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Abstract
Lipidomics comprises large-scale studies of the structures, quantities, and functions of lipid
molecular species. Recently developed mass spectrometric methods for lipid analyses, especially
electrospray ionization (ESI) tandem mass spectrometry, permit identification and quantitation of an
enormous variety of distinct lipid molecular species from small amounts of biological samples but
generate a huge amount of experimental data within a brief interval. Processing such data sets so that
comprehensible information is derived from them requires bioinformatics tools, and algorithms
developed for proteomics and genomics have provided some strategies that can be directly adapted
to lipidomics. The structural diversity and complexity of lipids, however, also requires the
development and application of new algorithms and software tools that are specifically directed at
processing data from lipid analyses. Several such tools are reviewed here, including LipidQA. This
program employs searches of a fragment ion database constructed from acquired and theoretical
spectra of a wide variety of lipid molecular species, and raw mass spectrometric data can be processed
by the program to achieve identification and quantification of many distinct lipids in mixtures. Other
approaches that are reviewed here include LIMSA (Lipid Mass Spectrum Analysis), SECD
(Spectrum Extraction from Chromatographic Data), MPIS (Multiple Precursor Ion Scanning), FIDS
(Fragment Ion Database Searching), LipidInspector, Lipid Profiler, FAAT (Fatty Acid Analysis
Tool), and LIPID Arrays. Internet resources for lipid analyses are also summarized.
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1. Introduction
Bioinformatics tools for automatic, computerized analyses of large data sets are essential
components of the systematic and widely inclusive examination of genes and proteins now
designated “genomics” and “proteomics”, respectively. There is a relative paucity of such tools
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available for comparable examinations of complex lipids (“lipidomics”), and it would be
desirable to develop additional informatics tools for automatic identification and quantitation
of lipid species from raw mass spectrometric data. Such data can now be obtained quickly from
small amounts of biological materials and can contain sufficient information to profile
hundreds to thousands of distinct molecular species [1]. The relatively recent application of
electrospray ionization mass spectrometry (ESI/MS) to lipid analyses has resulted in much
improved sensitivity and shorter analysis times than conventional methods [2,3].

Lipids comprise thousands of complex biomolecules with great structural diversity [4].
Conventional methods for lipid analyses have included two stage chromatographic separations
of complex lipid mixtures into lipid classes, followed by a second analysis to isolate molecular
species, and that process is laborious and time-consuming and involves analyte losses that limit
sensitivity. The recently developed approach of “shotgun lipidomics” involves introduction of
unfractionated lipid extracts into the ESI source of a tandem mass spectrometer and
“intrasource separation” of molecular species based on the m/z values of the ions produced
from them [1], followed by a second analytic dimension of tandem mass spectrometric profiling
that permits identification and quantitation of hundreds of molecular species in a single sample
[5]. HPLC separation methods coupled with ESI/MS(/MS) have also been described [3,6,7]
and provide powerful technical platforms for identification and quantitation of large numbers
of lipid molecular species in a high-throughput manner.

Such high throughput methods quickly generate huge amounts of data that are difficult to
process manually. Data processing thus becomes a central and rate-limiting step in lipidomics,
and this motivates development of computerized algorithms to process data from high-
throughput ESI/MS analyses of lipids. In this review, we summarize algorithms and informatics
tools that have been developed to process lipidomics data. The foundation of one such approach
has been the systematic study of the ion chemistry of the fragmentation of complex lipid
molecular species upon collisionally activated dissociation [8,9] to identify lipid structures
coupled with high throughput database searching [9].

2. Workflow in Processing Data from Mass Spectrometric Analyses of Lipids
The data in acquired mass spectra are first converted to formats that permit processing of data
from a variety of different types of mass spectrometers by available software tools. Lipid
molecular species can then be identified by several approaches that include accurate mass
determinations [10], two dimensional mass spectrometric fingerprinting [5], multiple precursor
ion scanning [11], or MS/MS spectral database searching [9]. Once the lipid molecular species
in a mixture are identified, precursor scan data can be processed to achieve quantification when
internal standards have been included in the analyses of the mixture.

