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Random walks:
Why signal-to-noise improves with YN
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Let's conduct an experiment.



We're going to assume that each step is random and independent of previous steps.
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The “Drunkard's walk”
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The teetotaler's walk
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The expected distance that “noise” travels increases with VN.
However, it is not as fast as the distance that “signal” travels.
Thus, as we collect more data, the SNR increase by N/YN = VN
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Expectation values
and how they related to resolution criteria
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We split the data set into halves and compare them.

“even” reconstruction

Images

“odd” reconstruction



File Edit Analysis
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Properties:

- Fourier terms have amplitude + phase.

- Correlation values range from -1 to +1.

- Noise should give an average of 0.

- The comparison is done as a function of spatial frequency (or “resolution”)



Review: Fourier Shell Correlation curve

Resolution, Angstroms
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FSC curve with expectation value of noise

Resolution, Angstroms
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With small N, behavior is more unpredictable

Resolution, Angstroms
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One resolution criterion was to compare the FSC to, say, 3*0.
BUT:
The o value describes the behavior of unaligned noise.
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Review: model bias

N = 1024 N = 2048 original

The model bias can yields false correlations in real space
is equivalent to false correlations in Fourier space. CEITEC



“even” reconstruction

images

OLD STRATEGY

—

merge & refine orientations
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“odd” reconstruction
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Different resolution criteria

Resolution, Angstroms
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Sampling:
Oversampling an already-sampled image
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Shifts: worst-case scenario
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Effect of shifts

CEITEC



il lbalalsle
B . B LK 1
3] dafrs) vl ] 1e
R R I d ok

1] g2 ssfaa]ss]se



Worst-case scenario after oversampling
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Oversampling: Conclusion

You can do a little better by oversampling.
Bammes... Chiu (2012) J. Struct. Biol.
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Classification
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8 classes of faces, 64x64 pixels

Wlth noise added

Average:

Before we can average the data, we first should find homogeneous subsets.



Multivariate data analysis (MDA)
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Multivariate data analysis (MDA), or
Multivariate statistical analysis (MSA)

LIl M e T ol el ol e ] o

Our 16-pixel image can be reorganized into a 16-coordinate vector.
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Linear combinations of these images will give us
approximations of the images that make up the data.

Average  Eigenimage #1 Eigenimage #2 Eigenimage #3
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Phantom images of worm hemoglobin
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Classification

N1 I3 3 ) Y R

How do we categorize/classify the images? DCEITEC



K-means classification

A number K of images are chosen as seeds.

200+~ E@

BAD: Some clusters may be overrepresented/underrepresented.




Diday's method of moving centers
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Diday's method of moving centers
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Diday's method of moving centers
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Diday's method of moving centers

DOO++ @

We will note the images that always “travel” together, and will call them a class.




Dendrogram

ClLA/dendrogram ps

1.36E+12 -
L
—
=T
O
5]
4. 70E+03 _l
CLASS & 5 4 3 1 2
INDEX 4 T0E+03 2.75E+08 1.99E+10 2.09E+11 1.35E+12
WEIGHT 1 1 77 M2 538 215

CEITEC



OPTIONS COMMAND S EDIT INFO SYSTEHM

docdendro.dat
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Hierarchical ascendant classification
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All images are represented.
The dendrogram will be too heavily branched to interpret without truncation.




001,n=076

002,n=040 003,n=036

004,n=022 005,n=018 006,n=017 007,n=019

58 0000

008,n=018 009,n=004 010,n=011 011,n=007 012,n=008 013,n=009 014,n=012 015,n=007

]
d

BAD: Information about the height of the branch is lost.



Outline

4

3D Reconstruction

* Principles
4

4

L 4

CEITEC



How do you go from 2D to 3D?
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What information do we need for 3D reconstruction?

1. different orientations

2. known orientations
3. many particles

CEITEC



What happens when we're missing views?

sparse
sampling
-+
sparse missing
views

Baumeister et al. (1999), Trends in Cell Biol., 9: 81-5.

