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Chapter 1

Introduction

A climatic signal is, in general terms, the result of interactions among physi-
cal processes within the atmosphere-ocean-cryosphere system, which operate
on a wide range of spatial and temporal scales. The range of processes in-
volved extend over spatial scales of a few meters to thousands of kilometers
and temporal scales of hours to millions of years. The interactions within the
components of the climate system usually include positive and negative feed-
backs that act on different scales. When these feedbacks combine properly and
balance each other, they can give rise to irregular but roughly cyclic climate
variations. A well-known example of this is El Nino/Southern Oscillation or
ENSO phenomenon.

The motivation for exploratory methods of data analysis in climate comes
from the need to separate the climate “signals” from the background climate
variability or “noise”. This decomposition of the data is done with the hope of
identifying the physical processes responsible for the generation of the signal.
A fundamental characteristic of the statistical methods for signal detection
is their ability to represent spatially distributed data in a compressed way
such that the physical processes behind the data, or their effects, can be best
visualized by the researcher. Signal detection in climate is useful to achieve
four main goals in climate research: a) to recognize the patterns of natural
climate variability and distinguish them from presumed anthropogenic or other
external (for example solar) effects, b) to use the physical mechanisms inferred
from the detected signals to construct numerical climate models, ¢) to validate
numerical climate models by comparing the fundamental characteristics of the
modelled data with those of the observed data, and d) to use the signals
themselves to forecast the behavior of the system in the future. For all these
reasons, the detection and description of climate signals represents a problem
of increasing interest in the scientific community.

The complicated behavior and the non-linear character of the climate sys-
tem provide a real challenge to the exploratory data analysis methods. Climate
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variations on widely different timescales, for example, may be connected with
one another by nonlinear mechanisms. Some episodic phenomena, such as the
climatic response to large volcanic eruptions, seem best suited to be examined
in the time domain. Others, such as the periodic seasonal changes in sur-
face temperatures, are better suited to be analyzed in the frequency domain.
For certain phenomena it is not clear whether an oscillatory or episodic pic-
ture is most appropriate. Also, a number of signals, such as ENSO, exhibit
a mixture of time-domain or ”event” characteristics and frequency-domain or
“oscillatory” characteristics. Such quasi-oscillatory signals are characterized
by a dominant timescale of variation, and are often combined with frequency
modulation and episodic large-amplitude events. The choice of the appropriate
method of analysis is of extreme importance when the objective is to search
for specific signals in time, space, or time and space, within large multivariate
data sets.

In the last couple of decades, new and more sophisticated methods of data
analysis have increasingly been developed and applied in the geophysical com-
munity. To a large extent, this has been motivated by the increasing abundance
of digital data, observed or generated by models, being collected or produced,
and by the equally increasing computational power available to process them.
This report attempts to provide an overview of some selected statistical tech-
niques that are commonly applied to the problem of spatio-temporal signal
detection in climatic data sets, either observational or model-generated. A
considerable amount of the information contained in this report, particularly
in the EOF analysis section, was compiled from three fundamental books:
Emery and Thomson (1998); von Storch and Zwiers (1999) and von Storch
and Navarra (1999).

1.1 Signal and Noise

A fundamental characteristic of the climate data is the high dimensions of the
variables representing the state of the system at any given time. Due to this
feature, it is often advantageous to be able to split the full phase space into two
subspaces, i.e, the signal and the noise subspaces. The definitions of signal and
noise, however, are somewhat arbitrary and largely depend on the interest of
the researcher. The term signal is not a well-defined expression in the climate
context, therefore the choice of what to call signal and noise is not trivial. In
climate research, the signal is defined by the interest of the researcher and the
noise is everything else unrelated to this object of interest. In most general
terms, a signal can be a pattern in space, or in time, or in space and time,
which is determined by the system dynamics. Noise, on the other hand, can
be physical or instrumental and comprises all those features and details that
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are considered irrelevant for the signal. Generally, the signal has longer scales
in space and time than the noise. The signal has also fewer degrees of freedom
than the noise.

Let’s take as an example the heat transported by the ocean. This is a low-
frequency and large-scale process. In the context of the oceanic heat transport,
the extratropical storms can be considered noise, since the individual storms
do not matter. However, the ensemble of the storms, or the storm track is of
extreme importance since it controls the energy exchange at the interface of the
atmosphere and the ocean. Thus, for some oceanographers, the storm track
may constitute the signal and the individual storms are considered noise. For a
synoptic meteorologist, however, the individual storm is the object of interest,
and thus the signal. To understand an individual storm, the meteorologist
does not require a detailed knowledge of each cloud within the storm, so the
individual clouds can be considered noise in this context.

The following paragraph, extracted from von Storch and Frankignoul (1998),
gives an intuitive and interesting approach to the concepts of signal and noise:
“The large amounts of data that are usually studied in climate exhibit a com-
plex mixture of signals and noise. The purpose of statistical analysis is to
disentangle this mixture to find the needle (the signal) in the haystack (the
noise). The allegory with the needle in the haystack has two sides. First, it is
difficult to find the needle in the haystack. Second, after it has been found, it
should be easily recognizable as a needle simply by looking at it. To identify a
climatic signal, advanced techniques may be required, but after its identifica-
tion, the signal usually may be described by means of simple techniques such
as composites, correlations, etc.”

1.2 Methods of Signal Detection

The statistical techniques described in this review belong to a category of
analysis called “Exploratory Analysis”. The aim of all these techniques is to
summarize the dominant characteristics of a field, such as the dominant space
and/or time patterns, and discriminate between the signal of interest and the
unrelated processes or noise. We may classify the methods discussed here ac-
cording to their domain of analysis. Methods of spatial pattern detection in
multivariate (that is, varying in space and time) data sets are treated in chap-
ter 2. These methods attempt to exploit the information available in spatially
distributed data sets and involve eigenvalue decompositions. The most tradi-
tional technique is the Empirical Orthogonal Function (EOF) analysis. Two
different approaches are given for performing the EOF decomposition: the
covariance matrix approach and the singular value decomposition approach.
Discussions on the physical interpretation of EOFs and on rotation of EOFs
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are also given. In addition, three variations on the classical EOF analysis
are described that serve to jointly analyze two or more fields. These are the
Combined EOF analysis, the Singular Value Decomposition of coupled fields
(SVD) and the Canonical Correlation Analysis (CCA).