3. Converting and Processing Data Formats
Accurate and efficient data extraction from acquired mass spectra is the first step performed
in all bioinformatics approaches to processing data from analyses of lipids or other molecules.
Described tools include SECD and LIMSA, which process data by conversion to the NetCDF
format using the DataBridge tool provided by MassLynx 4.0 software [12]. The LipidQA
program [9] can directly process Finnigan *.RAW data. Data acquired from Waters mass
spectrometers must first be processed by a program tool from MassLynx to extract the precursor
ion and fragment ion data and generate *.pkl files. These files then contain m/z values of
precursor ions and their intensities and a peak list of fragment ion m/z values and intensities.
The LipidInspector program [13] processes dta files, which are peak list files for the SEQUEST
[14] program and are generated by software tools from the instrument vendor. The Lipid
Profiler program [11] can interface directly with Analyst software to process mass spectral
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data. Most other programs, such as FAAT [10], transfer the raw mass spectral data to a peak
list file in txt format for further analysis.

Almost every vendor of mass spectrometers has a proprietary data format, and it is impractical
for software tools to support all such formats. In addition, processing extracted plain txt files
(such as dta, pkl, or mgf) severely limits the ability of a program to process data further because
such files fail to capture all of the originally acquired information, especially that required for
quantitation. In an effort to construct a program for lipid analysis capable of quantitation that
could process data from a variety of instruments from different vendors, Haimi and Somerharju
[12] adopted a self-describing, machine-independent data format designated NetCDF. The
mzXML [15] is a open data format for storage and exchange of mass spectrometric data for
proteomics research that employs the more popular XML format, and it would be desirable to
have an analogous open data format for lipidomics data that can be coupled with or include
tools to convert vendor-specific format files for further processing.

4. Data Processing
The general data processing procedure is illustrated as Figure 1, and it includes baseline or
noise reduction, smoothing, signal-to-noise ratio calculation, peak extraction, and deisotoping
and deconvolution. The increasingly powerful computerized data systems of modern mass
spectrometers permit extremely rapid sampling frequencies and scanning speeds, and recorded
spectra contain thousands of data points. This allows weak signals to be detected when special
data processing algorithms are used that avoid both overlooking and overprocessing peaks of
low intensity. For example, inappropriate specification of symmetric windows and sub-
intervals [16] can result in assignment of a Signal/Noise ratio for a peak of weak intensity that
falls below the formal detection limits specified by the program. In the example in Figure 2,
with a symmetric window of 100 Th, the calculated S/N value for the low intensity peak at m/
z 762 is 5.15 if the spectrum is divided into sub-intervals of 5 Th. In contrast, if the selected
sub-interval is 20 Th, the calculated S/N value is 2.81, which would fall below a specified
threshold value of 3.0. Moreover, selection of an inappropriate smoothing width causes a
reduction in peak amplitude and an increase in bandwidth, especially for spectra acquired at
low sampling frequencies (Figure 3).

The first step in data processing is baseline or noise reduction. The programs SECD [12] and
LipidQA [9] employ similar strategies to achieve noise reduction without obscuring weak
signals. In general, these programs divide the spectrum into small segments, and the baseline
noise level is estimated and minimized within individual segments.

Data smoothing algorithms must be employed carefully when it is desirable to identify weak
signals and to quantitate the compounds that they represent. Using wide fields results in greater
smoothing, but this is achieved at the potential cost of signal distortion by the smoothing
operation. The optimal smoothing width depends upon peak shape and width and on the
digitization interval. A critical parameter in avoiding spectrum distortion (Figure 3) for weak
signals that contain few data points is the smoothing ratio, which is the ratio between the
smoothing width and the number of points in the half-width of the peak. A smoothing ratio of
less than 0.2 should be employed in order to avoid distortion of peak height and width [17]. In
practice, if the same signal processing operations are applied to samples and to standards, the
peak height reduction of the standard signals should be the same as that for the sample signals,
and any distortions should cancel each other. If a greater smoothing ratio is required to improve
efficiency for some applications, a combination of both internal and external standard
correction methods can be employed, as in LipidQA [9]. This approach permits greater
accuracy in the detection and quantitation of weak signals.
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Deisotoping is another required step in data processing that accounts for [13C] isotope effects
and resolves overlapping isotopic peaks of lipid molecular species with ions of similar m/z
values. A subtraction algorithm [18] is the most frequently employed deisotoping method in
current approaches to analyzing lipidomics data[9,19,20], although other approaches have also
been examined. Haimi and Somerharju compared three different deisotoping approaches that
included algorithms for subtraction, linear fitting, and Gaussian peak model fitting,
respectively [21]. Han and Gross reported a two-step method to correct for isotope effects
[22]. In this approach, Factor Z1 is used to correct for the [13C] effect arising from different
numbers of carbon atoms in the target analyte and the internal standard, and Factor Z2 is used
to correct for peak overlap between the second isotopic of one lipid molecular species with the
monoisotopic peak from a second species represented by an ion with an m/z value 2 Th greater
than that of the first species. This is a common circumstance in analyses of lipid mixtures,
which often contain molecules that differ from each other by the presence or absence of a single
double bond. Another algorithm developed by Ejsing and Shevchenko [11] for isotope
correction involves summing the isotopic peak intensities of the monoisotopic ion with that of
the first and second isotopomer obtained by precursor scanning.