Your sample isn't guaranteed to adopt different orientations,

In which case you many need to explicitly tilt the microscope stage.

(more later...) Y m——



What information do we need for 3D reconstruction?

1. different orientations
2. known orientations
3. many particles

| have all of this information.
Now what?

D CEITEC



There are two general categories of 3D reconstruction

1. Real space
2. Fourier space

CEITEC



We are going to reconstruct a 2D object from 1D projections.
The principle is the similar to, but simpler than, reconstructing
a 3D object from 2D projections.
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Reconstruction is the inversion of projection
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Reconstruction is the inversion of projection
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Reconstruction is the inversion of projection
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Reconstruction is the inversion of projection
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Reconstruction is the inversion of projection
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The reconstruction doesn't agree well with the projections.
What can we do?

(one) ANSWER:
Simultaneous lterative Reconstruction Technique

D CEITEC



Simultaneous Iterative Reconstruction Technique

The idea:

* You compute re-projections of your model.

*+ Compare the re-projections to your experimental data.
@  There will be differences.
* You weight the differences by a fudge factor, A.

* You adjust the model by the difference weighted by A.

* Repeat.

A CEITEC



Simultaneous Iterative Reconstruction Technique
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Simultaneous Iterative Reconstruction Technique

Experimental projection Model

Here, the differences (which will be down-weighted by A)
are the ripples in the background.

If we didn't down-weight by A, we would overcompensate,
and would amplify noise.



Reconstruction in Fourier space
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A central section through the
3D Fourier transform is
the Fourier transform of the
projection in that direction.




The disadvantage is that you have
To resample your central sections
from polar coordinates to
Cartesian space, i.e. interpolate.
There are new methods to better
Interpolate in Fourier space.



Converting from polar to Cartesian coordinates

SOLUTION:
A simple weighting scheme is to divide the weight by the radius:

r* weighting, or “r-weighted backprojection”




If you know the orientation angles for each image,
you can compute a back-projection.

Adapted from Pawel Penczek



How do we determine the last two Euler angles?
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Two translational:
L AX
v Ay

Three orientational
(Euler angles):

‘ @ about z axis)
‘(theta)about y)

“Cpsi Jabout new z)

These are determined in 3D.

http://www.wadsworth.org



If you know the orientation angles for each image,
you can compute a back-projection.

Adapted from Pawel Penczek
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Tomography

O

From Ken Downing

We have:
known orientations

different views

BUT...

S CEITEC



t happ:

Baker et al. (1999) Microbiol. Mol. Biol. Rev. 63: 862

We are destroying the sample as we image it. PCEITEC



Consequences of repeated exposure

*  Accumulated beam damage

* |f number of views is limited,
then distortions

Solution:

Ifjwe have many|identical jnolecules,
and if we can determine the orientations,
We can use one exposure per molecule
and use these images in the reconstruction.

S e o “Single-particle reconstruction”

From Ken Downing 3 e TE



If we have many identical molecules,
and if we can determine the orientations,
we can use one exposure per molecule
and use these images in the reconstruction.

BUT:

Unlike in the tomographic case,

we don't know how the orientations
between the different images are related.
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3D Reconstruction

* Reference-based alignment

A CEITEC



You will record the direction of projection (the Euler angles), such that
if you encounter an experimental image that resembles a reference projection,
you will assign that reference projection's Euler angles to the experimental image.

Step 1: Generation of projections of the reference.

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.

Assumption: reference is similar enough to the sample that it can be used to determine orientation.



