

V(r) = interakční energ	ie mezi dvěmi částicem	i Interakce: 1. vazebné 2. nevazebné				
derivací potenciálu je s	síla $F = -\frac{dV(r)}{dr}$					
jednotky energie 1	J = 0.239 cal = 6.242×1	10 ¹⁸ eV = 2.43×10 ²⁰ kT (25°C)				
1	kT (25°C) = 0.529 kcal	mol ⁻¹ = 2.478 kJ mol ⁻¹				
1	1 kT = 4.114×10 ⁻²¹ J (25°C) = 4.045×10 ⁻²¹ J (20°C)					
1	kcal mol-1 = 4.184 kJ m	iol ⁻¹ (1 cal = 4.184 J)				
1 eV = 1.602×10 ⁻¹⁹ J = 23.06 kcal mol ⁻¹						
1	cm ⁻¹ = 1.986×10 ⁻²³ J					
Boltzmannova konsta	nta k, k _B	1.381 ×10 ⁻²³ JK ⁻¹				
Avogadrovo číslo	Na	6.022 ×10 ²³ mol ⁻¹				
Plynová konstanta	R=k×Na	8.314 JK ⁻¹ mol ⁻¹				
Náboj elektronu	е	1.602 ×10 ⁻¹⁹ C				
Rychlost světla	С	2.998 ×10 ⁸ ms ⁻¹				
Permitivita vakua	$\epsilon = 10^{-7} 4 \pi c^2$	8.854 ×10 ⁻¹² C ² J ⁻¹ m ⁻¹				

2. Nevazebné interakce

Nevazebné elektrostatické interakce seřazené podle velikosti (multipólový rozvoj = série popisující prostorové rozdělení):

- náboj náboj
 náboj dipól
 dipól dipól
 náboj indukovaný dipól
 - dipól indukovaný dipól

A - Coulombovská interakce (náboj-náboj)

Compound		ε	Compound	ε	
Hydrogen-bonding			Polymers		
Methyl-			Nylon	3.7-4.2	
formamide	HCONHCH ₃	182.4	PTFE, Fluorocarbons	2.0, 2.1-3.6	
Formamide	HCONH ₂	109.5	Polycarbonate	3.0	
Hydrogen			Polystyrene	2.4	
fluoride	HF (at 0°C)	84	Silicone oil	2.8	
Water	H ₂ O	78.5			
Water	D ₂ O	77.9	Glasses		
Formic acid	HCOOH (at 16°C)	58.5	Fused quartz SiO ₂	3.8	
Ethylene			Soda glass	7.0	
glycol	C ₂ H ₄ (OH) ₂	40.7	Borosilicate glass	4.5	
Methanol	CH ₃ OH	32.6			
Ethanol	C ₂ H ₅ OH	24.3	Crystalline solids		
n-Propanol	C ₃ H ₇ OH	20.2	Diamond (carbon)	5.7	
Ammonia	NH ₃	16.9	Crystalline guartz SiO ₂	4.5	
Acetic acid	CH3COOH	6.2	Micas	5.4-7.0	
			Sodium chloride NaCl	6.0	
Non-hydrogen-bonding	, polar		Alumina Al ₂ O ₃	8.5	
Acetone	(CH ₃) ₂ CO	20.7			
Chloroform	CHCla	4.8	Miscellaneous	»1, up to 104	In a she bi
Nonpolar			Piezoelectric materials	87.9	Jacob N.
Benzene	C ₆ H ₆	2.3	Water (liquid at 0°C)		Israelachv
Carbon			Water (ice at 0°C)	91.6-106.4	Intermolec
tetrachloride	CCI4	2.2	Paraffin (liquid)	2.2	and Surface
Cyclohexane	C ₆ H ₁₂	2.0	Paraffin wax (solid)	2.2	Forces 3rd
Dodecane	C ₁₂ H ₂₆	2.0	Liquid helium (2–3 K)	1.055	Acadomio
Hexane	C6H14	1.9	Air (dry)	1.00054	Academic

dipól v přítomnosti bodového náboje $\,Q_1\,$

$$dP = \frac{e^{-\frac{1}{4\pi\epsilon}\frac{Q_{1}p\cos\theta}{kTr^2}}\sin\theta d\theta}{\int_0^{\pi} e^{-\frac{1}{4\pi\epsilon}\frac{Q_{1}p\cos\theta}{kTr^2}}\sin\theta d\theta}$$

průměrná velikost dipólu je:

$$< p\cos\theta >= \int_0^\pi p\cos\theta dP = \frac{\int_0^\pi p\cos\theta e^{-\frac{1}{4\pi\epsilon}\frac{Q_1p\cos\theta}{kTr^2}}\sin\theta d\theta}{\int_0^\pi e^{-\frac{1}{4\pi\epsilon}\frac{Q_1p\cos\theta}{kTr^2}}\sin\theta d\theta}$$

pokud interakční energie je menší než teplená energie a dipól tedy může v rámci tepelného pohybu rotovat (<> značí střední hodnotu přes soubor - dostupné konfigurace)

