University of Utah Mathematical Biology theImagine Possibilities Introduction to Mathematical Physiology III: The Dynamics of Excitability J. P. Keener Mathematics Department University of Utah Introduction to Mathematical Physiology III: The Dynamics of Excitability – p.1/33 University of Utah Mathematical Biology theImagine Possibilities Examples of Excitable Media • B-Z reagent • Nerve cells • cardiac cells, muscle cells • Slime mold (dictystelium discoideum) • CICR (Calcium Induced Calcium Release) • Forest Fires Features of Excitability • Threshold Behavior • Refractoriness RefractoryResting Excited Recovering • Recovery What about flush toilets? – p.2/33 University of Utah Mathematical Biology theImagine Possibilities Modeling Membrane Electrical Activity Excitable Cells – p.3/33 University of Utah Mathematical Biology theImagine Possibilities Modeling Membrane Electrical Activity Transmembrane potential φ is regulated by transmembrane ionic currents and capacitive currents: Cm dφ dt + Iion(φ, w) = Iin where dw dt = g(φ, w), w ∈ Rn Excitable Cells – p.3/33 University of Utah Mathematical Biology theImagine Possibilities Examples Examples include: • Neuron - Hodgkin-Huxley model • Purkinje fiber - Noble • Cardiac cells - Beeler-Reuter, Luo-Rudy, Winslow-Jafri, Bers • Two Variable Models - reduced HH, FitzHugh-Nagumo, Mitchell-Schaeffer, Morris-Lecar, McKean, Puschino, etc.) Excitable Cells – p.4/33 University of Utah Mathematical Biology theImagine Possibilities The Squid Giant Axon... What does a squid look like? – p.5/33 University of Utah Mathematical Biology theImagine Possibilities is not the Giant Squid Axon Excitable Cells – p.6/33 University of Utah Mathematical Biology theImagine Possibilities The Hodgkin-Huxley Equations K Cm I ion φ φ φ = φ − φ e i i e Extracellular Space Intracellular Space I Na I l I Cm dV dt + INa + IK + Il = 0, Excitable Cells – p.7/33 University of Utah Mathematical Biology theImagine Possibilities The Hodgkin-Huxley Equations K Cm I ion φ φ φ = φ − φ e i i e Extracellular Space Intracellular Space I Na I l I Cm dV dt + INa + IK + Il = 0, with sodium current INa, Excitable Cells – p.7/33 University of Utah Mathematical Biology theImagine Possibilities The Hodgkin-Huxley Equations K Cm I ion φ φ φ = φ − φ e i i e Extracellular Space Intracellular Space I Na I l I Cm dV dt + INa + IK + Il = 0, with sodium current INa, potassium current IK, Excitable Cells – p.7/33 University of Utah Mathematical Biology theImagine Possibilities The Hodgkin-Huxley Equations K Cm I ion φ φ φ = φ − φ e i i e Extracellular Space Intracellular Space I Na I l I Cm dV dt + INa + IK + Il = 0, with sodium current INa, potassium current IK, and leak current Il. Excitable Cells – p.7/33 University of Utah Mathematical Biology theImagine Possibilities Ionic Currents Ionic currents are typically of the form I = g(φ, t) Φ(φ) Excitable Cells – p.8/33 University of Utah Mathematical Biology theImagine Possibilities Ionic Currents Ionic currents are typically of the form I = g(φ, t) Φ(φ) where g(φ, t) is the total number of open channels, Excitable Cells – p.8/33 University of Utah Mathematical Biology theImagine Possibilities Ionic Currents Ionic currents are typically of the form I = g(φ, t) Φ(φ) where