5. Algorithms for Lipid Identification
5.a. Lipid Identification with Accurate Mass

FT-ICR and orbiTRAP mass spectrometers achieve measurement of m/z values with high
resolution and mass accuracy, and this facilitates exclusion of some elemental compositions
as candidates for species represented by an ion of a given observed m/z value. This has been
exploited by Leavell and Leary in their program Fatty Acid Analysis Tool (FAAT) [10], which
can process data from FT-ICR-MS analyses of lipids. Acquired data is subjected to scaling and
reduction operations, and ions of given m/z values can be assigned to specific lipid molecular
species by comparison with a user-defined library based on exact mass measurements. The
high resolution and mass accuracy of FT-ICR-MS measurements also enables FAAT to process
data from studies of the metabolism of stable isotope labeled precursors, and this is not possible
for low resolution mass analyzers, such as quadrupoles, because of spectral overlap of
nominally isobaric species of different elemental compositions. Other approaches permit
assignment of the identities of lipid molecular species from m/z values measured on low
resolution mass spectrometers when coupled with an HPLC separation step before mass
analysis and a user-defined table that employs both retention time and m/z value for
identification[12,19,23].

5.b. Lipid Identification with Neutral Loss or Product ion Scanning
Tandem quadrupole mass spectrometric scanning modes have also been employed to facilitate
identification of multiple lipid species in complex mixtures. In neutral loss scanning, ions in
the second mass analyzer are detected that differ in m/z value from that of their precursor ions
by some specified, fixed value. In precursor ion scanning, parent ions from the first mass
analysis step are identified that produce a fragment ion of a specified, fixed m/z value in the
second mass analyzer. Such scans can be performed with great sensitivity and specificity on
tandem quadrupole instruments, in part, because the method of data acquisition is altered in a
way that maximizes signal and reduces noise. Approximations of such scans can be achieved
by computational methods with data from other types of tandem mass spectrometers.

The approach of “shotgun lipidomics” developed by Han and Gross involves two dimensional
mass spectrometric fingerprinting [1] in which lipid mixtures are analyzed by multiple neutral
loss and precursor ion scans on a triple quadrupole mass spectrometer. Shevchenko and
colleagues developed a multiple precursor ion scanning technique (MPIS) [24] for lipid
identification from data acquired with an Applied Biosystems Inc. (ABI) hybrid quadrupole
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time-of-flight (Q-tof) mass spectrometer, which can acquire multiple precursor ion spectra
virtually simultaneously. In this approach, scans are performed in the first quadrupole with
unit mass resolution, a 30 ms dwell time, and m/z scanning steps of 0.2 Th. At each step, a
time-of-flight scan is then performed with dynamic collision energy of 45 eV to 60 eV. This
approach is employed in the program Lipid Profiler [11], which processes virtually
simultaneously 41 precursor negative ion spectra for a set of m/z values that include those of
carboxylate anions of fatty acid substituents commonly encountered in complex lipids as well
as ions that are lipid head-group-specific or other class-specific fragment ions. About 200
molecular species in a biological lipid mixture can be recognized Lipid Profiler [11].

Precursor ion scanning in negative ion mode fails to identify lipid classes that produce weak
or absent class-specific ions upon CAD of the parent ion. Such classes include
phosphatidylserine (PS), triacylglycerol (TAG), and sphingomyelin. The program Lipid
Inspector [13] was developed by Shevchenko and colleagues to address this problem. In this
approach, MS/MS data are acquired in a data-dependent manner and then exported as dta files.
Lipid Inspector identifies product ions that differ in m/z value by a specified, fixed value from
that of the precursor ion, thus approximating a neutral loss scan. Like Lipid Profiler, Lipid
Inspector also identifies parent ions that yield fragment ions of specified m/z values, thus
approximating a precursor ion scan. The resultant neutral loss and precursor ion scanning data
are then processed to identify a wide range of lipid molecular species.

