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ABSTRACT: In this article we present a new and more
accurate model for the prediction of the solubility of pro-
teins overexpressed in the bacterium Escherichia coli. The
model uses the statistical technique of logistic regression. To
build this model, 32 parameters that could potentially
correlate well with solubility were used. In addition, the
protein database was expanded compared to those used
previously. We tested several different implementations of
logistic regression with varied results. The best implementa-
tion, which is the one we report, exhibits excellent overall
prediction accuracies: 94% for the model and 87% by cross-
validation. For comparison, we also tested discriminant
analysis using the same parameters, and we obtained a less
accurate prediction (69% cross-validation accuracy for the
stepwise forward plus interactions model).
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Introduction

The use of recombinant DNA technology to produce
proteins has been hindered by the formation of inclusion
bodies when overexpressed in Escherichia coli (Wilkinson
and Harrison, 1991). Inclusion bodies are dense, insoluble
protein aggregates that can be observed with the aid of an
electron microscope (Williams et al., 1982). The formation
of protein aggregates upon overexpression in E. coli is
problematic since the proteins from the aggregate must be
resolubilized and refolded, and then only a small fraction of the
initial protein is typically recovered (Singh and Panda, 2005).

To date, despite some efforts, highly consistent and
accurate prediction of protein solubility is not available.
Indeed, ab initio solubility prediction requires folding
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prediction where interactions with the solvent and with
other proteins need to be considered. Some attempts to
obtain ab initio predictions of the folding of soluble proteins
(i.e., considering protein–water interactions) have been
made (Bradley et al., 2005; Klepeis and Floudas 1999; Klepeis
et al., 2003; Koskowski and Hartke, 2005; Scheraga, 1996).
Despite all these efforts, a tool for full and reliable ab initio
solubility predictions is not yet available. Jenkins (1998)
developed equations that describe the change of protein
solubility with changes in salt concentration, but these are
not ab initio predictions of protein solubility.

In the absence of good ab initio methods, and perhaps
helping their development, semi-empirical relationships
obtained from correlating parameters help predict protein
solubility with reasonable accuracy for proteins expressed in
E. coli at the normal growth temperature of 378C. For
example, discriminant analysis, a statistical modeling
technique, was first used by Wilkinson and Harrison
(1991) and later by Idicula-Thomas and Balaji (2005) and
has yielded some success.

Wilkinson and Harrison (1991) conducted a study using a
database of 81 proteins. Six parameters that were predicted
to help classify proteins as soluble or insoluble from
theoretical considerations were included in the model:
approximate charge average, cysteine fraction, proline
fraction, hydrophilicity index, total number of residues,
and turn-forming residue fraction. The prediction accuracy
was 81% for 27 soluble proteins and 91% for 54 insoluble
proteins. One potential problem with the database is that it
contained many proteins that were fusion partners, which
may have biased the model. Wilkinson and Harrison’s
discriminant model was later modified by Davis et al.
(1999), who found that the turn forming residues and the
approximate charge average were the only two parameters
that influenced the solubility of overexpressed proteins inE. coli.

Idicula-Thomas and Balaji (2005) performed discrimi-
nant analysis using a new set of parameters and a database of
170 proteins expressed in E. coli. In this model, the most
� 2009 Wiley Periodicals, Inc.



Table I. Parameters used in this study.