Příklad

Spočítejte střední hodnotu rotujícího dipólu v přítomnosti jiného náboje. K výpočtu integrálu aproximujte exponencielu Taylorovým rozvojem $e^x\approx 1+x$

$$< p\cos\theta >= \int_0^\pi p\cos\theta dP = \frac{\int_0^\pi p\cos\theta e^{-\frac{1}{4\pi\epsilon}\frac{Q_1p\cos\theta}{k_Tr^2}}\sin\theta d\theta}{\int_0^\pi e^{-\frac{1}{4\pi\epsilon}\frac{Q_1p\cos\theta}{k_Tr^2}}\sin\theta d\theta}$$

integrály, které se mohou hodit

$$\int_0^{\pi} \sin\theta \cos\theta d\theta = 0 \qquad \int_0^{\pi} \sin\theta \cos^2\theta d\theta = \frac{2}{3} \qquad \int_0^{\pi} \sin^3\theta d\theta = \frac{4}{3}$$

13

Třešením je Langevinova funkce *L*, kde Taylorovým rozvojem
$$L(x) = \coth(x) - \frac{1}{x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} - \frac{1}{x} = \frac{1}{3}x - \frac{1}{45}x^3 \dots$$
$$< p\cos\theta >= \int_0^{\pi} p\cos\theta dP = \frac{\int_0^{\pi} p\cos\theta e^{-\frac{1}{4\pi\epsilon}\frac{Q_1p\cos\theta}{kTr^2}} \sin\theta d\theta}{\int_0^{\pi} e^{-\frac{1}{4\pi\epsilon}\frac{Q_1p\cos\theta}{kTr^2}} \sin\theta d\theta}$$
$$= pL\left(\frac{1}{4\pi\epsilon}\frac{Q_1p}{kTr^2}\right) \approx \frac{1}{4\pi\epsilon}\frac{Q_1p^2}{3kTr^2}$$
terakční potenciál náboje a rotujícího dipólu potom je:
$$< V >= -\frac{1}{4\pi\epsilon}\frac{Q_1 < p\cos\theta}{r^2} =$$

In

$$\begin{aligned} \langle V \rangle &= -\frac{1}{4\pi\epsilon} \frac{Q_1 \langle p \cos \theta \rangle}{r^2} = \\ &= -\frac{1}{4\pi\epsilon} \frac{Q_1}{2r^2} \frac{1}{4\pi\epsilon} \frac{Q_1 p^2}{3kTr^2} = -\frac{1}{(4\pi\epsilon)^2} \frac{Q_1^2 p^2}{6kTr^4} \end{aligned}$$

Energii rotujícího dipólu s jiným dipólem nebo obecněji elektrickým polem, které vytváří v bodě dipólu potenciál $V_{external}$

$$\approx \frac{p^2 V_{external}}{3kT}$$

elektrické pole na nich může indukovat dipól deformací elektronové hustoty indukovaný dipól je v prvním přiblížení přímo úměrný elektrickému poli

- polarizovatelnost α je:
- tenzor, který může být neisotropní

- množství volně vázaných elektronů

pro malé molekuly lze získat odhad polarizovatelnosti součtem polarizovatelnosti . vazeb