Time series analysis methods attempt to detect and isolate the temporal
signals that are blended together inside a single time series (univariate meth-
ods), and are described in chapter 3. The Multi Taper Method (MTM) is a
technique for spectral analysis that provides an estimate of the power spec-
trum of a time series with optimal spectral resolution and variance properties,
by tapering the time series with a set of orthogonal tapers that are resistant to
spectral leakage. The Singular Spectral Analysis (SSA) is a time series analysis
technique used to detect recurrent temporal patterns in univariate data series.
It is in fact a variation of the classical EOF analysis, in which the decompo-
sition is performed in the time domain. The Wavelet Analysis (WA) makes
use of a Wavelet Transform to provide a two-dimensional power spectrum that
displays the evolution of the amplitude at different frequencies with time.

Further extensions of the EOF technique are designed to identify the domi-
nant spatial and temporal structures in a multivariate data set. These methods
are well suited to investigate propagating features since they retain phase infor-
mation in the decompositions. They are discussed in chapter 4. The Extended
EOF analysis (EEOF) decomposes a lagged covariance matrix derived from
the original time series sampled at different temporal lags. The Frequency
Domain EOF analysis (FDEOF) is only briefly outlined here for completeness,
since its very general approach is not especially suitable for climate appli-
cations. As a derivate of FDEOF, the alternative Complex or Hilbert EOF
analysis (CEOF) is described in detail as a simple and effective approach to
investigate propagation of signals. The Multichannel SSA (MSSA) technique
is also briefly described as the multivariate generalization of the SSA method.
In fact, the MSSA procedure is mathematically equivalent to EEOF analysis.
Finally, a combination of the Multi Taper Method with the Singular Value
Decomposition, called the MTM-SVD technique, is also described. This re-
cently developed multivariate frequency-domain decomposition seeks to isolate
statistically significant narrow-band oscillations that are correlated among a
number of spatial locations. The MTM-SVD approach allows for the detec-
tion and description of oscillatory signals that may be modulated in frequency,
phase and amplitude.



Chapter 2

Patterns in Space:
Multivariate Analysis

2.1 Empirical Orthogonal Function (EOF)
Analysis

It is usual in climate studies to be presented with a large data set consisting
of time series over a grid of stations which we wish to compress into a smaller
number of independent pieces of information. Typically it is necessary to deal
with an ensemble of instantaneous samples (maps) of a geophysical field (for
example, temperature) defined at a number of points (stations). In such cases,
the data is in the form of simultaneous time series records from a grid on a
horizontal plane: z;(t), y;(t). The grid points may be regularly spaced (such
as model-generated data or gridded observations) or irregularly spaced (such
as locations of meteorological/oceanographic stations). The data may also be
in the form of time series on a cross-section on a vertical plane: x;(t), z;(t). In
this case, the data could come from a selection of depths in the ocean (such as
current meter measurements), or at standard pressure levels in the atmosphere
(such as geopotential height or air temperature measurements). Analyses of
data sets with the described characteristics, that is, consisting of a number
of spatially distributed time series, are known as multivariate analyses. The
method of Empirical Orthogonal Functions (EOF), also known as Principal
Component Analysis (PCA) is a particularly useful technique for compressing
the variability in this type of data sets. The EOF approach was first introduced
in fluid dynamics by Edward Lorenz in 1956, and has been widely applied in
meteorology and oceanography studies since then.

The goal of the EOF analysis is to provide a compact description of the
spatial and temporal variability of data series in terms of orthogonal functions
or statistical “modes”. Usually, most of the variance of the spatially distributed

7



8 CHAPTER 2. PATTERNS IN SPACE

time series is in the first few orthogonal functions whose patterns may then
be linked to possible dynamical mechanisms. It should be emphasized that
no direct physical relationship necessarily exists between the purely statistical
EOF's and any a posterior: related dynamical process. EOF analysis is simply
a method for partitioning the variance of a spatially distributed group of time
series. They are called empirical to reflect the fact that they are defined
by the covariance structure of the specific data set being analyzed. A more
extended discussion on the physical interpretation of the EOF's can be found
in section 2.1.5.

There are two approaches for computing EOFs for a number of time se-
ries. The first constructs the covariance matrix of the data series and then
decomposes it into eigenvalues and eigenvectors. The second uses the singular
value decomposition of the data matrix to obtain eigenvalues, eigenvectors and
time varying amplitudes (principal components) without computing a covari-
ance matrix. The EOFs obtained from the two methods are identical. The
main difference between the two is given by the greater degree of sophisti-
cation, computational speed and stability of the singular value decomposition
approach. However, since traditionally the covariance matrix method has been
largely used, both approaches are discussed in details in the next sections, after
a preliminary discussion on the preparation of the data.

2.1.1 Preparation of the Data

Let’s consider a set of N maps at times ¢t = 1... N, where each map contains
measurements of the field ¢ at locations m = 1...M. That is, we have M
time series ¥, (t), each of length N. The first (t=1) and last (¢t = N) times
should be the same for all the M series. Here we will assume that N > M, that
is, the number of samples (time steps) is larger than the number of locations
(time series) as it is often the case in geophysical datasets. However, the case
N < M is also possible and an alternative solution for this case is given in
section 2.1.3.

In analyses of geophysical fields, we are often interested in variability on
timescales other than the annual, that is, if the data is known to include an
annual (seasonal) cycle, its detection is usually irrelevant to our results. In
this case, we would like to remove the seasonal variations before doing the
EOF analysis. This can be done by computing the climatological annual cycle
and by subtracting it from the field 1,,(t). We are thus left with the deviations
from the annual cycle, or the anomalies. This procedure may be generalized to
remove other well-known signals on other timescales which we explicitly want
to exclude from the analysis for any particular reason. Therefore, field ¢, (%)
may either be the complete data or the anomalies, depending on the choice of
the researcher and the kind of study to be performed.
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We first remove the record mean i, from each time series. We may option-
ally also compute and remove any linear trend existing in the record, as long
as we are not interested in it. Second, we normalize the demeaned (optionally
detrended) time series by dividing each of them by its standard deviation o,,.
This ensures that the analysis is not dominated by the variance from any given
location (all locations are given an equal chance to contribute in the analysis).
The resulting demeaned and normalized series F,,(t) are termed “standarized”
series:

F,.(t) = 2.1
(0 = e (2.1)
where p,, is the record mean:
1 N
Hm = &7 Z Um(t) (2:2)
N =
and o, is the record standard deviation:
1 N 1/2
m = | —— 2.
on = | 77 X v (23)

The normalization is especially relevant when analyzing two or more fields
together, to ensure no dominance of one field over the others (this is impor-
tant in sections 2.2, 2.3 and 2.4). Several single-field studies, however, have
reported that the normalization makes only a negligeable difference in the
resulting patterns, especially when the variable analyzed has a relatively uni-
form distribution of variance over the different spatial locations. Nevertheless,
it is recommended to normalize the data to variance one for simplicity when
analyzing the results.