Property Abbreviation Source

Molecular weight MW W&H

Cysteine fraction Cys W&H

Total number of hydrophobic residues Hydrophob. New

Largest number of contiguous

hydrophobic residues

Contig. hydrophob. New

Largest number of contiguous

hydrophilic residues

Contig. hydrophil. New

Aliphatic index Aliphat. IT&B

Proline fraction Pro W&H

a-Helix propensity a-Helix New

b-Sheet propensity b-Sheet New

Turn forming residue fraction Turn frac. W&H

a-Helix propensity/b-sheet propensity a-Helix/b-sheet New

Hydrophilicity index Hydrophil. W&H

Average pI pI New

Approximate charge average Charge avg. W&H

Alanine fraction Ala New

Arginine fraction Arg New

Asparagine fraction Asn IT&B

Aspartate fraction Asp New

Glutamate fraction Glu New

Glutamine fraction Gln New

Glycine fraction Gly New

Histidine fraction His New

Isoleucine fraction Iso New

Leucine fraction Leu New

Lysine fraction Lys New

Methionine fraction Met New

Phenylalanine fraction Phe New

Serine fraction Ser New

Threonine fraction Thr IT&B

Tyrosine fraction Tyr IT&B

Tryphophan fraction Tryp New

Valine fraction Val New
important parameters were found to be the asparagine,
threonine, and tyrosine fraction, aliphatic index, and
dipeptide and tripeptide composition. When all the
variables were included in the classification function (except
dipeptide and tripeptide composition, which interfere with
the classification results), the cross-validation accuracy was
62% overall. In another study, Idicula-Thomas et al. (2006)
used a support vector machine learning algorithm to predict
the solubility of proteins expressed in E. coli. The parameters
used in the model were protein length, hydropathic index,
aliphatic index, instability index of the entire protein,
instability index of the N-terminus, net charge, single
residue fraction, and dipeptide fraction. The model was
developed on a training set of 128 proteins and then tested
for accuracy on a test set of 64 proteins. The overall accuracy
of prediction for the test set was 72%.

In the current study, logistic regression, which has not
been used previously for predicting protein solubility in
E. coli, is used. Compared to discriminant analysis, logistic
regression has the significant advantage that it does not
require normally distributed data. Also, an expanded
protein database and a more extensive set of parameters
than previously employed were used, with the parameters
being relatively straightforward to calculate. They are
outlined in Table I. In addition to all parameters of the
study from Wilkinson and Harrison (1991), 26 additional
parameters were added. Table I indicates which parameter
was used in previous models (Wilkinson and Harrison
denoted by W&H and Idicula-Thomas and Balaji, denoted
by IT&B). Another goal was to develop a model that, unlike
some others, can readily be used by others. Indeed, the
complete details of the models by Idicula-Thomas and Balaji
and by Idicula-Thomas et al., are not available.

We first discuss our protein database and the parameters
used to predict solubility. Next we review the models we
used, as well as the software. Finally we present our
methodology to establish the significance of parameters
followed by our results.
Methods

Protein Database

Literature searches were done to find studies where the
solubility or insolubility of a protein expressed in E. coli was
discovered, regardless of the focus of the article. Only
proteins expressed at 378C without fusion proteins or
chaperones were considered, and membrane proteins were
excluded (see Table S-I in the Supplementary Online
Material). Fusion proteins and the overexpression of
chaperones can make an insoluble protein soluble by
helping improve folding kinetics or changing its interactions
with solvent (Davis et al., 1999; Walter and Buchner, 2002).
This can give false positives, making an inherently insoluble
protein soluble. The temperature chosen is a common
temperature for much work done with E. coli, and it had to
be consistent because the temperature plays a factor in
protein folding in solubility. In determining the sequence of
each protein expressed, signal sequences that were not part
of the expressed protein were excluded due to their
hydrophobic nature. The signal sequence of a protein is a
short (5–60) stretch of amino acids, and these are found
in secretory proteins and transmembrane proteins. The
removal of these signal sequences does not affect the
prediction of protein solubility because at some point in
the folding pathway of these proteins, the signal sequence is
removed. The database contains a total of 160 insoluble
proteins and 52 soluble proteins. Of these 212 proteins, 52
were obtained from the dataset of Idicula-Thomas and Balaji
(2005).

The solubility or insolubility of the 212 proteins was
assigned as follows: Proteins that appeared almost entirely in
the inclusion body were classified as insoluble proteins.
Conversely if a significant amount of the protein appeared in
the soluble fraction, the protein was classified as soluble. The
significance of the expression of the protein in the soluble
fraction was determined by the SDS–PAGE when available.
Proteins that showed bands in the soluble lanes that were
more than faintly visible were identified as having a
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Table II. Maximum value of parameters.

Parameter Maximum value

MW 577934

Cys 0.3279

Pro 0.1826

Turn frac. 0.4609

Contig. hydrophil. 0.2941

Charge avg. 0.3529

Hydrophil. 0.7435

Hydrophob. 0.7739

Contig. hydrophob. 0.122

Aliphat. 1.3281

a-Helix 1.1903

b-Sheet 0.4861
significant amount of protein in the soluble fraction. When
the SDS page was unavailable, the protein was classified
according to the qualitative information given that
described its expression in E. coli. The reason for assigning
the proteins this way was due to their overexpression in
E. coli. Overexpression causes conditions where even soluble
proteins will form inclusion bodies due to the cell becoming
overly crowded (Baneyx and Mujacic, 2004). Hence, when
proteins were expressed in significant amounts in both the
soluble fraction and inclusion bodies, it was assumed that
the inclusion bodies were formed due to overexpression and
that under normal expression the protein would fold
correctly and be soluble.
a-Helix/b-sheet 3.429