5.c. Lipid Identification with MS/MS Spectral Database Searching
Searching amino acid sequence databases is used to identify peptides and the proteins from
which they are derived in proteomics studies. These observed tandem mass spectra are
compared to a set of theoretical fragment ion spectra from all possible protein sequences. This
is feasible for identification of peptides and proteins, which contain various arrangements and
combinations of 20 amino acids. The problem is much more difficult for lipids because of the
great structural diversity of their component substituents. Studies of the ion chemistry of the
fragmentation upon CAD(collisionally activated dissociation) of lipid molecular species [8,
25–36] have resulted in the generation of a set of fragmentation rules that predict a theoretical
product ion spectrum for a wide range of structurally diverse lipid molecular species. Figure
4 contains the tandem spectra of the isomeric GPC lipid molecular species 16:0/18:1-GPC and
18:1/16:0-GPC as Li+ adducts. Table 1 contains a list of the fragment ions used to identify the
head group and fatty acid substituents. As indicated in the table, the relative intensities of ions
arising from losses of the fatty acid substituents reflects their position on the glycerol backbone.

Such a fragment ion database has been constructed from calculated and acquired reference
tandem spectra of glycerophospholipids of all major head-group classes and incorporated into
the LipidQA program [9] for identification and quantitation of lipid molecular species from
raw mass spectrometric data. In this program, an acquired tandem mass spectrum is compared
to the set of theoretical fragment ion spectra in the database to identify the lipid molecular
species represented by the parent ion from which the tandem spectrum was obtained [9]. Each
acquired tandem spectrum is iteratively compared to the fragment ion database to generate a
set of candidate lipid molecular species that might correspond to the species represented by
the parent ion. This set includes only those molecular species represented by an ion with an
m/z value identical to that of the observed parent ion in question in the acquired spectrum. In
this usage, “identical” means that the m/z values of the observed and candidate ions differ by
no more than a specified value that is affected by the resolving power and mass accuracy of
the instrument on which the data were acquired. Theoretical tandem spectra for this set of
candidate compounds are then compared to the acquired spectrum to determine the best match.

A score is calculated on the basis of this comparison that reflects how well each theoretical
spectrum matches the acquired spectrum. The scoring method used in the LipidQA program
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involves determination of the number of fragment ions in the acquired spectrum that match
ions in the theoretical spectrum. The ratio of that value and the total number of spectral lines
in the theoretical tandem spectrum is then calculated. More recently, a probability-based
scoring method has been developed in which the score is assigned the he −10log(P), where P
is the statistical probability that the best match of the acquired and candidate spectra results

from a random event. P is calculated as  where N represents the
number of spectral lines. Fragment ion database searching (FIDS) considers all fragment ions
in the tandem spectrum, and therefore is in principle capable of more accurately identifying a
wider range of lipid molecular structures than are scanning-based methods that involve
comparisons only of selected ions. FIDS can be performed with a variety of different types of
mass spectrometers and does not require m/z value data acquired on an instrument with high
resolution and mass accuracy, although high mass accuracy does facilitate data processing by
reducing the number of candidate matches. FIDS can be applied to MS data acquired by
intrasource separation or from on-line HPLC/MS approaches.

6. Interference
Isobaric interference is a common problem in lipid analysis even when sample pretreatment
or separation steps are performed before mass analysis. In addition, fatty acids, especially
polyunsaturates, can yield fragment ions upon CAD that can be confused with other fatty acid
substituents that are not contained in the molecular species being analyzed. These factors
complicate identification of lipid species by neutral loss or precursor ion scanning methods
that consider only selected features of the tandem mass spectrum [11]. The FIDS algorithm of
the LipidQA program [9] achieves more reliable identification and is in principle capable of
identifying a wider range of structurally distinct lipid molecular species because it considers
data from the entire tandem mass spectrum.

An example that illustrates this point is provided by our experience in examining the tandem
spectrum produced from CAD of a parent ion of m/z 865 in negative ion mode from ESI/MS
analysis of a mouse peritoneal leukocyte lipid extract. Based on the acquired tandem spectrum
(Figure 5), LipidQA identified the parent ions as [M-H]− of 22:6/22:6-GPG with an ID score
of 0.77. The tandem spectrum, however, contains an intense ion at m/z 283, which is isobaric
with stearate (18:0) anion. A precursor of m/z 283 scanning-based identification algorithm thus
might confuse 22:6/22:6-GPG with the isobaric species 18:0/18:0-GPI. LipidQA assigned a
low ID score of 0.12 for the comparison of the acquired spectrum with the database spectrum
of 18:0/18:0-GPI because of the absence from the acquired spectrum of several prominent ions
in the database spectrum of 18:0/18:0-GPI.