g(φ, t) is the total number of open channels, and Φ(φ) is the I-φ relationship for a single channel. Excitable Cells – p.8/33 University of Utah Mathematical Biology theImagine Possibilities Voltage Dependent Conductance Example: Sodium and Potassium channels - Voltage clamp experiments Excitable Cells – p.9/33 University of Utah Mathematical Biology theImagine Possibilities K+ Channel Gating Four independent subunits: C α(V ) −→ ←− β(V ) O. so that S0 4α(V ) −→ ←− β(V ) S1 3α(V ) −→ ←− 2β(V ) S2 2α(V ) −→ ←− 3β(V ) S3 α(V ) −→ ←− 4β(V ) S4 One can show that x4 = n4 where dn dt = α(V )(1 − n) − β(V )n Excitable Cells – p.10/33 University of Utah Mathematical Biology theImagine Possibilities Na+ Channel Gating Two types of subunits β β α α γ δ γ δ γ δ S00 S21S11S01 S20S10 2α 2α 2β 2β Conducting state is S12. Then X12 = m2h, where dm dt = α(1 − m) − βm dh dt = γ(1 − h) − δh Excitable Cells – p.11/33 University of Utah Mathematical Biology theImagine Possibilities Currents Hodgkin and Huxley found that Ik = gkn4 (φ − φK), INa = gNam3 h(φ − φNa), where τu(φ) du dt = u∞(φ) − u, u = m, n, h 1.0 0.8 0.6 0.4 0.2 0.0 100806040200 Potential (mV) h (v) m (v) n (v) 10 8 6 4 2 0 ms 80400 Potential (mV) τh(v) τn(v) τm(v) Excitable Cells – p.12/33 University of Utah Mathematical Biology theImagine Possibilities Hodgkin-Huxley Equations Cm dV dt = −¯gNam3 h(V − VNa) − ¯gK n4 (V − VK) − gL(V − VL) + Iapp, where du dt = αu(1 − u) − βuu, u = m, n, h. The specific functions α and β proposed by Hodgkin and Huxley were (in units of ms−1 ) αm = 0.1 25 − v exp `25−v 10 ´ − 1 , βm = 4 exp “−v 18 ” , αh = 0.07 exp “−v 20 ” , βh = 1 exp(30−v 10 ) + 1 , αn = 0.01 10 − v exp(10−v 10 ) − 1 , βn = 0.125 exp “−v 80 ” . Excitable Cells – p.13/33 University of Utah Mathematical Biology theImagine Possibilities Action Potential Dynamics 120 100 80 60 40 20 0 -20 Potential(mV) 20151050 time (ms) 1.0 0.8 0.6 0.4 0.2 0.0 Gatingvariables 20151050 time (ms) m(t) n(t) h(t) 35 30 25 20 15 10 5 0 Conductance(mmho/cm 2 ) 20151050 time (ms) gNa gK 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 h n Excitable Cells – p.14/33 University of Utah Mathematical Biology theImagine Possibilities Fast-Slow Subsystem Dynamics Observe that τm << τn, τh 1.0 0.8 0.6 0.4 0.2 0.0 m 100806040200 v ve vs vr solution trajectories stable manifold of vs dm/dt = 0 dv/dt = 0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 m 80400 v 1 4 3 2 (Go Back) Excitable Cells – p.15/33 University of Utah Mathematical Biology theImagine Possibilities Two Variable Reduction of HH Eqns Set m = m∞(φ), and set h + n ≈ N = 0.85. This reduces to a two variable system C dφ dt = ¯gK n4 (φ − φK ) + ¯gNam3 ∞(φ)(N − n)(φ − φNa) + ¯gl(φ − φL), τn(φ) dn dt = n∞(φ) − n. 1.0 0.8 0.6 0.4 0.2 0.0 n 12080400 v dn/dt = 0 dv/dt = 0 (Go Back) Excitable Cells – p.16/33 University of Utah Mathematical Biology theImagine Possibilities Two Variable Models Following is a summary of two variable models of excitable media. The models described here are all of the form dv dt = f(v, w) + I dw dt = g(v, w) Typically, v is a “fast” variable, while w is a “slow” variable. v w V-(w) V0(w) V+(w) f(u,w) = 0 g(v,w) = 0 W* W* Excitable Cells – p.17/33 University of Utah Mathematical Biology theImagine