Člověk a ionizující záření ionizující záření •nabité i nenabité částice, které: •jsou schopné ionizovat molekuly nebo atomy, •jsou vysoce energetické, takže i přes tyto energetické ztráty pronikají několik um až desítek metrů do pevné látky. • energetické poměry mikrosvěta •jednotka energie SI 1 Joule, rozměr kg,m2,s-2 •Praktická jednotka 1 eV •1 eV je energie, kterou by získal elektron při průchodu potenciálovým rozdílem 1 V. Například při průchodu elektronu mezi elektrodami (deskami kondenzátoru) ve vakuu s napěťovým rozdílem 1 V získá elektron kinetickou energii 1 eV. 1 eV = 1.602 10-19 J •Energie kvanta zeleného světla 550 nm je 2.25 eV •Energie potřebná k vystoupení elektronu z kovu do vakua, tzv. výstupní práce je 1,9-6 eV •Ionizační energie atomu Cs 3.9 eV •Vazební energie H-O v H2 O je 4.7 eV •Průměrná energie získaná při rozštěpení 1 atomu 235U 200MeV •RTG záření (paprsky X)- fotony s energií jednotek až stovky keV jsou typickým příkladem ionizujícího záření. •Přes ultrafialové záření k viditelné oblasti spektra ionizační schopnost prudce klesá •Mikrovlnné záření (mikrovlnka, energie fotonu 10-5 eV) a radiové vlny nejsou ionizující záření. • Ionizující záření z různých hledisek •Ionizující záření z hlediska částicového složení •Interakce ionizujícího záření s látkou •Měření ionizujícího záření •Ionizující záření z hlediska zdrojů, z kterých pochází •Vliv ionizujícího záření na živé organizmy a na člověka •. • částice ionizujícího záření •energetické fotony •částice α, •elektrony, pozitrony, •protony •neutrony •jádra atomů. •další elementární částice. (Kosmické záření, záření z urychlovače) Fotony •Fotonová složka kosmické záření 70-1000 MeV •Radionuklidy čárové spektrum příklad 40K 1.45 MeV, 60Co γ 1.17 a1.33 MeV, 137Cs γ 661 keV •Lékařský rentgen 50 -100 keV •Mammograf 16 -60 KeV • • elektrony •Klidová hmotnost 9,1095 10-31kg •radionuklidy spojité spektrum, energie až 16,6 MeV pro 12N •Kosmické záření 511 keV-100 MeV •Radioterapeutické urychlovače 4-15 MeV •Radioizotop 40K, β 1.38 MeV pozitrony •11C → 11B +β+ +νe •Anihilace elektronu a pozitronu → dva fotony 511keV •E=mc2 = 2 * 9.1 10-31 * (3 108)2 •E=2*511 keV Alfa částice •Jádro hélia •Hmotnost 6.656 10-27 kg •Náboj 2e+ •Kosmické záření energie 500 MeV •Radionuklidy, čárové spektrum • Energie od 4 MeV do 9 MeV •Na vytvoření jednoho páru iontů ve vzduchu potřebuje alfa částice 32,5 eV •Alfa zářiče 226Ra, 239Pu, 241Am, 210Po 5.4 MeV Neutrony •Klidová hmotnost mn=1,67495 10-27 kg •Energie •Chladné 0.002 eV •Tepelné 0,002-0,5 eV •Rezonanční 0,5-1000 eV •Středních en. 1-500 keV •Rychlé 0,5-10 MeV •Vysokých en. 10-50 MeV •Velmi vysokých en. Nad 50 MeV • •252Cf (poločas rozpadu 2,6 r), reaktor …… •Kosmické záření Interakce IZ s látkou • _radiation Měření IZ záření •dávka D je určena jako podíl energie ΔE absorbované v určitém dostatečně malém objemu látky a hmotnosti Δ m tohoto objemu. •Jednotka Gy, J kg-1 • Principy