pI 12.01

Asn 0.1136

Thr 0.1311

Tyr 0.2632

Gly 0.2105

Ala 0.2

Val 0.1652

Iso 0.1263

Leu 0.1718

Met 0.0714

Lys 0.2105

Arg 0.2435

His 0.0949

Phe 0.0854

Tryp 0.0588

Ser 0.1311

Asp 0.1055

Glu 0.1301

Gln 0.1176
Parameters Used

Several parameters are used that potentially affect protein
folding and solubility. Protein folding describes the process
by which polypeptide interactions occur so that the shape of
the native protein is ultimately formed and is directly related
to solubility because an unfolded protein has more
hydrophobic amino acids exposed to the solvent (Murphy
and Tsai, 2006). Therefore, correct folding gives a protein a
much higher probability of being soluble in aqueous
solution because interactions between hydrophobic residues
and the solvent are minimized, when these residues are
within the protein interacting with other residues instead.

Before our data were analyzed with SPSS, normalization
of the data was performed. In order to normalize the data,
the maximum value of each parameter was calculated
(Table II). The rationale for the use of each of the parameters
is as follows:
Molecular Weight

The molecular weight was added because it correlates better
with size than the number of residues. The molecular weight
of each protein was determined with aid of the pI/MW tool
from the Swiss Institute of Bioinformatics.
Cysteine Fraction

Disulfide linkages between cysteine residues are important
in protein folding because these bonds add stability to the
protein; if the wrong disulfide linkages are formed or cannot
form, the protein cannot find its native state and will
aggregate (Murphy and Tsai, 2006). For V-ATPase, an ATP-
dependent protein that is responsible for the translocation
of ions across membranes, it has been shown that the
formation of disulfide bridges is essential for the proper
folding and solubility of the protein (Thaker et al., 2007). An
important fact about E. coli is that when eukaryotic proteins
are expressed in E. coli, due to the reducing nature of E. coli’s
cytoplasm, these bonds cannot be formed (Wilkinson and
Harrison, 1991). The total number of cysteine (C) residues
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found in a protein were added, and then this value was
divided by the total number of residues for a given protein.
Hydrophobicity-Related Parameters (Fraction of Total
Number of Hydrophobic Amino Acids and Fraction of
Largest Number of Contiguous Hydrophobic/Hydrophilic
Amino Acids)

The fraction of highest number of contiguous hydrophobic
and hydrophilic residues was used because a recent study
(Dyson et al., 2004) showed that there was a correlation
between the highest number of contiguous hydrophobic
residues and protein solubility: proteins with a small
number of contiguous hydrophobic residues were found to
be expressed in soluble form while those with a high number
were expressed as insoluble aggregates. This was also
addressed in an earlier study that also found that the more
concentrated hydrophobic residues were in a sequence, the
more likely the protein would form insoluble aggregates
(Schwartz et al., 2001). It has been shown that long stretches
of hydrophobic residues tend to be rejected internally in
proteins, meaning they are exposed to the solvent (Dyson
et al., 2004). These polar–nonpolar interactions will tend to



make proteins aggregate. However, it is noteworthy that
some proteins accommodate long stretches of hydro-
phobic residues in the folded core. For instance, UDP
N-acetylglucosamine enolpyruvyl transferase successfully
incorporates a 12-residue hydrophobic block in its folded
state (Dyson et al., 2004). These parameters were calculated
by finding the largest stretch of hydrophobic or hydrophilic
amino acid present in the protein, and then these were
divided by the total number of residues; amino acids
were classified hydrophobic or hydrophilic based on the
hydrophilicity index of all 20 amino acids (Hopp and
Woods, 1981).
Aliphatic Index

The aliphatic index was added following Idicula-Thomas
and Balaji (2005). This parameter is related to the mole
fraction of the amino acids alanine, valine, isoleucine, and
leucine. Proteins from thermophilic bacteria were found to
have an aliphatic index significantly higher than that of
ordinary proteins (Idicula-Thomas and Balaji, 2005), so it
can be used as a measure of thermal stability of proteins.
This parameter varies from the largest number of
contiguous hydrophobic amino acids because we are taking
the total number of aliphatic amino acids, whether they are
found contiguously or not, and only the aliphatic amino
acids (those whose R groups are hydrocarbons, e.g., methyl,
isopropyl, etc.) are taking into account. The aliphatic index
(AI) was calculated using the following equation (Idicula-
Thomas and Balaji, 2005):