After this preliminary manipulation of the time series, the data set is ready
to be used as input for the EOF analysis. We construct an M x N data matrix
F by organizing the M rows (locations m) and the N columns (times t) of the
standarized data (or anomalies) as follows:
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Time —
F(1) F(@Q) ... F()
P Fy(1) Fy(2) ... F(N) lLocation (2.4)
Fu(1) Fu(2) ... Fu(N)

The treatment of the data matrix F now depends on the approach taken to
perform the EOF decomposition. The following sections deal with the two
mentioned approaches: the first computes a covariance matrix and the second
uses the singular value decomposition.

2.1.2 The Covariance Matrix Approach

Data matrix F is now used to derive the spatial covariance matrix Rgg of the
field F,,(t) by multiplying matrix F by its transpose F:

RFF =Fx F1L (25)

Expanding the product of matrices:

(FLF)) (F\F) ... (FiFuy)
e 26
(FyFy) (FuFs) ... (FuFu)

where (F;F}) is the covariance between time series F; and Fj (F' at locations ¢
and j) defined as:

(FiF) = (FF) = —— > F(t) Fi(1) (2.7)

where 4,7 = 1... M. The matrix product Rgp is symmetric and square, even
if F itself is not square. The dimension of Rgp is M x M. If the data series
in F are normalized by the standard deviation as suggested above, the matrix
Ryr is formally the correlation matrix instead of the covariance matrix.

We want to remark here that some authors define the data matrix F as
the transpose of that we defined in equation 2.4, that is, with M columns
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corresponding to locations and N rows corresponding to time steps. In such
a case, the determination of the spatial covariance matrix should be done
as Rpp = F' « F. The rest of the procedure, however, is identical to what
is described here. Also, some texts define the covariance by dividing by N
instead of N—1 in equation (2.7). This will only affect the results in that the
EQOF's are the same to within a constant factor.

Once the covariance matrix has been calculated from the data, we need to
solve the eigenproblem:

That is, we decompose Rpp into matrices A and E. Here A is the M x M
diagonal matrix containing the eigenvalues )\ of Rpp:

A 0 0
0 0 ... Ay

The eigenvalues in A are usually sorted in decreasing order, so that A\; > Ay >
... > Ay Also, since the data matrix F is real, the covariance matrix Ry is
positive definite, which means that all its eigenvalues are greater or equal to
zero. Although the dimension of matrix A is M x M, typically only the first
K eigenvalues )\;, k = 1...K are non-zero, where K < min(N, M). Hence,
the “effective” dimension of A is in fact K x K. This implies that only K
EOF modes can be determined. In the following, the index k will represent
the “mode”.

The square matrix E has dimension M x M. Its column vectors E* are
the eigenvectors of Rgp corresponding to eigenvalues Ag:

E — E2 E2 - .. E2 (2'10)
E'  E? EM — Eigenvectors E*

Each non-zero eigenvalue )\; in matrix A is associated with a column eigen-
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vector E¥ in matrix E. Therefore, only K eigenvectors are used in the de-
composition, those corresponding to the K non-zero eigenvalues. As such, the
effective dimension of matrix E is M x K, where M are the spatial locations
and K are the modes of the EOF decomposition.

The eigenvector matrix E has the property that ExEf = Et ¥ E = I, where
I is the Identity matrix. This means that the eigenvectors are uncorrelated
over space, that is, they are orthogonal to one another. Each eigenvector E*
represents the spatial EOF pattern of mode & (it has dimension M, that is,
the number of locations in the original maps). We will refer to the spatial
EOF patterns as the Empirical Orthogonal Functions or simply EOFs. Other
names found in the literature are Principal Vectors or Loadings.

The time evolution of the k&th EOF (that is, how pattern E* evolves with
time) is given by the time series A¥(t), which is obtained by projecting the
original data series F},(t) onto eigenvector E* and summing over all locations
m:

A = 30 B Falt) (2.11)

where m = 1... M counts the locations, t = 1... N counts the time steps and
k =1...K counts the EOF modes. In matrix notation, matrix A is obtained
by multiplying matrices Ef and F:

A=E'«F (2.12)

where E' (the transpose of E) is K x M, F is M x N, and hence A is K x N.
Note that we have used only the “effective” matrix E to reduce the amount of
data in the computations. Rows in matrix A are time series of length /V, that is
the number of time steps in the original time series. We will refer to them as the
Principal Components or PCs. Other common names found in the literature
are time series of Expansion Coefficients, Time Coefficients, Eigenvector time
series or Scores. Just as the spatial patterns E* are orthogonal in space, the
principal components A* are orthogonal in time.

Each eigenvalue )\ is proportional to the percentage of the variance of the
field F' that is accounted for by mode k. This percentage is calculated as:

% Variance Mode k = ZKik x 100 (2.13)
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The original field F' can be totally reconstructed by multiplying each EOF
pattern E* by its corresponding principal component A* and adding the prod-
ucts over all K modes:

K
Fult) = Y0 B 4%t) (2.14)
k=1
In matrix notation:
F=ExA (2.15)

where E is M x K, A is K x N, and hence F is M x N. However, the goal
of the EOF decomposition is in fact the reconstruction of an approximate,
compressed and less noisy version F of the original field F'. This is done by
truncating the decomposition in equation (2.14), that is, by reconstructing F
using only the first H modes, with H < K. The H first modes account for the
largest fraction of the field variance:

E.(t) = i EX Ak (1) (2.16)

This leads to a significant reduction of the amount of data while retaining
most of the variance of field F'. The special characteristics of this truncation
and the rather subjective choice of H are further discussed in section 2.1.5.
Sometimes, the first or the few first EOF modes represent meaningful physical
processes, which are associated with characteristic spatial and temporal pat-
terns. However, this is not necessarily so. The physical interpretation of EOFs
is a highly relevant topic and it will be extensively discussed in section 2.1.5.