měření IZ •Počítání jednotlivých částic •Měření celkového účinku velkého počtu částic •Měření kumulativní dávky- dosimetry Počítání částic •Geiger-Muller trubice •Geiger-Muller počítač •1908-1928 • • •Scintilační detektor Geiger Ionizační komory •měření náboje vzniklého ionizací elektrometrem. •Použití ionchamber dosimetry •filmové •termoluminiscenční •elektronické scintilační Zdroje ionizujícího záření •Kosmické •Terestrické •Antropogenní Kosmické záření •Jezujitský kněz Theodor Wulf 1910 •Viktor Hess 1912- 1913 výstup balónem až do 5 km •Robert Millikan •Carl D. Anderson objev pozitronu 1932 •Arthur.H.Compton 1930-1940 • Primární složka kosmického záření solární složka •Solární složka, protony, α částice, lehká jádra •proměnné se slunečním cyklem (11,27 let) •erupce 1013 protonů/m2 s energií > 30Me •4,8 Gy • • Primární složka kosmické záření- galaktická složka •Galaktická složka •protony, 87% • α částice,12% • jádra Z >2 1% •elektrony fotony 1% •energie 10 GeV i víc •proměnné se slunečním cyklem v důsledku stínění magnetickým polem • 2.5 – 5 104 částic/(m2 s) • • • Složení KZ v atmosféře •v závislosti na energii vznikne větší množství hadronů převážně pionů •interakce s jádry – hadronová kaskáda •pronikavá komponenta miony a neutrina •povrch země - energetické miony 75% částic do 1 GeV •Elektron pozitronové páry •n, p, α, d, 3H, (kolem 10 Mev), n různých energií •β+, β-, p, γ, (kolem 100 MeV) •max. dávkový příkon pól 20 km 15 mSv/hod Zemská magnetosféra Magnetosphere_rendition Kosmogenní radionuklidy nuklid poločas rozpadu emise energie částice keV produkce at/(cm-2 s-1) 14C 5730 r β- 156 2-2.6 3H 11.7r β - 18,6 0.12-0.3 7Be 53d γ, ε 477 0.03 10Be 2,7 106 r β- 560 0.04-0.1 Terestrické ionizující záření, zdroj radioizotopy •A, aktivita, • jednotka becquerel (Bq), s-1 •A0, počáteční aktivita •A(t), aktivita radionuklidu v čase t •λ rozpadová konstanta •T poločas rozpadu Radioizotopy •draslík K40, 1,25 109 let 8% původní aktivity •Uran U238, 4,5 109 let 50% původní aktivity •Thorium •Radon •C14 • účinky ionizujícího záření na člověka •deterministické účinky ionizujícího záření •stochastické účinky ionizujícího záření •časné •pozdní •somatické •genetické Poškození lidského organizmu ionizujícím zářením •Na buněčné úrovni vede ozáření k poškození DNA. Některá poškození reparační mechanizmy opraví. Neopravená poškození znamenají zánik buňky, nebo poškození cytogenetické infomace. (nepřesné) •Zánik buněk tkáně •Reakce tkáňové populace na pokození a úbytek buňek. Sebeobnovná funkce tkání je v plném rozsahu v dospělém zachována jen u některých tkáňových a buněčných systémů, (krvetvoba). Sebeobnovné populace • •Krvetvorba. Délka buněčného cyklu 10-20 dní •Slizniční výstelky. Př: výstelka střev s délkou buněčného cyklu 4-5 dnů •Gonády •Pokožka • • Sebeobnovné populace •Jaterní tkáň a parenchym ledvin. Buňky proliferujícího kompartmentu se nalézají v klidovém stádiu G0. V případě