Possibilities Cubic FitzHugh-Nagumo The model that started the whole business uses a cubic polynomial (a variant of the van der Pol equation). F(v, w) = Av(v − α)(1 − v) − w, G(v, w) = (v − γw). with 0 < α < 1 2 , and “small”. Excitable Cells – p.18/33 University of Utah Mathematical Biology theImagine Possibilities FitzHugh-Nagumo Equations 0.20 0.15 0.10 0.05 0.00 -0.05 w 1.20.80.40.0-0.4 v dw/dt = 0 dv/dt = 0 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 1.00.80.60.40.20.0 time v(t) w(t) 0.20 0.15 0.10 0.05 0.00 -0.05 w 0.80.40.0-0.4 v dw/dt = 0 dv/dt = 0 0.8 0.4 0.0 -0.4 3.02.52.01.51.00.50.0 time v(t) w(t) (Go Back) Excitable Cells – p.19/33 University of Utah Mathematical Biology theImagine Possibilities Mitchell-Schaeffer Mitchell-Schaeffer two-variable model (also in a slightly different but equivalent form by Karma) F(v, w) = 1 τin wv2 (1 − v) − v τout , G(v, w) =    1 τopen (1 − w) v < vgate − w τclose v > vgate Notice that F(v, w) is cubic in v, and w is an inactivation variable (like h in HH). Excitable Cells – p.20/33 University of Utah Mathematical Biology theImagine Possibilities Mitchell-Schaeffer Revised To make the Mitchell-Schaeffer look like an ionic model, take Cm dv dt = gNahm2 (VNa − v) + gK(VK − v), τh dh dt = h∞(v) − h where m(v) =    0, v < 0 v, 0 < v < 1 1, v > 1 , h∞ = 1 − f(v), τh = τopen + (τclose − τopen)f(v) f(v) = 1 2 (1 + tanh(κ(v − vgate)), Excitable Cells – p.21/33 University of Utah Mathematical Biology theImagine Possibilities Mitchell-Schaeffer Revised-II 0 100 200 300 400 500 600 700 800 900 1000 0 0.2 0.4 0.6 0.8 1 time φ,h 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 φ h (Go Back) Excitable Cells – p.22/33 University of Utah Mathematical Biology theImagine Possibilities Morris-Lecar This model was devised for barnacle muscle fiber. F(v, w) = −gcam∞(v)(v − vca) − gkw(v − vk) − gl(v − vl) + Iapp G(v, w) = φ cosh( 1 2 v − v3 v4 )(w∞(v) − w), m∞(v) = 1 2 + 1 2 tanh( v − v1 v2 ), w∞(v) = (1 + tanh( v − v3) 2v4 )). 0 50 100 150 200 250 300 350 400 450 500 −60 −40 −20 0 20 40 time V −60 −40 −20 0 20 40 60 −0.2 0 0.2 0.4 0.6 0.8 1 V W (Go Back) Excitable Cells – p.23/33 University of Utah Mathematical Biology theImagine Possibilities McKean McKean suggested two piecewise linear models with F(v, w) = f(v) − w and G(v, w) = (v − γw). For the first, f(v) = 8 >>< >>: −v v < α 2 v − α α 2 < v < 1+α 2 1 − v v > 1+α 2 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 v f(v) where 0 < α < 1 2 . The second model suggested by McKean had f(v) = 8 < : −v v < α 1 − v v > α (-12) −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 v f(v) and γ = 0. Excitable Cells – p.24/33 University of Utah Mathematical Biology theImagine Possibilities Barkley A model devised to give very fast 2D computations (the code is known as EZspiral) F(v, w) = v(1 − v)(v − w + b a ), G(v, w) = (v − w). Excitable Cells – p.25/33 University of Utah Mathematical Biology theImagine Possibilities Puschino A piecewise linear model devised to match cardiac restitution properties F(v, w) = f(v) − w G(v, w) 1 τ(v) (v − w) where f(v) =    −30v, v < v1 γv − 0.12, v1 < v < v2, −30(v − 1), v > v2 , τ(v) =    2 v < v1 16.6 v > v1 with v1 = 0.12 30+γ , v2 = 30.12 30+γ . (Go Back) Excitable Cells – p.26/33 University of Utah Mathematical Biology theImagine Possibilities Aliev For the Aliev model, F(v, w) = ga(v − β)(v − α)(1 − v) − vw G(v, w) = − (v, w)(w + gs(v − β)(v − α − 1) where (v, w) = 1 + µ1 w v+µ2 . Reasonable parameter values are β = 0.0001 , α = 0.05, ga = 8.0, gs = 8.0, µ1 = 0.05, µ2 = 0.3, 1 = 0.03, 2 = 0.0001. Excitable Cells – p.27/33 University of Utah Mathematical Biology theImagine Possibilities Tyson-Fife These dynamics describe the oxidation-reduction of malonic acid. For this system, F(v, w) = v − v2 − (fw + φ0) v − q v + q (-13) G(v, w) = (v − w) (-13) with typical parameter values = 0.05, q = 0.002, f = 3.5, φ0 = 0.01. Excitable Cells – p.28/33 University of Utah Mathematical Biology theImagine Possibilities APD Alternans Action Potential Duration Restitution Curve APDn + DIn = BCL. where APDn = A(DIn−1) is the restitution curve. It follows that DIn = BCL − A(DIn−1), APD Map Animated Excitable Cells – p.29/33 University of Utah Mathematical Biology theImagine Possibilities Features of Excitable Systems Threshold Behavior, Refractoriness Alternans Wenckebach Patterns Excitable Cells – p.30/33 University of Utah Mathematical Biology theImagine Possibilities Cardiac Models All cardiac models are of the form Cm dφ dt + Iion(φ, w, [Ion]) = Iin with currents, gating and concentrations for sodium, potassium, calcium, and chloride ions. Excitable Cells – p.31/33 University of Utah Mathematical Biology theImagine Possibilities The Beeler-Reuter Model Cm dφ dt + INa + IK + Ix + Is = 0, Intracellular Space I Na II K s I x Extracellular Space Excitable Cells – p.32/33 University of Utah Mathematical Biology theImagine Possibilities The Beeler-Reuter Model Cm dφ dt + INa + IK + Ix + Is = 0, Intracellular Space I Na II K s I x Extracellular Space with sodium current INa, Excitable Cells – p.32/33 University of Utah Mathematical Biology theImagine Possibilities The Beeler-Reuter Model Cm dφ dt + INa + IK + Ix + Is = 0, Intracellular Space I Na II K s I x Extracellular Space with sodium current INa, time independent potassium current IK, Excitable Cells – p.32/33 University of Utah Mathematical Biology theImagine Possibilities The Beeler-Reuter Model Cm dφ dt + INa + IK + Ix + Is = 0, Intracellular Space I Na II K s I x Extracellular Space with sodium current INa, time independent potassium current IK, gated potassium current Ix, Excitable Cells – p.32/33 University of Utah Mathematical Biology theImagine Possibilities The Beeler-Reuter Model Cm dφ dt + INa + IK + Ix + Is = 0, Intracellular Space I Na II K s I x Extracellular Space with sodium current INa, time independent potassium current IK, gated potassium current Ix, and (slow) calcium current Is. Excitable Cells – p.32/33 University of Utah Mathematical Biology theImagine Possibilities The Beeler-Reuter Model Cm dφ dt + INa + IK + Ix + Is = 0, Intracellular Space I Na II K s I x Extracellular Space with sodium current INa, time independent potassium current IK, gated potassium current Ix, and (slow) calcium current Is. -80 -60 -40 -20 0 20 Potential(mV) 4003002001000 Time (ms) (Go Back) Excitable Cells – p.32/33 University of Utah Mathematical Biology theImagine Possibilities Detailed Ionic Models- Luo-Rudy Excitable Cells – p.33/33