The model

(The extra features helped determine handedness in noisy reconstructions.)
CIDCEITEC



phi=000 phi=000 phi=000 phi=000 phi=000

theta=000 theta=000 theta=000 theta=000 theta=000

pzi=000 pei=000 pei=000 pei=000 pei=000

phi=000 phi=000 phi=000 phi=000 phi=000

theta=000 theta=000 Ehet a=000 thet a=000 thet a=000

psi=000 pei=000 psi=000 psi=000 pei=000




phi=000 phi=036 phi=000 phi=048 phi=072

theta=000 tEheta=030 thet a=045 thet a=045 thet a=045

psi=000 pli=000 pei=000 pli=000 psi=000

phi=192 phi=216 phi=016 phi=115 phi=131

thet a=045 thet a=045 theta=075 theta=075 theta=090

psi=000 p2i=000 psi=000 p2i=000 psi=000



Stack of rotational
Stack of projections CCF's
Experimental

projection l
max

3 Eulerian
B\ = ol
- - CCF angles

coeff's
From Penczek et al. (1994), Ultramicroscopy 53: 251-70.

@

NN
szzz;wzrz
><

OB S

Steps:
1. Compare the experimental image to all of the reference projections.
2. Find the reference projection with which the experimental image matches best.

3. Assign the Euler angles of that reference projection to the experimental image.
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* Common lines
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Common lines
(or Angular Reconstitution)

Summary:

A central section through the 3D
Fourier transform is the Fourier
transform of the projection in
that direction

Two central sections will
intersect along a line through
the origin of the 3D Fourier
transform

With two central sections, there
is still one degree of freedom to
relate the orientations, but a
third projection (i.e., central
SeCtion) W||| le the re|ative Frank, J. (2006) 3D Electron Microscopy of Macromolecular Assemblies
orientations of all three.

T CEITEC



Common lines
(or Angular Reconstitution)

Summary: ._
. A® Fee: .
A central section through the 3D gE T
Fourier transform is the Fourier A &
transform of the projection in tacs S
that direction oY
Two central sections will |
intersect along a line through " &
the origin of the 3D Fourier
transform

With two central sections, there
is still one degree of freedom to
relate the orientations, but a
third projection (i.e., central
section) will fix the relative
orientations of all three. From Steve Fuller

T CEITEC



Common lines: Problems

> Noise can lead to incorrect angles
@ Symmetry helps

* Handedness cannot be determined without
additional information

@ Tilting

- a-helices

» Assumes conformational homogeneity

T CEITEC
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Random-conical {ilt:
Determination of Euler angles

This scenario describes a
worst case, when there is
exactly one orientation in
the 0° image. Since the
In-plane angle varies, In
the tilted image, we have
different views available.

¥ TN 15 Ti

From Nicolas Boisset



Two images are taken: one at 0° and one tilted at an angle
of 45°.

1 2 3 4 5 6 7 8

-
..l

LAAALIA LA 4
IR

Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank,
J. Three-dimensional reconstruction from a single-
exposure, random conical tilt series applied to the 50S
ribosomal subunit of Escherichia coli. | Microsc 146, 113-
36 (1987).

From Nicolas Boisset

45°




phi=000 phi=000 phi=000

thet a=000 theta=000 theta=000

phi=000 phi=000 phi=000

theta=000 theta=000 theta=000

pei=000 pei=000 pei=000




phi=000 phi=048 phi=072

theta=001 theta=001 theta=001

phi=192 phi=216 phi=240

theta=001 theta=001 theta=001

pei=000 pei=000 pei=000




phi=000 phi=048 phi=072

thet a=045 thet a=045 thet a=045

phi=192 phi=216 phi=240

thet a=045 thet a=045 thet a=045

pei=000 pei=000 pei=000




One problem though:

We can't tilt the stage all the way to 90 degrees.

Y CEITEC
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Random-conical tilt:
The “missing cone”

Representation of the distribution of views, if we
display a plane perpendicular to each projection
direction

The missing information, in the shape of a cone,
elongates features in the direction of the cone's axis. §

From Nicolas Boisset



Random-conical tilt:
Filling the missing cone

If there are multiple preferred orientations, or if there is symmetry
that fills the missing cone, you can cover all orientations.