AI ¼ ðnA þ 2:9nV þ 3:9ðnI þ nLÞÞ
ntot

(1)

where nA, nv, nI, nL, and ntot are the number of alanine,
valine, isoleucine, leucine, and total residues, respectively.
Secondary Structure-Related Properties (Proline
Fraction, a-Helix Propensity, b-Sheet Propensity,
Turn-Forming Residue Fraction, and a-Helix
Propensity/b-Sheet Propensity)

Forces that determine protein folding include hydrogen
bonding and nonbonded interactions (Dill, 1990; Klepeis
and Floudas, 1999) electrostatic interactions and formation
of disulfide bonds (Klepeis and Floudas, 1999; Murphy and
Tsai, 2006), torsional energy barriers across dihedral angles
and presence of proline residues in a protein (Klepeis and
Floudas, 1999). Hydrogen bonding interactions are involved
in alpha helices and beta sheet structures and other
interactions crucial to the formation of a protein in its
native state; however, these forces were thought not to be
dominant in protein folding (Dill, 1990). Studies have
shown that solvation contributions are significant forces in
stabilizing the native structure of proteins because of solvent
molecules that surround the protein in order to make a
hydration shell (Klepeis and Floudas, 1999). A recent study
showed that point mutations of residues that decrease alpha
helix propensity and increase beta sheet propensity in
apomyoglobin have been shown to cause protein aggrega-
tion (Vilasi et al., 2006). This indicated that alpha helices
may tend to favor solubility while beta sheets may tend to
favor aggregation. Another study supplied some support for
this hypothesis by showing that the regions of acylpho-
sphatase responsible for protein aggregation have high beta
sheet propensity (Chiti et al., 2002). Finally, studies of
secondary structure in inclusion bodies have shown high
content of beta sheets, with the beta sheet content increasing
with increasing temperature (Przybycien et al., 1994). Since
increased temperatures tend to cause aggregation as well
as cause beta sheet formation, it can be inferred that the
presence of beta sheets may favor aggregation. The turn-
forming residue fraction was found by adding the total
number of asparagines (N), aspartates (D), glycines (G),
serines (S), and prolines (P) and then dividing the sum by
the total number of residues in the protein. These residues
were chosen because they tend to be found more frequently
in turns (Chou and Fasman, 1978). Alpha helical (Pace and
Scholtz, 1998) and beta sheet propensities (Street and Mayo,
1999) for each amino acid were obtained from the literature.
The average alpha helical propensity for the protein was
obtained by summing the alpha helical propensities of all
the amino acids in the sequence and dividing by the total
number of amino acids. A similar procedure was used for
beta sheet propensity. Then, the former values were divided
by the latter, in order to create the parameter a-helix
propensity/b-sheet propensity.
Protein–Solvent Interaction Related Parameters
(Hydrophilicity Index, pI, and Approximate
Charge Average)

Electrostatic interactions are caused by the amino acid
residues which are charged at physiological pH (7.4), which
include positively charged lysine and arginine and negatively
charged aspartate and glutamate (Murphy and Tsai, 2006).
These interactions can help in protein folding and stability
by creating residue–solvent interactions at the protein
surface as well as residue–residue interactions within the
protein (Murphy and Tsai, 2006). The average hydro-
philicity index was found by summing the hydrophilicity
indices for all the amino acids and dividing by the total
number of amino acids (obtained from Hopp and Woods,
1981). The isoelectric point of each protein was determined
with aid of the pI/MW tool from the Swiss Institute of
Bioinformatics (ExPASy Proteomics Server, website address
http://ca.expasy.org). Finally, the charge average was found
by taking the absolute value of the sum of the difference
between the positively charged amino acids (K and R) and
the negatively charged residues (D and E) and dividing by
the total number of residues.
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Alanine, Arginine, Asparagine, Aspartate, Glutamate,
Glutamine, Glycine, Histidine, Isoleucine, Leucine,
Lysine, Methionine, Phenylalanine, Serine, Threonine,
Tyrosine, Tryptophan, Valine Fractions