		Atoms and Mole	cules		
He	0.20	NH ₃	2.3	CH2=CH2	4.3
H ₂	0.81	CH ₄	2.6	C ₂ H ₆	4.5
H ₂ O	1.45-1.48	HCI	2.6	Cl ₂	4.6
O ₂	1.60	CO ₂	2.9	CHCl₃	8.2
Ar	1.63	CH₃OH	3.2	C ₆ H ₆	10.3
со	1.95	Xe	4.0	CCI ₄	10.5
		Bond Polarizabi	lities		
C—C aliphatic	0.48	C-H	0.65	C-CI	2.60
CC aromatic	1.07	O-H	0.73	C-F	0.73
C=C	1.65	C-0	0.60	Si—Si	2.24
C≡C	2.39	C=0	1.36	Si—H	1.27
		Molecular Gro	ups		
С—О–Н	1.3	-CH2-	1.84	CF ₃	2.4
C-O-C	1.1	CH3	2.0	Si-O-Si	1.4
C-NH ₂	2.0	-CF2-	2.0	Si-OH	1.6
C-O-H C-O-C $C-NH_2$ ² Polarizabilities α_0 are g dissolved in a solvent m <i>Physics</i> , 87th Edition (2)	1.3 1.1 2.0 iven in volume units of (4πε eedium, their polarizability o 006–2007), Denbigh (1940	$-CH_2-CH_3-CF_2-$ $-CF_2-$ $_0)\dot{A}^3 = (4\pi\epsilon_0)10^{-30}$ m an change by up to 10 ¹⁰), Hirschfelder et al., (19)	1.84 2.0 2.0 = 1.11 × 10 ⁻⁴⁰ C ² 6. Data compiled fr 54), and Smyth (195	CF ₃ Si-O-Si Si-OH ¹ m ² J ⁻¹ . Note that when m m CRC Handbook of Chen S).	olecules nistry an

19			

$$V=-\frac{1}{(4\pi\epsilon)^2}\frac{p_1^2\alpha_2+p_2^2\alpha_1}{r^6}$$

B - Repulze

elektronové obaly atomů se začnou odpuzovat pokud se atomy k sobě přiblíží na několik angströmů odpudívá interakce je: $V \sim e^{-r/\sigma} \sigma$ je konstanta související s velikostí atomu pro výpočetní jednoduchost se časteji používá mocnina: $V \sim \left(\frac{\sigma}{r}\right)^n$ van der Waalsova a repulzní interakce se nejčasteji popisuje Lennar-Jonesovým potenciálem $4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right] = \frac{A}{r^{12}} - \frac{B}{r^6}$ efektivní poloměry atomů, molekul a iontů v nm

Jacob N. Israelachvili: Intermolecular and Surface Forces 3rd ed. Academic press 2011 p.134

Příklad

Mějme bodový náboj v blízkosti polarizovatelné molekuly. Co se stane když k molekule z druhé strany přiblížíme druhý bodový náboj stejné velikosti a znaménka?

Řešení

Shrnutí některých vztahů termodynamiky							
energie	entalpie	Helmhotzova ve	Gibbsova ve				
dE = Q + W	H=E+pV	F = E - TS	G = E - TS + pV				
soubor		ve=volr	iá energie				
NVE:	d	$E = TdS - pdV + \sum_{i}$	$\mu_i N_i$				
NpE:	di	$H = TdS + Vdp + \sum_{i}$	$\mu_i N_i$				
NVT:	dF	$= -SdT - pdV + \sum_{i}$	$\mu_i N_i$				
NpT:	dG	$= -SdT + Vdp + \sum$	$\mu_i N_i$				
Gibbs-Di	unham	i					
$-SdT + Vdp = \sum_{i} N_{i}d\mu_{i}$							
vztah mezi změnou entropie a teplem							
$dS = \frac{\delta Q_{rev}}{\pi}$							
	1			27			

Boltzmannova distribuce stavů

v kanonickém souboru (NVT) je Helmhotzova volná energie dF = dE - TdS = 0

energie E je průměrná hodnota přes soubor $E = < E > = \sum_i p_i E_i$ p_i je pravděpodobnost i-tého stavu s energií E_i

derivací dostaneme
$$dE = \sum (E_i dp_i + p_i dE_i) = \sum E_i dp_i$$

dostaneme $dE = \sum_i (E_i dp_i + p_i dE_i) = \sum_i E_i dp_i$ neboť energie stavu závisí na N, V ale ne na S nebo T

$$S = -k \sum_{i} p_i \ln p_i$$
 míra uspořádanosti

$$dS = -k\sum_{i=1}^{i} (1+\ln p_i)dp_i$$

dosadíme do počátečního vztahu pro Helmhotzovu volnou energii

$$dF = \sum_{i} \left[E_i + kT(1 + \ln p_i) \right] dp_i = 0$$

řešením rovnice je pravděpodobnost jednotlivých stavů (po normalizaci)

$$p_{i} = \frac{e^{-\frac{E_{i}}{kT}}}{\sum_{i} e^{-\frac{E_{i}}{kT}}} = \frac{e^{-\frac{E_{i}}{kT}}}{Q}$$