poškození tkáně jsou schopny za jistých okolností přejít do buněčného cyklu. Příklady akutní lokální změny •(deterministický, somatický, časný) •radiační erytém •radiační dermatitida 1stupně, do ~3 Gy •radiační dermatitida 2 stupně, do ~ 10 Gy •radiační dermatitida 3 stupně, do ~ 15 Gy •(deterministický, somatický, pozdní) •šedý zákal, jednorázové ozáření ~ Gy Akutní poškození kůže •Erytematózní dermatitis, bezpříznakové období 2-4 týdny, dávka 5-6 Gy X 200 kV/ 1 dm2 kůže předloktí. •Deskvamativní dermatitis, 10-20 Gy. Časný erytém do 2 dnů, trvání asi 24 hodin. Po období 2-4 týd. latence, puchýře, mokvání. Dlouhodobé hojení. •Nekrotická forma. Hematologická forma nemoci z ozáření •Hraniční dávka 1-2 Gy •Přechodné příznky – nechutenství zvracení průjem dehydratace. Zvracení je důsledkem přímého dráždění příslušných center v prodoužené míše nízkomolekulárními peptidy •Následuje několikadenní latence bez příznaků •Plný rozvoj nemoci za příznaků mikrobiálního rozsevu a zhroucení imunitních systémů s krvácením do sliznic a kůže. •Nejhlubší pokles neurofilních erytrocytů a krevních destiček 7-9 den po ozáření dávkou 6 Gy, kolem 20 dne při dávce 4 Gy. Z bílých krvinek jsou nejcitlivější lymfocity, při dávkách 1-2 Gy pokles na 50% za 48 hod. •Po 6-8 týdnech pozvolné zlepšování zdravotního stavu. Střevní forma akutní nemoci z ozáření. Neuropsychická forma •Od dávek 6-10 Gy •Nástup příznaků od 7-4 dne. •Nekróza buněk střevní výstelky. •Neuropsychická forma akutní nemoci z ozáření. 1958 Los Alamos dávka 45 Gy. 10 minut = ztráta orientace, koma, 6 hodin vymizení lymfocytů z periferní krve, 35 hod. srdeční selhání. Radiosenzitivta •Různý význam pojmu radiosensitivita. •radiosensitivita tkáně ve smyslu vyvolání deterministických následků • radiosensitivita tkáně ve smyslu vyvolání zhoubného bujení •Ovlivnění vnějšími faktory, O2, radoprotektivní látky: cysteamin thiomočovina… Mezidruhové rozdíly radiosenzitivity •LD50/30 dávka způsobující do 30 dnů úhyn 50% jedinců. •Morče 3Gy •Myš, krysa 5-7 Gy •Králík 8 Gy •Želva 15 Gy •Člověk relativně radiosensitivní druh Veličiny v radiační ochraně •Dávkový ekvivalent (veličina „lokální“), jednotka Sievert (Sv) •D dávka, Q(L) jakostní činitel •Osobní dávkový ekvivalent Hp(d) -dávkový ekvivalent v daném bodě pod povrchem těla (např. pro beta záření d=0,07 mm, pro ozáření oka d=3 mm, pro pronikavé záření d=10 mm) •Prostorový dávkový ekvivalent směrový dávkový ekvivalent. Dávkový ekvivalent L keV/μm Q(L) <10 1 10-100 0.32L-2.2 >100 300L-0.5 Ekvivalentní dávka v orgánu (tkáni) •Ekvivalentní dávka Sv (sievert) •DT střední dávka záření typu R ve tkáni nebo orgánu T(Gy). •wR radiační váhový faktor, vyjadřuje relativní biologickou účinnost záření vzhledem k záření fotonovému • • Hodnoty radiačního váhového faktoru Typ záření, energie Radiační váhový faktor wr fotony 1 Elektrony 1 Neutrony <10 keV 5 Neutrony 10<100 keV 10 Neutrony 100 keV-2MeV 20 