2.1.3 Alternative when M > N

In the above we have assumed that M < N, that is, the number of locations in
the data set is less than the number of time steps (or maps/samples) available.
We may have, for example, 100 years of monthly air temperature observations
(N = 1200) measured at M = 50 meteorological stations, which resembles the
size of a typical dataset in meteorology and oceanography. However, there are
examples of datasets for which the ratio between the M and N dimensions is
the inverse. For satellite images, for instance, there may be M = 5000 spatial
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points around the world sampled N = 50 times. In such a case, the spatial
covariance matrix as calculated in section 2.1.2 has dimension 5000 x 5000,
which requires extremely large computational power to be decomposed. An
alternative solution to this is based on the following algebraic trick: matrix
Rep = F  F' of dimension M x M and matrix Rly = F! % F of dimension
N x N share the same non-zero eigenvalues. In the case of having M > N,
matrix RLF is smaller than Rpp. Hence, we may just calculate the smallest
of the two covariance matrices, Riy, and solve the eigenvalue problem on it
as in equation (2.8):

Rlp*D=DxA (2.17)

The eigenvalues in matrix A are the same as those obtained from equation 2.8
(that is, matrix A is equal to matrix (2.9)). The eigenvectors in matrix D ob-
tained from the decomposition of the small covariance matrix RJ{;‘F, however,
are not the same as those in E obtained from the decomposition of the covari-
ance matrix Rpg (computed in section 2.1.2). Nevertheless, we can obtain the
eigenvector matrix E by projecting matrix D onto field F as:

E=FxD (2.18)

where F is M x N, D is N x N and hence E is M x N. Here we observe that,
using this alternative method, we can only compute the first N EOF modes of
the total possible M modes of the M-variate field F (since matrix E is M x N
instead of M x M as in section 2.1.2). However, this is not strictly a problem
in our applications, since we are only interested in a few leading modes (two
or three at most).

2.1.4 The Singular Value Decomposition Approach

There are two good reasons for choosing the singular value decomposition ap-
proach rather than the covariance matrix approach in order to perform EOF
analysis. First, it provides a one-step method for computing all the compo-
nents of the eigenvalue problem, without having to compute and store large
covariance matrices. Second, the resulting decomposition is computationally
more stable and robust.

In this approach, a singular value decomposition is performed directly on
the rectangular data matrix F (matrix (2.4)), constructed in section 2.1.1, that
consists of M rows (spatial points) and N columns (temporal samples). The
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singular value decomposition of a matrix is based on the concept that any
rectangular M x N matrix F can be written as the product of three matrices:
an M x M matrix U, a M x N diagonal matrix I with positive or zero elements,
and the transpose (V1) of the N x N matrix V.

F=UxIxV' (2.19)

Matrix I' is a rectangular M x N matrix with zero elements outside the diagonal
and positive or zero elements on the diagonal. The scalars on the diagonal,
Yk, are called the singular values and are typically placed in decreasing order
of magnitude. The singular values 7y, are proportional to the eigenvalues A
obtained in section 2.1.2 (matrix (2.9)) such that Ay = ~?. Again, there
is a maximum of K < min(N, M) non-zero singular values, which defines
the maximum number of EOF modes we can determine, so that the effective
dimension of matrix I' is K x K.

The columns of the quadratic M x M matrix U are orthogonal and are
called the left singular vectors of F. They are identical to the eigenvectors
E (matrix (2.10)) obtained from equation (2.8), that is, they are the EOF
patterns associated with each singular value. Again, there are only K useful
left singular vectors associated with the K non-zero singular values, hence the
effective dimension of matrix U is M x K.

The rows of the quadratic N x N matrix VT are also orthogonal and are
called the right singular vectors of F. They are proportional to the princi-
pal components A obtained from equations (2.11)-(2.12), and the constant of
proportionality are the singular values -, such that:

A = TxVl (2.20)

AR(t) = vy VIE(2) (2.21)

where the effective size of A is K x N. Matrix A contains the principal
components of data matrix F. Using equation (2.19) we can reconstruct field
F adding all K modes of the decomposition as:

Z UE 4, VIE(1) (2.22)

Note the similarity between this equation and equation (2.14) (in the covari-
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ance matrix approach), where U = E and A = V1,

As we discussed in section 2.1.2, some authors define the data matrix F as
the transpose of that we defined here, that is, with M columns corresponding
to locations and N rows corresponding to time steps. This does not really
make a difference in the singular value decomposition approach, except for the
fact that, in such a case, the eigenvectors of F are found in the right matrix
V1 and the principal components are proportional to the left matrix U.

2.1.5 Physical Interpretation of EOF's

The relative importance of the EOF modes obtained above may be measured
by their capability to account for the total variance of F,(t). As we said,
each EOF mode has an associated eigenvalue. The larger the eigenvalue, the
larger the portion of the variance accounted for by the mode. EOF modes
are ordered by decreasing eigenvalue so that the first mode, having the largest
eigenvalue, accounts for the largest percentage of the variance of the data.
Based on the inherent efficiency of this statistical decomposition, a set of very
few EOFs is generally enough to describe the fundamental variability within
a large dataset. Often it can be advisable to use EOF's as a filter to eliminate
undesired scales of variability. In such a case, a limited number of EOFs are
used to reconstruct a good approximation of the original dataset. By doing so,
we can filter out the scales of variability that are not coherent over the entire
data field, and that therefore are less important in their contribution to the
field variance.

The question that now arises is: what is an adequate truncation of the
EOF decomposition of field F,,(¢)? This question may also be formulated as:
which are the physically significant EOF modes? Unfortunately, the answer
to this question is not obvious and depends on the specific problem we are
trying to solve. In general, a relevant piece of information is provided by the
amount of variance accounted for by each EOF. We might select a subset of H
EOF modes (H < K) so that their accumulative accounted variance reaches a
certain threshold (typical threshold values can be 80% or 90%). Or such that
the last kept EOF (the Hth mode) accounts for a certain minimum portion of
variance (for example 5% or 1%). A good choice of H requires that the bulk
of the variance of field F,,(t) can be represented by the first H EOFs. If the
original variable has M components, the approximation of F,,(t) by H EOFs
(H < M) leads to a significant reduction of the amount of data while retaining
most of the variance.

In interpreting the meaning of EOF's, we need to keep in mind that, while
EOFs offer the most efficient statistical compression of the data field, they do
not necessarily correspond to real dynamical modes or modes of physical be-
havior. It is often the case that a single physical process is spread over several
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EOF modes. In other cases, more than one physical process may contribute to
the variance contained in a single EOF'. The statistical modes derived from the
EOF procedure must be considered in light of accepted physical mechanisms
rather than as physical modes themselves. It is often likely that the strong
variability associated with the dominant modes is attributable to recognizable
physical mechanisms. A clue to the physical mechanisms associated with an
EOF mode may often be found in the principal component A(t). Something
may be known about the temporal variability of a process that might resemble
the principal component. This would then suggest a relationship that is not
clearly apparent looking at the spatial EOF structure only. The EOF patterns
are constructed to represent in an optimal manner field variance and not physi-
cal connections or maximum correlations. They are excellent tools to compress
data into a few significant components selected according to the variance ex-
plained. However, the patterns that most efficiently represent variance do not
necessarily have anything to do with the underlying dynamical structure.