Reconstruction\ &

R

Distribution ¢

\

of orientations ¢ =007

From Nicolas Boisset
HCEITEC
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Phantom images of worm hemoglobin




|F the classes simply correspond to different orientations,
you can combine them, and boost the signal-to-noise.



Dizsplay Select

sthkgoodavgE@Z stkgoodavgd@s

sthgoodavelEd

sthkgoodavel@7

If the classes correspond to different conformations,
then you have to keep them as separate reconstructions.
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3D Reconstruction

+ CTF-correction
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More properties of Fourier transforms:
Convolutions

DICEITEC



Why might two images in a data set look different?

» different sample > better biochemistry
> different magnification @* Dbetter microscopy
» different illumination  * normalization

» (different orientations * determine angles

» different defocus * CTF correction

» different » (Classification
conformations

CEITEC



Convolution of a molecule with a lattice

generates a crystal.
Notation: f(x)*g(x)

Adapted from David DeRosier

o o o o o \\\\\
o o o o o \\\\\
o o . o o o \\\\\

lattice point.

X

Molecule g(x) I CEITEC




Convolution in real life

Notation: f(x)sg(x)

lattice: f(x) http://www.symbolicmessengers.com
http://www.photos-public-domain.com

Set a molecule down at every
& lattice point.

Molecule: g(x) B B
http://en.wikipedia.org (A CEITEC!



Complex conjugate:
If a Fourier coefficient F(X) has the form: a + bi
The complex conjugate F*(X) has the form: a - bi

Cross-correlation: F*(X) G(X)
Convolution: F(X) G(X)
Remember:

f(x), g(x) are real-space functions
F(X), G(X) are Fourier-space functions
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J(x)*g(x)

File Edit Analysis

F(X) G(X)




Point spread function

g(x)

An ideal point spread function would be an infinitely-sharp point.

T CEITEC




Resolution, Angstroms
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Red: Power-spectrum profile calculated from experimental image
Green: Fitted, theoretical power-spectrum profile
Blue: Phase-only correction profile

CEITEC



Defocus groups: CTF correction in 3D

File Edit Wiew Bookmarks Tools Help

[D Overview of SPID... * MD Reconstruction Flo... * MD Single Particle Re... * e

€« 2> D o~ &% | ® | http://spider.wadsworth.org/spider_doc/spider/docs/ftechs/recon/flowchart/flowchart.html ﬁ.’||v Search with Google

Reference-based Reconstruction

N Micrographs

TTTI17

Defocus Deterrmire CTF and Defacus

= Assign micrographs to defocus groups

‘ Farticle Selection ‘
Reference
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l Aligned
0
l
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l l L l set of projections)
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Separate reconstruction
9 99 0 for each defocus group
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CTF-correction of micrographs in 2D

[ overview of SPID... *

% | [J Reconstruction Flo... *

« > D o~ HK [@ |http:ﬂspider.wadsworth.orgfspider_doc!spider,fdocsftechs,freconlfDocsrﬂowchartfflowchart,html

*] [ ~ Search with Google

M Micrographs
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Why might two images in a data set look different?

> different molecule > better biochemistry
» different magnification ¢ better microscopy
» (different illumination ¢ normalization

» (different orientations * determine angles

> different defocus > CTF correction

» different » (Classification
conformations

(A CEITEC



Classification:
Reference-based classification vs.
Maximum likelihood (ML3D)

Reference-based classification: ML3D

* Possible conformations must ber Possible conformations are
known. not known.

* The combination of parameters |* The probability of the
(shift, rotation, class) is chosen | occurrence of the

from the highest correlation parameters (shift, rotation,
value. class) is maximized.
* Possible reference bias * Random, data-dependent

RELION is a variation of maximum likelihood.
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We split the data set into K classes at random.

images

There will be slight differences in the reconstructions.
We will iteratively maximize the likelihood of a
particle belonging to a particular class.
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