Neutrony 2MeV-20MeV 10 Neutrony >20MeV 5 Protony 5 Alfa částice, těžká jádra 20 Efektivní dávka •Součet vážených středních hodnot ekvivalentních dávek v tkáních a orgánech, jednotka Sv. •HT ekvivalentní dávka •wT tkáňový faktor, vyjadřuje relativní příspěvek jednotlivého orgánu k celkové „újmě“ způsobené rovnoměrným ozářením Hodnoty tkáňových faktorů Tkáň nebo orgán Tkáňový váhový faktor gonády 0,2 mléčná žláza 0,05 kostní dřeň 0,12 plíce 0,12 štítná žláza 0,05 povrch kostí 0,01 tlusté střevo 0,12 žaludek 0,12 játra 0,05 kůže 0,01 ostatní orgány a tkáně 0,05 Přehled zdrojů ozáření člověka r 2000 ozáření UNSCEAR mSv/r ČR mSv/r Kosmické 0.4 0.3 γ Země 0.5 0.5 Radon 1.2 2 Vnitřní oz 0.3 0.3 celkem přír. 2.4 3.1 Medicínské 0.4 1 A bomby 0.005 0.005 Černobyl 0.002 0.2/0.01 A. elektr. 0.0002 0.0002 Radiační ochrana, princip limitování • • Obecné limity. Dávka za rok limit mSv Efektivní dávka 1 Ekvivalentní dávka v oční čočce 15 Ekvivalentní dávka v 1cm2 kůže 50 Limity pro radiační pracovníky. Dávka za rok Limit mSv Efektivní dávka za 5 násl. let 100 Efektivní dávka 50 Ekvivalentní dávka v oční čočce 150 Ekvivalentní dávka v 1cm2 kůže 500 Ekvivalentní dávka na končetiny 500 Conan the Bacteria •Deinococcus radiodurans •objevena 1956, Arturem W. Andersonem •odolnost •5000 Gy plná vitalita •15000 Gy 30% vitality •potenciální aplikace: dekontaminace radiačně zamořené oblasti. • Conan_the_barbarian Historie •Paprsky X. W.C. Roentgen 18.11.1895 •demonstrace RTG vyšetření EXPO Chicago 1896 •Radioaktivita. Henri Becquerel 1.3.1896 •Objev Ra, P. Curie, M. Curie Sklodowska 1898 •Objev Rn (radonová emanace) Friedrich.Erns. Dorn 1900 •R.Millikan: stanovení náboje a hmotnosti elektronu 1909 •Skladba atomu 1911-1914 Rutherford •V.F.Hess: objev kosmického záření 1913 •Rutherford: transmutace prvku N na O 1919 •Chadwick: objev neutronu 1932 •Umělá radioktivita 1934, Frédéric Joliot-Curie, Irene Curie •Štěpení prvků 1939 •Spontání štěpení 1940 •První reaktor Chicago 2.12.1942 Wilhelm Conrad Röntgen 1845-1923 •1895 Objev paprsků X při experimentování s katodovou trubicí uzavřenou ve světlotěsném obalu. V zatemělé místnosti pozoroval světélkování platnatokyanidu barnatého Wilhelm_Conrad_R Roentgen-x-ray-von-kollikers-hand Henri Becquerel 1852-1908 •Objev přirozené radioaktivity, výzkum paprsků vyzařovaných přírodními radioizotopy • • Na snímku radiogram krystalu uranové soli Henri_Becquerel Becquerel_plate Marie Curie-Sklodowska 1867-1934 Pierre Curie 1859-1906 •1898 objev Ra, Po •studium vlastností radioaktivity •Nobelovy ceny 1903, za fyziku 1911 za chemii • jednotka aktivity Cu =3.7 1010 Bq na počest P. Curie Mariecurie Pierrecurie Fermiův jaderný reaktor v Chicagu •2. prosince 1942 Car bomba •třístupňová termonukleární puma •Svržena na střelnici Nová země dne 30. října 1961 •hmotnost 27 t •50MtTNT = 2.1 1017 J • 39 ns (1% výkonu S) Comparative_nuclear_fireball_sizes Car bomba Ivan_bomb Tsarbomb •