The physical interpretation of EOF's is also limited by a fundamental con-
straint: the imposed spatial orthogonality of the EOF patterns and the result-
ing temporal independence of the time coefficients. While it is often possible to
associate the first EOF mode with a known physical process, this is much more
difficult with the second (and higher order) EOF because it is constrained to
be orthogonal to the first EOF. The orthogonality constraint implies that the
EOF modes can only represent physical processes that operate independently
and with orthogonal patterns. Real world processes, however, do not need to
have orthogonal patterns or uncorrelated indices. On the contrary, they are in
general interrelated.

Traditional EOF analysis can only detect standing oscillations. However, in
some special cases, we may anticipate the presence of a propagating signal with
a classical EOF decomposition if two principal components A*(t) and A**1(¢),
associated with two consecutive eigenvalues A\, and Agy;, vary coherently and
are in quadrature, that is, are 90 degrees out of phase with one another. In this
case, the eigenvalues have similar magnitude and the pairs of EOFs and PCs
may represent a signal that is propagating in space. If such an indication of
propagation is given by an EOF analysis, it is advisable to perform a variation
of the EOF technique suited to detect propagating features, such as EEOF or
CEOF (see sections below), to confirm the result.

The EOF patterns are sometimes dependent on the size of the domain of
study. If we deal with a variable with relatively uniform distribution of variance
and we know that the characteristic spatial scale of the variable is comparable
to, or larger than, the considered spatial domain, then the first EOF will in
most cases be a monopole pattern, that is, a spatial pattern with the same
sign at all points. This is simply because the system will have a tendency to
create anomalies of the same sign in the entire domain when the typical scale
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of the field is as large as the domain of study. The need to be orthogonal to
the first EOF then creates a second EOF with a dipole pattern, which is the
largest-scale pattern orthogonal to the uniform-sign first EOF'. If, however, the
characteristic spatial scale of the variable is smaller than the analysis domain,
then the first EOF does not necessarily result in a monopole pattern. It is thus
advisable that, when possible, the size of the domain of analysis be greater than
the characteristic spatial scale of the field to be analyzed.

According to Peixoto and Oort (1992), one way to understand the basic
idea behind EOF’s is to imagine that we can display each of the N maps as a
vector f, in the M-dimensional space, such that:

fo=A{fn1, froy---, fam} at timet =n (2.23)

Each vector f,, includes the values of field f at all locations m =1,..., M for
a given time n (that is, a map of f at time n). Each of the NV data vectors is
directed from the origin to a point in the M space (see Figure 2.1). If there
exists some correlation between the N vectors (maps), we expect that their
extremities will be organized in clusters or along some preferred directions.
The problem we want to solve with the EOF decomposition is to find an
orthogonal basis {e,eg,..., ey} in the M-dimensional space, instead of the
original basis, such that vector e; best represents the largest cluster of the
original data vectors, e, best represents the second largest cluster of the original
data vectors, and so on. In other words, e; accounts for the largest portion
of the data variance, e, for the second largest portion, and so on. This is
equivalent to finding a set of M vectors e, whose orientation is such that
the sum of the squares of the projections of all the N observation vectors f,
onto each e,, is maximized sequentially. The vectors e,,, m = 1,..., M are
mutually orthogonal and they are what we called the EOF's.

All the above discussions about interpretation of EOFs are also applicable
to the EOF variations on the EOF method described in the next sections.
Further reading about EOF analysis can be found in Preisendorfer (1988);
Emery and Thomson (1998); von Storch (1999) and von Storch and Zwiers
(1999). See also the references for each particular EOF variation given in the
following sections.

2.1.6 Units and Presentation

Formally, the units of the field F' are carried by the principal components while
the EOF patterns are dimensionless. However, in practice, it is common to
re-normalize the PCs and the EOFs such as:
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Figure 2.1: Example of a possible configuration of the data vectors f, (n = 1...N denote
the time steps) and the empirical orthogonal vectors e,,, m = 1...M. From Peixoto and
Oort (1992)
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AR () :‘;g (2.24)

B = B \n (2.25)

where A is the kth eigenvalue of the decomposition. The re-normalized EOFs
Ek* then carry the units of F' and the PCs A**(¢) have variance 1. As such,
the EOFs represent the amplitude of a “typical” event when the PCs are +1
(von Storch and Zwiers, 1999).

An alternative to the re-normalization is the presentation of the EOF pat-
terns as correlation maps. A correlation map for mode k is a map of correlation
coefficients r¥ between the principal component A*(t) and the values of field
F,.(t) at each location m =1... M:

vt = [A%(t), F.(t)] (2.26)

where | | indicates temporal correlation, & indicates the mode and m indicates
the location. The contours of such a map show the distribution of the centers of
action of the mode scaled as correlation coefficients, which is more meaningful
than the dimensionless EOF's in vector E. The distribution of centers of action
in the correlation map is basically the same as that in the EOF spatial pattern.

2.1.7 Rotation of EOFs

As we have seen, EOF's are designed to be the most efficient descriptors of the
variability in a data set. However, this does not necessarily mean that they
lead to the clearest physical interpretation of the processes behind the data set,
since different modes of variability in the real world need not be orthogonal in
space and time as EOFs are. A “rotation” of the EOFs may help overcome
some of these difficulties. The general concept of rotation is to replace the EOF
patterns E obtained in equation (2.8) by “nicer” patterns EZ that satisfy the
relationship:

ER=ExR (2.27)

where the K x K matrix R is chosen such that the resulting “rotated” pat-
terns E® maximize a certain “simplicity function”. Richman (1986) gives
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some criteria for “simple” patterns and proposes several forms of simplicity
functions. The rotated EOF's constitute a new eigenvector basis and span the
same space as the original EOFs. The rotation is called orthogonal if matrix
R is orthonormal, and oblique otherwise. The most widely used method is the
orthogonal varimax rotation (Richman, 1986). The rotated EOFs have none
of the properties of the EOF's: they are not the most efficient at explaining the
variance of the data, their principal components are no longer orthogonal, and,
if the rotation is oblique, the spatial patterns are not orthogonal either. How-
ever, the rotated EOFs are often better descriptors of the physical mechanisms
underlying the data set.

The rotation of EOFs is a rather controversial topic and the opinion of
the community is divided about it. Some defend the use of rotation as a way
of finding physically meaningful and more stable patterns. Others are less
convinced due to the arbitrariness in the definition of the simplicity function.
As a general rule, if the EOF patterns are to be used for purposes other
than a physical interpretation (that is, prediction, pattern recognitions, noise
reduction, etc), a rotation is generally not necessary. If the patterns are to be
physically interpreted, the rotation may be useful in some cases.

Examples and further reading on rotation of EOF's can be found in Lan-
zante (1984); Richman (1986); Barnston and Livezey (1987); Chelliah and
Arkin (1992); Houghton and Tourre (1992); Cheng et al. (1995); Tourre and
White (1995); von Storch (1999); Mestas-Nunez and Enfield (1999) and von
Storch and Zwiers (1999).

