) instances to the sum of all negative

instances (TN + FP).
l Precision (selectivity): the ratio of the number of cor-

rectly classified positive (TP) or negative (TN) instances

to the number of all instances classified as positive

(TP + FP) or negative (TN + FN), for positive and

negative class respectively.
l Gain: a ratio of the given class precision (selectivity) to the

proportion of the given class in the full data set.

MALTRWGGFCNPC...
MIVLKEDGHHLKM

Soluble sequence dataset

a

c

e f

b

d

Query sequence

MIVLKEDGHHLKM...
MGRIILSVYYTRD...
...

MTGHCLAAFIVLK...

MWEERLLNVKQAA

Insoluble sequence dataset

MWEERLLNVKQAA...
MKCFRTSLMFVVI...
MERTSYCPLLMRK...
...

Fig. 1. Flowchart of the Parzen window method. Each arrow repre-

sents the calculated BLAST score when comparing a, the query

sequence against the soluble data set; b, the query sequence

against the insoluble data set; c, a soluble instance against the sol-

uble data set; d, an insoluble instance against the insoluble data

set; e, a soluble instance against the insoluble data set; and f, an

insoluble instance against the soluble data set.
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l MCC, calculated as

MCC ¼ ðTP� TNÞ � ðFP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FNÞ

p
where TP, FP and FN are the numbers of true positive,

false positive and false negative instances, respectively.

In particular, gain is an important performance measure

that quantifies how much better the decision is when guided

by the classifier in comparison with random drawing of

instances. MCC indicates the correlation between the classi-

fier assignments and the actual class in the two-class case.

It is a good measure of classifier performance even when

classes are unbalanced.

Web server

The PROSO II web server was built using the jboss seam

framework (2.0) (Red Hat, Raleigh, NC, USA) based on

ajax technology. The server side application is run on the

jboss server (4.2) (Red Hat).
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