Threonine and tyrosine fractions were added because these
amino acids were found to affect the solubility of proteins in
E. coli in a previous discriminant analysis mode (Idicula-
Thomas and Balaji, 2005). Phenylalanine was found to
stabilize transmembrane domain interactions via GxxxG
motifs, which play a crucial role in the correct folding of
integral proteins (Unterreitmeier et al., 2007). The rest of the
amino acids were added to see if they could play some role
that was not yet foreseen. For each of these amino acids,
the fraction of each amino acid was obtained by dividing the
number of residues in the sequence by the total number of
residues.
Logistic Regression Model

Binomial logistic regression is a form of regression which is
used when the dependent variable is a dichotomy (it belongs
to one of two nonoverlapping sets) and the independent
variables are of any type (continuous or categorical, i.e.,
belonging to one or more categories without an intrinsic
ordering to the categories) (Hosmer and Lemeshow, 2000).
In our case, the dichotomy is soluble/insoluble and the
independent variables are the parameters. Thus, the goal is
to develop a model capable of separating data into these two
categories, depending on properties of proteins that could
affect positively or negatively the solubility. Thus, the linear
logistic regression model is the following:

log
pi

1 � pi

� �
¼ aþ b1x1;i þ b2x2;i þ � � � þ bnxn;i (2)

where pi is the probability for a datum to belong to one
group, n the number of characteristic parameters integrated
in the model, a an intercept constant, bj a coefficient for the
parameter j, and xj,i the value for the parameter j for datum i.

Thus, logistic regression provides the probability (pi) of a
certain protein to belong to one set or another. As stated
earlier, logistic regression does not require normally
distributed variables, it does not assume homoscedasticity
(random variables having the same finite variance) and, in
general, has less stringent requirements than ordinary least
square (OLS) regression. The parameters a and bj are
calculated using the maximum likelihood method and a set
of given proteins whose solubility and parameters are
known. When applied to proteins that are not part of the
database used to build the model, the corresponding data
plugged in Equation (2) produces a value of pi, the
probability of the protein of being soluble or not. This
probability value is then compared to the cut-off set in the
SPSS software. The cut-off, for this model, was generally set
at pi¼ 0.5 in SPSS. If the pi-value of the protein was less than
0.5, then the protein belonged to one group. If the pi-value
378 Biotechnology and Bioengineering, Vol. 105, No. 2, February 1, 2010
was larger than 0.5, then the protein belonged to the other
group. Cut-off values down to 0.2 were also used for one
case.
Discriminant Analysis Models

Discriminant analysis is a statistical test technique that
separates two distinct groups by means of a function called
the discriminant function. This function maximizes the
ratio of between class variance and minimizes the ratio of
within class variance. As in the case of logistic regression,
proteins are classified into two groups (soluble and
insoluble) and the same group of parameters are used.
For a two-group system the linear discriminant function is
of the following form:

CVi ¼ aþ l1x1;i þ l2x2;i þ � � � þ lnxn;i (3)

where CVi is the canonical variable for a specific datum, xj,i
the value of parameter j for a specific datum i, a a constant,
lj the coefficient for parameter j, and n the number of
characteristic parameters in the model. Although the
constant a is in general not needed, it is reported back in
programs like SPSS, so we left it for completeness.

The coefficients for each parameter (lj) and the value of a
are determined by maximizing the ability to distinguish data
between groups. Discriminant analysis also provides a
reference value for the canonical variables, namely CV�,
which is used later for classification. At the end, the
parameters with the higher coefficients are the ones that are
largely responsible for the discrimination between the two
groups. When applied to proteins that are not part of the
database used to build the model, the corresponding data
produces a value of CVi, which is compared to CV�. The
protein is then determined to be soluble or insoluble
depending on whether CVi is larger or smaller than CV�.
Models With Interaction Among Parameters

In any model, an interaction between two variables implies
that the effect of one of the variables is not constant over
the levels of the other (Hosmer and Lemeshow, 2000). We
created interaction variables by taking the arithmetic
product of pairs of original parameters (main effect
variables or two-way interactions).

In this case, the model equation used for logistic
regression is

log
pi

1 � pi

� �
¼ aþ

Xn
j¼1

bjxj;i þ
Xn
k¼1

Xn
j¼1;j 6¼k

gk;jxj;ixk;i (4)

where n is the number of significant parameters, and j and k
represent the parameters. Interactions between the same
parameter were not included, so j is not equal to k. For



discriminant analysis, the model equation is

CVi ¼ aþ
Xn
j¼1

ljxj;i þ
Xn
k¼1

Xn
j¼1;j 6¼k

mk;jxj;ixk;i (5)
Software and Websites Used

SPSS 15.0 for Windows (SPSS Inc., Chicago, IL) was utilized
to build and evaluate all the logistic regression and
discriminant analysis models, in particular to obtain model
coefficients and classification tables. Leave-one-out cross-
validation for logistic regression was programmed in Matlab
7.4.0, using the output from SPSS. Microsoft Excel was
also used extensively in creating the protein database and
calculating protein parameters. The National Center of
Biotechnology Information Database (NCBI) was consulted
to obtain amino acid sequences.
Methods for Establishing Significance