2.1.8 EOF and Spectral Analysis

A commonly used approach to signal detection in time and space is based on
the application of EOF analysis or some of its variations (Combined EOF,
SVD, CCA, see sections below) followed by a spectral analysis of the resulting
principal components of the modes of interest. The spectral representation
of these time series may provide information about the dominant timescales
associated with each EOF mode. However, a principal component does not
necessarily have a dominant timescale, since the EOF decomposition is ex-
plicitly designed to optimally separate spatial patterns and not frequencies or
timescales. Hence, the principal component associated to a given EOF mode
cannot be expected to show variability in a preferred frequency band. Never-
theless, it is often the case that climatic signals tend to have structures that
are coherent in space and frequency at the same time. That means that a given
spatial pattern is often associated to a more or less characteristic timescale of
oscillation, in which case the combination of the EOF and spectral analysis
may be of use. The Multi Taper Method (MTM) of spectral analysis described
in section 3.1 is well suited for this application. Some examples of this com-
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bination of techniques can be found in Trenberth and Shin (1984); Deser and
Blackmon (1993); Tanimoto et al. (1993) and Venegas et al. (1996).

2.1.9 Examples of EOF analysis on synthetic data sets

Five synthetic data sets are constructed in order to test the behavior of the
EOF technique described above. The multivariate (space-time) data sets con-
sist of time series of 1200 samples over a grid of 21 x 21 points (441 time series
in total). According to the notation used in the text: N=1200 and M=441.
The 1200 samples are meant to emulate monthly data over 100 years (1200
months). All five fields are given equal amplitude.
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The first data set (“Monl15”) consists of a monopole spatial pattern cen-
tered in the middle of the domain, which oscillates with a period of 15 years
(180 months). Its spatial structure is given in Figure 2.2 together with its
temporal evolution at point (e).

0 10 20 30 40 50 60 70 80 90 100
years

Figure 2.2: Spatial and temporal structure of data set “Monl5”
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The second data set (“Dip5”) has a north-south dipole pattern in space
and oscillates with a period of 5 years (60 months) Figure 2.3 shows its spatial
structure and the associated time series at points (a) and (b).
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Figure 2.3: Spatial and temporal structure of data set “Dip5”
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The third data set (“Dip15”) has an east-west dipole pattern in space and
oscillates with a period of 15 years (180 months). Figure 2.4 shows its spatial
structure and the corresponding time series at points (c) and (d).

(c) o

(d)

30 40 50 60
years

90 100

Figure 2.4: Spatial and temporal structure of data set “Dip15”
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The fourth data set (“Iri30”) has three centers of action in the zonal direc-
tion and oscillates with a period of 30 years (360 months). Figure 2.5 shows
its spatial structure with the associated time series at points (e) and (f).

() or

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 20 100
years

Figure 2.5: Spatial and temporal structure of data set “Tri30”
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The first four data sets represent standing oscillations. The fifth data set
(“Prol0”) represents a propagating pattern: two centers of action of opposite
sign that propagate in circles around the domain, with a period of 10 years
(120 months). Its spatial structure is shown in Figure 2.6 together with its
temporal evolution at points (a), (c), (b) and (d), following the direction of
propagation.

(b,d) O ||

50
years

Figure 2.6: Spatial and temporal structure of data set “Prol0”
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By linear combinations of two or more of the mentioned synthetic data sets,
we will construct several different fields to analyze with the EOF technique.
Eight examples of EOF analyses are given below.

Example 1: Field = Dipl5 + 2 * Dip5. The two first modes of the EOF
decomposition are shown in Figure 2.7. The method isolated Dip5 as the first
mode (80% of the total variance), and Dip15 as the second mode (20% of the
total variance). Dip5 was clearly dominant since its amplitude was multiplied
by 2 in the definition of the field.
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Figure 2.7: EOF decomposition of Example 1. Field = Dipl5 + 2 * Dip5.
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Example 2: Field = Dipl5 + Dipb. The two first modes are shown in
Figure 2.8. In this case, since both patterns are dipoles comparable in ampli-
tude, the method is not able to isolate the two expected structures. Instead,
it decomposes the data into two modes that equally explain the total variance
(50% each), and whose spatial and temporal patterns are a mixture of Dip5
and Dip15. The method is not able to separate the different timescales as we
would have liked in this case.
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Figure 2.8: EOF decomposition of Example 2. Field = Dip15 + Dip5.
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Example 3: Field = Monl5 + Dip5. The two first modes are shown in
Figure 2.9. In contrast to what occurred in Example 2, in this case the method
clearly isolates Mon15 as the first mode (69%) and Dip5 as the second mode
(31%). The difference with Example 2 is that, even though both fields are
of comparable amplitude, one of them is a monopole pattern and the other a
dipole. This illustrates the fact that the EOF decomposition will always tend
to isolate as first mode the structure with largest spatial scale, in this case,
the monopole structure Monlb.
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Figure 2.9: EOF decomposition of Example 3. Field = Monl5 + Dip5.
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Example 4: Field = Mon15 + 2 * Dip5. The two first modes are shown
in Figure 2.10. The fact of multiplying Dip5 by 2 in the definition of the field
of Example 3 results in a different decomposition: now Dip5 is the dominant
mode and Mon15 is the second.
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Figure 2.10: EOF decomposition of Example 4. Field = Monl5 + 2 * Dip5.
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Example 5: Field = Prol0. The two first modes are shown in Figure 2.11.
This example illustrates the fact that the traditional EOF technique is not
able to detect the propagation of structures in Prol0, although it may give
an indication of its existence. The two first modes in this decomposition are
in quadrature (900 out of phase) in both space and time. This is an attempt
of the method to represent the propagation using standing patterns. One can
imagine that the oscillating signal starts with the pattern of the first mode,
then a quarter of a cycle (900) later it becomes the pattern of the second
mode, a quarter of a cycle later it becomes the pattern of the first mode with
opposite sign, and a quarter of a cycle later it becomes the pattern of the
second mode with opposite sign, which completes a cycle. The percentages of
the variance explained are of comparable magnitude (26% and 25%) and the
higher order modes (not shown) try to represent the intermediate stages of
the propagating signal, always by pairs of quadrature signals and by means of
standing patterns.
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Figure 2.11: EQOF decomposition of Example 5.
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Field = Prol0.
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Example 6: Field = Mon15 + Dip5 + Tri30. The three first modes are
shown in Figures 2.12 and 2.13. The first mode clearly isolates the monopole
pattern Mon15 (58%), the second mode isolates the dipole Dip5 (26%) and the
third isolates the three centers of Tri30 (16%). As in example 3, this example
illustrates again the fact that the EOF method will choose as first modes those
patterns with the largest number of grid points with anomalies of the same
sign, that is, it will ” prefer” the monopole pattern to the dipole, and the dipole
to the three centers, even though all three patterns have comparable amplitude
by definition.
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Figure 2.12: EQF decomposition of Example 6. Field = Mon15 + Dip5 + Tri30.
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Figure 2.13: EOF decomposition of Example 6. Field = Mon15 + Dip5 + Tri30 (cont’d).
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Example 7: Field = Dip5 + Dipl5 + Prol0. The two first modes are
shown in Figure 2.14. The first and second modes explain a comparable frac-
tion of the variance (46% and 43%) and their spatial patterns seem to isolate
the dipole structures of Dipb and Dipl5. However, the temporal evolution of
mode 1 shows a mixture of the Dip5 and Pr010 frequencies (5 and 10 years),
and that of mode 2 shows a mixture of the Dip15 and Prol0 frequencies (15 and
10 years). That is, the structure of the propagating pattern Prol0 is blended
together with the two dipoles. The method is not able to correctly isolate the
three patterns in this case, since the Prol0 spatial pattern resembles the two
dipoles in certain stages of its propagation.
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Figure 2.14: EQF decomposition
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of Example 7. Field = Dip5 + Dip15 + Prol0.
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Example 8: Field = Monl5 4 Dip5 + Dipl5 + Prol0 + Tri30. The
four first modes are shown in Figures 2.15 and 2.16. The combination of
all five patterns in one results in a rather complicated field. Nevertheless,
the decomposition is able to detect the main spatial structures present in the
data. The two first modes account for similar percentages of the variance. Asin
Example 7, mode 1 blends together the east-west dipole pattern Dipl5 with the
propagating pattern Prol0, which is reflected in the mixture of timescales (10
and 15 years) in PC#1. Mode 2 blends together the north-south dipole pattern
Dipb with another phase of the propagating pattern Prol0, also reflected in
the mixture of timescales (5 and 10 years) in PC#2. The monopole pattern
Monl15 is partially captured in mode 1, and is responsible for the skewed dipole
structure of EOF#1. The remaining variance of Mon15 seems to be accounted
for by mode 3, but PC#3 shows variability at periods of 10, 15 and 30 years,
so in fact mode 3 is not clearly isolating any of the original patterns. Mode
4, however, shows a rather clean picture of the three-centered pattern Tri30,
both in space and time.
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Figure 2.15: EQF decomposition