7. Quantitation
Once the lipid molecular species in a sample have been identified, it is often desirable to
determine their quantities. Such quantitative data permits comparisons of differences in
amounts of a given molecular species in treated and control samples after an experimental
biological perturbation, for example, or between normal and diseased tissue or biological
fluids. Approaches to obtaining quantitative MS data include metabolic stable isotope labeling
[10] or addition of stable isotope labeled internal standards [37], inter alia. Sufficient resolution
is required to discriminate among potentially overlapping peaks representing isobaric but
distinct substances in complex biological mixtures.

Accurate quantitation with low resolution mass spectrometers, such as quadrupoles, has been
demonstrated for multiple lipid molecular species in biological extracts in studies involving
addition of one or two internal standards, especially after correction for [13C] isotope effects
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and for variations in ionization efficiency that arise from differences in the number of carbon
atoms and double bonds among distinct molecular species in a mixture [22]. The LipidQA
program employs a single internal standard for each lipid class in the mixture. This permits
normalization of the signal from different molecular species within each lipid class. Multiple
standard curves are used to correct for differences in the number of carbon atoms between the
target analyte and the internal standard and to correct for effects on signal intensity that arise
from differences in degree of unsaturation. The set of calibration samples for each lipid class
includes standard compounds that represent the species most often observed in biological
extracts. The standard curve is determined by ESI/MS analyses of a series of samples prepared
with a constant amount of internal standard and varied amounts of the target analyte. The signal
intensity of each standard lipid species is normalized to that of the internal standard, and the
normalized signals are used to generate a regression line versus the concentration of each
standard. In the analysis of biological samples, the same amount internal standard used to
prepare the calibration curves is added, and the signal for each identified lipid molecular species
is normalized to that of the internal standard. The normalized value is then compared to the
regression line of the calibration curve to determine the amount of that species contained in
the sample. Figure 6 illustrates the general diagram of calibration method [9].

The Lipid Array program [38] employs a novel method for semi-quantitation without internal
standards that is based on two central concepts. First, data normalization and Shewhart control
charts are used to determine whether or the difference between two samples is random. To
compensate for variations in peak intensities that arise from sample preparation steps and
ionization efficiency, a unitless measure of the overall pattern of the observed spectrum is
generated to compare changes in amounts of lipid molecular species at the cellular level. Two
methods have been tested for data normalization. The first normalizes peak intensity to the
mean and standard deviation of intensities observed at all m/z values in the spectrum using the
equation I* = (I-mean)/SD. The second normalization method compares the rank of the signal
intensity of a given peak to that of all other peaks in the data set. A Shewhart control chart is
then constructed for every peak with the normalized intensity signal means, and control limits
are established if the baseline signal is stable over time.

Within these limits, the program then examines the means of the normalized data from the
stimulated condition for non-random variation. It is then determined whether there are
statistically significant differences between the experimental and control conditions for each
[(time point) vs. (peak m/z value)] pair. The results are then grouped and displayed as a
comprehensive array with the m/z values on the vertical axis and time points on the horizontal
axis. If the [(time point) vs. (peak m/z value)] regression is found to be increasing, a positive
score is assigned, and if it is decreasing, a negative score is assigned. If there is no statistically
significant change, a score of zero is assigned. An underlying assumption in the Lipid Array
analysis approach is that the total amount of lipid and the majority of molecular species are
not different in the experimental and control samples.

8. Validation of Identification and Quantitation
Recently developed techniques for acquiring lipidomics data and bioinformatics tools to
process them permit presumptive identification and quantitation of a huge number of lipid
molecular species from many samples within a brief interval. There are relatively few formal
demonstrations that these methods correctly identify the lipid molecular species actually
contained in the analyzed mixture and accurately determine their quantities. A probability-
based scoring method has recently been incorporated into the LipidQA [9] program that is
aimed at statistical validation of lipid molecular species identification. With respect to
quantification, the enhanced Lipid Array analysis [39] program introduces the concept of a
significance score, which is the number of experiments that are statistically distinguishable
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from the basal or control condition (established from 10 replicate trials) at a given time point.
In this approach, a significance score greater than 4 or less than −4 is considered to represent
statistically a significant difference between the control and experimental conditions.