Full datasets were imported to SPSS from the database and
evaluated using the LOGISTIC REGRESSION or DISCRI-
MINANT ANALYSIS procedure. In order to classify our
proteins, we utilized both linear and quadratic models, using
different approaches to the construction of the models. For
each method, SPSS generates the output with all coefficients
estimates and with the significance of every variable. The
significance is the probability value of the null hypothesis
for each parameter. The null hypothesis is that a parameter
does not affect the distinction between groups, so high
probability values indicate that parameters have little
significance on classification. In addition, we tested two
different approaches to obtain model coefficients: Step
Backward and Step Forward. The intention here is to remove
from the model those parameters that are not significant,
that is, their contribution is negligible. We also explored
interactions between parameters. We describe these
approaches next:
Stepwise Forward

The stepwise forward method builds the model by adding a
variable one at a time on the basis of its significance. The
significance of each parameter is determined first by using
the likelihood ratio or Wald’s test for logistic regression
model and the F-value or Wilks’ lambda for discriminant
analysis. Then the parameter with the smallest significance
is chosen. If the parameter’s significance is smaller than
the threshold (0.1 in our case), the parameter is chosen to be
part of the model, otherwise it is disregarded and the
parameter with the next lowest significance is chosen.
In the next step, the procedure is repeated by calculating
the significance of the remaining parameters, when used
together with the already chosen parameters. Then, the
parameter with a smaller significance than the threshold of
0.1 is chosen. If no parameter can be added, then the
program stops; otherwise, this procedure continues until no
new parameter can be added. After adding a new parameter
to the model, the significance of all parameters chosen to be
in the model is calculated. If any parameter has a significance
that is above 0.1, our threshold, then the parameter is taken
out of the model.

Stepwise Backward

The procedure starts from the all-independent parameters
model. At each step, the variable with the largest probability
value of not affecting the distinction between soluble and
insoluble proteins, that is, the least significant, is removed,
provided that this value is larger than a default probability
value for a variable removal (we set it at 0.10). The loop
continues until all the remaining variables’ significance in
the model are under the default probability value (0.10 in
our case).

Cross-Validation

Cross-validation is a method used in statistics to test how
well the logit function or discriminant function will classify
future data. It consists of four steps:
I. T
emporarily remove ith entry from database.

II. O
btain the logit or discriminant function with N� 1

entries, where N is the number of proteins.

III. R
e-introduce ith entry and run the logistic regression or

discriminant analysis again to obtain the classification
accuracy.
IV. A
n average of the classification accuracy obtained from
all N runs is then reported.
The coefficients of the model that are reported are the
ones obtained using all N proteins.
Results

The stepwise backward model gave poor results for soluble
proteins, with cross-validation accuracy of less than 10%.
Thus, we abandoned this option and concentrated on the
step forward one. In the case of considering interactions,
because the number of variables is larger than the number of
observations (528 variables against 212 observations), the
only method we could use when interactions are present is
the stepwise forward method.

The results of cross-validation for logistic regression and
discriminant analysis of models with and without interac-
tions using step forward significance methods are given in
Tables III and IV. It is clear that logistic regression gives
much better results.

The parameters that were found to be the most significant
for the model with interactions and stepwise forward
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Table IV. Cross-validation accuracies for discriminant analysis models.

Model

Average accuracy of prediction

Soluble Insoluble Overall

Stepwise forward without interactions 59.4 59.6 59.6

Stepwise forward with interactions 57.7 73.1 69.3

Table III. Cross-validation accuracies for logistic regression models.

Model

Average accuracy of prediction

Soluble Insoluble Overall

Stepwise forward without interactions 3.9 96.3 73.6

Stepwise forward with interactions 73.1 91.9 87.3

Table VI. Classification accuracies for the logistic regression model.

Model

Average accuracy of prediction

Soluble Insoluble Overall

Stepwise forward without interactions 9.6 97.5 75.9

Stepwise forward with interactions 86.5 96.3 93.9

Table VII. Classification accuracies for the discriminant analysis model.

