- Fe2+ Ox + z e <=> Red balance stabilization => electrochemical potential equality of ion i in both phases: Mi (i) = Mi (s) + Mi (i) = chemical work electrical work Chemical potential: //,- = juf +RTlnUi Aft = Aft + zFA(p = 0 Aßi =lzl F A(p in balance A

cell potential EMN , made from 2 hemi-cells: standard hydrogen electrode SHE E° = 0 V measured electrode E = b + A(p b = constant EMN = E - 0 = E _ ,o RT_ redox J~Jredox j-p iri uOi R T Nernst: 1. E„, = £„°, +----In a, E . = E . H------lna Ag/Ag+ Ag/Ag+ p Ag iE =E° +—ln-^ Zá • redox redox 1-^ ZF ared F = F° H-------In—— Fe2+/Fe3+ Fe2+/Fei+ rp That was a balance ť aFe RT . a^ 2+ From within entered potential on electrode: ^ charge goes through an interface impossible of charging => impolai izedable interface (impolarizedable electrode, Ag / Ag+) ^ charge doesn't go through an interface possible of charging=> polarizedable interface (polarizedable electrode, Pt, graphite, Hg, without Hgz+ in solution) - - :*a ■^ "i '• i íSíiSSKf-VSr ■:í.v. ".■■ . v. :..-.*? _ ■'S TL surface tension y 2r í h fc;t «S&'W '..■\_.-._M. " '■•:-:?rví:*- Sri A Y VFg ■^ " '':-■.■■■;: a) capillary elevation F =F Y g 2 n r y cos© = n r 2h p g y = rhpg 2 cos0 b) stalagmometr (also DME) m g = 27rry y = mg 2n r y :y0 =m:m o - - :*a ■^ "i '• i íSíiSSKf-VSr ■:í.v. ".■■ . v. :..-.*? _ ■'S TL Temkin isotherm r=RT 2g ln(p.a.) g .... parameter treating the interaction energy between the adsorbed species Frumkin isotherm Pi a{ = ! exp & ' r -r oo RT Esin-Markov effect The degree of specific adsorption should vary with electrolyte concentration, just as there should be a change in the point of zero charge YE-M ~ RT V Bin« y 'M £-■■■> - :*a ■■■sp electrostatic "-■•.■$$J8lfa>i.-;^....... models electrode double layer structure on ■■: ".--i.".- , v.»■.: v i"" ■'.- ■ ■: ». TV^ líJíSS ft ELECTRODE DOUBLE LAYER STRUCTURE ON INTERFACE ELECTRODE - ELECTROLYTE diffuse layer Electrode (metal) C d H Gouy-Chapman Model (1910-1913) s". ■:í.V-. ".■'. v.:.;.-i"^ Gouy-Chapman Model (1910-1913) distribution of species with distance from electrode (xDL = distance characteristic of the diffuse layer) 0 ni =nt exp °zie exp -z.e^A V kBT J d2q>Jx)_-p(x) dx Poisson's equation £r£0 £-■■■> - :*a ■^ "i '• i íSíiSSKf-VSr ■:í.v. ".■■ . v. :..-.*? _ ■'S TL Poisson-Bolztmann equation dx2 £r£0 i Yjn°iziexp r w ,. í-V-„. ■:í.v. ".■■ . v. :..-.*? _ ft ELECTRODE DOUBLE LAYER STRUCTURE ON INTERFACE ELECTRODE - ELECTROLYTE Electrode (metal) C, OHP Stern Model (1924) Ry-.* h".- ."■ ■■■■.■ ' Stern Model (1924) 1 C, c 1 1 - + d H C GC X H Wo + 1 [2£ľ£0z2e2nj /kBT) cosh(zeyA0/2kBT) close to Ez, CH » CGC and so Cd ~ CGC far from Ez, CH « CGC and so Cd ~ CH separation plane between the two zones is called the outer Helmholtz plane (OHP) ■:;::-■■■■■■.■ V-Tí" >>.:■■■:■„.. í-^-V-./W^.V-liř Electrode (metal) ELECTRODE DOUBLE LAYER STRUCTURE ON INTERFACE ELECTRODE - ELECTROLYTE IHP - Inner Helmholtz Plane IHP OHP - Outer Helmholtz Plane & : + OHP E = E CJ(3ľ5(^)E;■_ ELECTRODE DOUBLE LAYER STRUCTURE ON INTERFACE ELECTRODE - ELECTROLYTE C/} C £P ctí U nm ■. 111111111111111 ii 1111 m 11 mü^^am^^üm^M^^üm^^j -2 -1 0 Distance Positive charges distribution profile Electrons distribution profile 1 Á Electron spill-over at the surface of a metal according to the Jellium model.