9. Interpreting Results from Lipidomics Data-Processing Algorithms and
Transferring Biological Information

Once lipidomics data processing is complete, the results must be interpreted to determine what
information they provide about the issues or questions under examination in the study from
which the analyzed samples were derived, and such interpretation is often facilitated by easily
comprehensible data displays. Lipidomics software tools should provide a complete display
of identified lipids and their quantities for an entire experiment or study. Significant
information may reside in the list of identified lipid molecular species or their abundances or
in comparisons of lipidomics data with genomics or proteomics information. Results from data-
processing algorithms can be integrated into recognized signaling pathways by searching the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [40] pathway maps database, which
includes a section that represents current information on lipid metabolic molecular interactions
and reaction networks. The KEGG Brite (http://www.genome.ad.jp/kegg/brite.html) is a
collection of hierarchical classifications that represent current information on various aspects
of biological systems. Additional information is also provided, including genomic and
molecular data for inferring higher order function analyses of lipid functions. SphinGOMAP
is a category-specific lipid database that contains pathway maps for about 400 distinct
sphingolipid and glycosphingolipid species [41]. LIPID MAPS Biopathways Workbench is a
graphic tool that permits display, editing, and analyses of lipid pathways [42].

10. Internet Resources for Lipid Analyses
Lipid library (http://www.lipidlibrary.co.uk/) is a website that provides an extensive collection
of information about lipids, including definitions of terms encountered in studies of lipids as
well as descriptions of the structures, composition, occurrence, biochemistry, and functions of
lipids. The site also provides practical and theoretical descriptions of a variety of experimental
techniques for lipid analysis.

LipidMaps (http://www.lipidmaps.org/) provides a comprehensive lipid classification and
nomenclature system, a database of lipid structures, and software tools to illustrate lipid
pathways and analyses.

LipidBank (http://www.lipidbank.jp/) contains descriptions of more than 7000 lipid species,
and experimental data, including mass spectra, are provided for some of them.

CyberLipid (http://www.cyberlipid.org/) contains descriptions of a large variety of lipid classes
and includes references and protocols for experimental analyses of lipids.

11. Challenges and Perspectives
Lipidomics is constrained by bioinformatics bottlenecks that are also encountered in genomics
and proteomics. Recently developed mass spectrometric methods for lipid analysis provide
sufficient information to identify and measure an enormous number of distinct lipid molecular
species and can generate huge amounts of experimental data within a brief interval. Processing
such data so that comprehensible information is derived from them requires bioinformatics
tools, and algorithms developed for proteomics and genomics have provided some strategies
that can be directly adapted to lipidomics. The structural diversity and complexity of lipids,
however, also requires the development and application of new algorithms and software tools
that are specifically directed at processing data from lipid analyses. A variety of such software
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tools to process lipidomics data are reviewed here, although additional tools may exist or be
under development.

Aspects of lipidomics software development that deserve further attention include:

1. Open XML-based data formats need to be established that are widely accepted within
the lipidomics research community for conversion of data in various formats acquired
on mass spectrometers of different types from different vendors. Tools for transferring
such data also need to be developed.

2. Methods for automated validation of algorithms and software tools for lipid
identification and quantification require further development.

3. Additional tools that facilitate comprehension and interpretation of the large amount
of information contained even in processed lipidomics data are needed, as are
additional tools to relate lipidomics information into biological functional and
interaction networks.
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Figure 1.
General procedure for data processing
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Figure 2.
MS spectrum of 18:2/20:4 GPE and 18:0/20:4 GPE. With a symmetric window of 100 Th, the
calculated S/N value for the low intensity peak at m/z 762 is 5.15 if the spectrum is divided
into sub-intervals of 5 Th. In contrast, if the selected sub-interval is 20 Th, the calculated S/N
value is 2.81, which would fall below a specified threshold value of 3.0.
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Figure 3.
Selection of an inappropriate smoothing width causes a reduction in peak amplitude and an
increase in bandwidth.

Song et al. Page 13

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2010 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
MS/MS spectra of 16:0/18:1-GPC-Li+ (a) and 18:1/16:0-GPC-Li+ (b) obtained with a Finnigan
TSQ-7000 tandem quadrupole instrument via product ion scan mode [9].
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Figure 5.
MS/MS spectrum obtained from CAD of the ion of m/z 865.33 in a lipid extract from mouse
peritoneal leukocytes. (a) Complete spectrum. (b) Expanded spectrum from m/z 80 to 260.
Data were acquired with a Micromass Q-TOF Micro mass spectrometer in negative ion mode
[9].
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Figure 6.
Calibration method used in the LipidQA program involves a combination of corrections from
both internal and external standards.
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