Model

Average accuracy of prediction

Soluble Insoluble Overall

Stepwise forward without interactions 61.5 59.4 59.9

Stepwise forward with interactions 57.7 75 70.8
significance determination are shown in Table V; also shown
are the values of a, the constant, the standard error (SE), the
Wald statistic, the degrees of freedom (df), and the
significance (P) level. Tables VI and VII show the results
of the classification accuracies of the stepwise forward
models for logistic regression and discriminant analysis with
and without interactions. As expected, these accuracies
are larger than those obtained in the validation step. The
overall classification accuracy of the stepwise forward plus
interaction model in logistic regression was 93.9%, and the
Table V. Logistic regression modeling results for the logistic regression

model with interactions.

b SE Wald df Sig. Exp(b)

pI�MW 96.236 34.632 7.722 1 0.005 6.23Eþ 041

MW� Ser �118.027 41.478 8.097 1 0.004 0.000

Asn�Pro 64.292 17.574 13.384 1 0.000 8Eþ 27

Charge avg.�Thr �323.429 67.921 22.675 1 0.000 0.000

Charge avg.� Ser 204.869 43.594 22.085 1 0.000 9.41Eþ 088

Hydrophil.� Leu 74.534 21.105 12.471 1 0.000 2Eþ 032

Hydrophil.�Met �66.255 20.054 10.916 1 0.001 0.000

Hydrophil.�His �209.900 52.569 15.943 1 0.000 0.000

Hydrophil.� Phe 101.938 28.242 13.028 1 0.000 1.866Eþ 04

Aliphat.�Glu 66.886 17.413 14.754 1 0.000 1Eþ 29

pI�Gln 70.974 17.649 16.172 1 0.000 7Eþ 30

Asn�His 16.590 9.822 2.853 1 0.091 2Eþ 7

Iso�Thr 58.669 16.118 13.249 1 0.000 3Eþ 25

Ala� Phe 52.071 12.938 16.198 1 0.000 4Eþ 22

Ala�Tryp 38.762 13.436 8.322 1 0.004 7Eþ 16

Met�Val �71.483 21.224 11.344 1 0.001 0.000

Asp�Val 64.379 14.918 18.624 1 0.000 9Eþ 27

Glu� Iso �61.875 18.389 11.322 1 0.001 0.000

Asp�Met 88.432 21.132 17.512 1 0.000 3Eþ 38

Arg� Lys �51.042 24.148 4.468 1 0.035 0.000

Arg� Phe �41.556 15.146 7.528 1 0.006 0.000

Ser�Tryp 59.630 16.544 12.992 1 0.000 8Eþ 25

Asp�Tryp �88.447 23.019 14.763 1 0.000 0.000

Asp�Gln �92.899 23.268 15.941 1 0.000 0.000

Constant a �46.532 10.650 19.091 1 0.000 0.000
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overall cross-validation classification accuracy was 87.3%.
The classification accuracy of the stepwise forward with
interactions logistic regression model was found to vary
greatly with the predicted probability of solubility, as shown
in Figure 1. We also added how many proteins were
falling in each range. As one would expect, the region
close to the cut-off probability (0.5 in our case) is the one
exhibiting the lowest accuracy. However, the number of
proteins falling in this range is very small. In fact, most of the
proteins are in the 0–5% range and in the 95–100% range,
which speaks well about the power of the logistic regression.
The figure is useful, because once one applies the correlation
and obtains a value of pi for a new protein one can also
associate certain accuracy to the prediction. For example, if a
new protein exhibits a value of P¼ 35%, then one could say
that the protein is insoluble with a 65% probability. The
accuracy of such a statement would be very high (close to
100%).

The cut-off for logistic regression was also moved from
0.5 to 0.2, and this improved the classification accuracy of
soluble proteins even though the overall classification
decreased due to the lower classification accuracy of
insoluble proteins (see Table VIII). The best model overall
was obtained from using a cut-off of 0.5.

There were three other models that were used, but no
success was achieved. These were the all squared rooted
parameters, the all squared parameters, and the all squared
parameters plus squared interactions models. Both
squared models were obtained from the generalized linear
model, and this was attempted due to its popularity when
binary data (like in our case where there is a binary option
for soluble and insoluble) is present (McCullagh and Nelder,
1989). When the data are squared, the results showed that
the classification is quasi-complete, a problem encountered
when some values of the target variable (either soluble or
insoluble) overlap or are tied at a single or only a few values
of the predictor variable (in this case, the predictor variables
are the parameters).