of Example 8. Field = Dip5 + Dipl5 + Prol0.
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Figure 2.16: EOF decomposition of Example 8. Field = Monl5 + Dip5 + Dipl5 + Prol0
+ Tri30 (cont’d).
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As we have seen through this section, conventional EOF analysis is limited
by a number of factors including the dependence of the solution on the domain
of analysis, the requirement for orthogonal spatial patterns and uncorrelated
principal components, and the inability for separating variability on different
frequency bands. In addition, the technique is able to detect standing waves
but not propagating features. Over the years, several investigators have devel-
oped extensions/variations of the traditional technique in order to overcome
some of its limitations. Most of the variations differ in the way they construct
the matrix on which the eigenproblem is to be solved. Most of the follow-
ing sections give descriptions of a variety of methods that belong to the EOF
family or are somehow related to it.

2.2 Combined Empirical Orthogonal
Functions

The simplest variation to EOF analysis is the Combined EOF, developed to
investigate the covariability (or joint variability) of two or more fields at a time.
In Combined EOF analysis, the data matrix F (matrix (2.4)) is constructed
with vectors of two or more variables concatenated after one another. An
analysis of two variables is outlined here, which can easily be extended to
three or more variables.

Let’s assume we have two fields S and P we want to combine in one analysis
in order to study their joint variability. Mathematically, any combination of
scalar fields is permitted, since this is a statistical analysis and not a dynamical
analysis. It is the responsibility of the researcher to choose the appropriate
fields in order to obtain physically relevant results. The combined fields might
be, for example, one atmospheric variable (sea level pressure) and one oceanic
variable (sea surface temperature), which may result in a relevant analysis of
atmosphere-ocean interaction or coupled variability. Field S consists of time
series of length N measured at locations m = 1...M,. Field P consists of
time series of length N measured at locations m = 1...M,. The number
of locations M, and M, need not be the same (nor the locations themselves
need to be the same for the two fields). However, the length of all the series,
N, must be equal for the two variables. The record means are also removed
from time series S and P, as was done for field F' in section 2.1. As we
mentioned in section 2.1.1, the normalization of the fields by their own standard
deviation is extremely important in Combined EOF analysis, in order to avoid
the dominance of one field over the other. For example, if air pressure from
midlatitudes is analyzed together with air pressure from low latitudes without
normalizing the fields, then the resulting EOFs will be mostly influenced by
the high-variance mid-latitude areas. If a vector is made up by combining
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unnormalized data of temperature in units of K and precipitation in units of
m/s®, the EOF patterns will concentrate on the temperature entries, simply
due to their larger magnitude. An extra weighting of the data matrix may
be made if the number of locations in one field largely exceeds the number of
locations in the other (M, > M, or vice-versa). In this case, the values of each
field should be divided by the total number of time series (locations) available
for that field: S/M, and P/M,, thereby avoiding the dominance of one field
over the other due to sampling differences.

The aggregated data matrix F' is then constructed as follows:

(S Si2) Si(N) T
Sa(1) S2(2) Sa(N)
S (1) S (2) ... Su (N

Fe| B By A (2:28)
Py(1)  P(2) Py(N)
| Pu,(1) Puy(2) ... Pa(N) |

where rows 1. .. M, contain the time series of field S, and rows M+1 ... MM,
contain the time series of field P. All rows have length N. Data matrix F has
dimension M+ M, x N.

The covariance matrix Rpp = F * F!, of dimension Mg+ M, x My+ M,
then results:

I <Slsl> <SlsMs> <51P1> <SlPMp> i
(S8 oo (SiSu) (S P . (Su.Pa)

Rer =\ (p5) ... (PSw) (PP) ... (P.Pu) (2.29)
(PuS) ... (PuS) (PP ... (PaPu) |

Matrix Rpr contains the spatial covariances between all possible combinations
of fields at pairs of locations 4, j: (S;S;), (SiP;), (P;S;) and (P, P;).