Figure 1. Classification accuracy of the stepwise forward plus interaction model as a function of the solubility prediction range. The numbers on the top of each bar represent

the number of proteins in that range.
Discussion

Based on the results of this study, logistic regression is better
than discriminant analysis for predicting the solubility of
proteins expressed in E. coli. This is not surprising because
logistic regression is a more robust method (data do not to
be normally distributed and several other restriction for
DA do not hold). An important finding for the logistic
regression modeling is that only parameters that involve
interactions are significant in the model (see Table V). This
is really not a surprising result, since the correct folding of a
protein is an interactive process. The parameters besides the
Table VIII. Stepwise forward plus interaction model at different cut-offs.

Model: stepwise

forwardþ interactions

Classification accuracy

Soluble Insoluble Overall

Cut-off¼ 0.5 86.5 96.3 93.9

Cut-off¼ 0.4 90.4 94.4 93.4

Cut-off¼ 0.3 90.4 93.1 92.5

Cut-off¼ 0.2 92.3 90.6 91.0
fractions of individual amino acids that were found to
be significant in the best logistic regression model (stepwise
forwardþ interactions) along with another parameter were
average pI, molecular weight, charge average, hydrophilicity
index, and aliphatic index (see Table V). The hydrophilicity
index appeared four times with another parameter, and
average pI, molecular weight, and charge average each
appeared two times with another parameter. The average pI
is related to the charge average, since the difference in the pI
of a protein and the pH in the cell is an indication of the
degree of charge on the protein. Hydrophilicity index and
charge average are two of the parameters that Wilkinson and
Harrison (1991) found to influence the solubility of proteins
expressed in E. coli. Idicula-Thomas and Balaji (2005) found
aliphatic index to be important in their model of protein
solubility in E. coli. Of the amino acids that Idicula-Thomas
and Balaji found to be significant, the asparagine fraction
and threonine fraction appeared two times with another
parameter in the logistic regression model using the stepwise
forwardþ interactions method (Table V). The amino acid
that appears the most times with another parameter is
aspartic acid (four times), which is also a contributor to the
Diaz et al.: Prediction of Protein Solubility in E. coli 381

Biotechnology and Bioengineering



charge average; this further emphasizes the well-known role
of charge in the prediction of protein solubility.

We used a much larger dataset of proteins (212) for our
logistic regression model than Wilkinson and Harrison used
in their model (81). Also, no fusion proteins were used in
our model, while in Wilkinson and Harrison’s model, 41%
of the proteins were fusions. Applying Wilkinson and
Harrison’s model to our dataset, we found high classifica-
tion accuracy for insoluble proteins (93%) but a very low
accuracy for soluble proteins (4%). This same trend was also
found when applying the Davis et al. (1999) model to our
data. Therefore, it appears that the use of a relatively small
number of proteins and a high percentage of fusion proteins
skewed the Harrison–Wilkinson and Davis et al. discrimi-
nant analysis models.

The results indicate that while the classification accuracy
of the stepwise forward with interactions model is very good
for the set of soluble protein (86%), it is even better for the
set of insoluble proteins (96%). Two possible reasons for this
difference are the number of proteins in each group and
the parameters used in the model. While a reasonably
large set of proteins was used for the set of soluble proteins
(52), it was considerably smaller than the set of insoluble
proteins (160). Using a larger set of soluble proteins may
lead to an improvement in the prediction accuracy for this
set. Also, for the soluble proteins there may be additional
parameters that could be added to the model to improve
the prediction accuracy. The model may not be reflecting
the complexity of the process to produce a protein in soluble
form.

The model we have developed can be used to make
experimental work involving recombinant protein expres-
sion more efficient. Proteins with a high-predicted prob-
ability of solubility can be expressed in soluble form at 378C
with a high-degree of confidence, without the need for
expression using a fusion to promote solubility. Proteins
with intermediate predicted probability of solubility (50–
70%) are possibly soluble when expressed at temperatures
lower than 378C, which has been found to increase solubility
(Schein and Noteborn, 1988). Proteins with a predicted
solubility of less than 50% will probably require other means
to facilitate solubility, for example, by using a fusion partner
known to increase solubility, such as maltose binding
protein or NusA protein (Douette et al., 2005).
Electronic Supplementary Material

Electronic supplementary material includes the accession
numbers of the proteins used in the models (Table S-I) and
the literature references used to collect proteins for the
database.
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