As in conventional EOF analysis, we now solve the eigenproblem on this
matrix Rpr as in equation (2.8):

E*Rpp = A+E (2.30)
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The eigenvalues in matrix A now measure the fraction of the covariance (or
joint variance) between the two fields S and P accounted for by each Combined
EOF mode. The resulting eigenvectors E* in the columns of matrix E have
now length M+ M,:

[ Bl E? ... EK ]
E} E2 ... EK
o B . EK
E = s M s 2.31
Blon Ejun - By (2.31)
EM3+2 EMS+2 “ e EMS+2
| Ervionr, Erions, - Eien, |

Each eigenvector includes a spatial pattern of field S in elements 1... M, and a
spatial pattern of field P in elements M +1 ... M+M,. We thus need to divide
each eigenvector E* into two separate EOFs, E% and E%, one for each field.
Note that, in matrix (2.31), we have considered only K columns of E, instead
of Ms+M, columns. As in the preceding sections, this is because only the first
K eigenvalues in matrix A are non zero, with K < min(M;+M,, N). Hence,
we consider only the K eigenvectors that are associated with the non-zero
eigenvalues.

The principal components are then computed by projecting each original
field, S and P, onto its own eigenvectors, E% and E%, using equations (2.11)-
(2.12). Thus, two sets of EOF patterns E% and E%, and two sets of principal
components A% and A% are obtained, one set for each of the two variables
analyzed jointly.

While this procedure allows for an analysis of two or more fields together,
it is clear that it requires even larger computational power than conventional
EOQOF since the size of the covariance matrix increases considerably with the
number of fields analyzed. The alternative Singular Value Decomposition
(SVD) analysis of coupled fields described in the next section gives a more
efficient and robust solution to the problem of joint fields analysis. Applica-
tions of Combined EOF analysis can be found for example in Bretherton et al.
(1992); Wallace et al. (1992); Deser and Blackmon (1993); and Kousky and
Kayano (1994).
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2.3 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) of coupled fields allows for the iden-
tification of pairs of EOFs and PCs which account for a fraction of the covari-
ance between two variables analyzed jointly. The SVD analysis of coupled
fields gives exactly the same results as the Combined EOF analysis of two
variables described in section 2.2. The main difference between the two ap-
proaches resides on the larger efficiency and robustness of the SVD method.

The name SVD given to this technique is sometimes misleading since it
blends together the algebraic solution of a matrix problem (the singular value
decomposition described in section 2.1.4) with the problem itself, that is, the
maximization of the covariance between two fields. To avoid misunderstand-
ings, in this review we will use the abbreviation “SVD” or the capitalized
words “Singular Value Decomposition” when referring to the method of analy-
sis of two fields and just “singular value decomposition” when referring to the
algebraic problem. Due to this conflict, some authors have preferred to name
this technique Maximum Covariance Analysis (MCA, Bretherton et al., 1992)

After preparing the two datasets of variables S and P as described in
section 2.1.1, we organize the time series of each of the two variables separately
in two data matrices as in matrix (2.4). We thus obtain an M;xN data matrix
S and an M, x N data matrix P. The spatial dimensions of the two variables,
M, and M,, need not be the same, but all the time series must have the same
number of time steps N.

We then construct the cross-covariance matrix between time series of S
and P as Rgp = S « P1:

(S1P)  (S1Py) ... (SiPum,)
Rep = | (1) (28 (Sh) (232
(Sm. Py (Su,P) .. (Sm,Pu,)

where each element (S;P;) is the spatial cross-covariance between time series
Si and P; (at locations ¢ and j), as defined in equation (2.7). Matrix Rgp is
M, x M, and needs not be square, as in general M; # M,. Since we are again
comparing two fields, the considerations about normalization and weighting of
the two variables mentioned in section 2.2 also apply in this case. Strictly
speaking, if the time series of S and P are standarized, the cross-covariance
matrix Rgp is in fact a cross-correlation matrix.

We now perform a singular value decomposition on Rgp, that is, we find
matrices U, I" and V such that:
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Rsp = UxT'x Vi (2.33)

The columns of the quadratic M; x M, matrix U are orthogonal and contain
the singular vectors of S. The rows of the quadratic M, x M, matrix V' are
also orthogonal and contain the singular vectors of P. Diagonal matrix T' is
rectangular M, x M, with zero elements outside the diagonal and positive
or zero elements on the diagonal. The scalars on the diagonal, 7, are the
singular values and are placed in decreasing order of magnitude. There are only
K < min(Mjs, M) non-zero singular values in I, which defines the maximum
number of SVD modes we can determine. This implies that there are only K
useful singular vectors for each variable and hence the effective dimension of
matrix U is M, x K and of matrix V1 is K x M,.

The principal components of fields S and P are obtained by projecting each
field onto its respective singular vectors as in equations (2.11)- (2.12). For field

S

A = U'xS (2.34)

M,
ANt = 3 Uk Sult) (2.35)

m=1

And for field P:

B = VP (2.36)

MP
BE(t) = Y VEPL(1) (2.37)

m=1

A is K x N and its rows contain the principal components of field S. B is
K x N and its rows contain the principal components of field P.

The K non-zero singular values v are proportional to the squared covari-
ance fraction between fields S and P accounted for by the mode &, such that:

2
% Squared Covariance Mode k = 12/7'“2 * 100 (2.38)

2iz1 Vi
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Each SVD mode of covariability between S and P is thus determined by a
pair of spatial patterns (one for each field), a pair of principal components that
show how the respective spatial patterns evolve in time, and a singular value
that indicates how much of the squared covariance between the two fields is
accounted for by the mode. The correlation coefficient between the two PCs of
mode k, r[A*(t), B¥(t)], provides a measure of how strongly fields S and P are
related to one another through mode k. It is this quantity that is maximized
in Canonical Correlation Analysis discussed in the following section. Further
reading on SVD analysis of coupled fields and some applications can be found
in Wallace et al. (1992); Bretherton et al. (1992); Cherry (1996); Venegas et al.
(1996); Peng and Fyfe (1996); Cherry (1997); Chang et al. (1997); Venegas
et al. (1997); Deser and Timlin (1997); and Yi et al. (1999).

Just as in conventional EOF analysis, it is common to present the singu-
lar vectors or spatial patterns as correlation maps. In SVD analysis, both
“homogeneous” and “heterogeneous” maps can be defined. The kth homo-
geneous correlation map is constructed as the map of correlation coefficients
between the principal component of the k&th mode of a field and the values of
the same field at each grid point, that is, r[A*(¢), S(t)] or r[B%(t), P(t)]. Tt is
useful as an indicator of the spatial localization of the covarying part of the
field and its kth mode. The kth heterogeneous correlation map is constructed
as the map of correlation coefficients between the principal component of the
kth mode of a field and the values of the other field at each grid point, that
is, r[A*(t), P(t)] or r[B*(t), S(t)]. It indicates how well the grid point values
of one field can be predicted from the knowledge of the principal component
of the other. The singular vector, the homogeneous and the heterogeneous
map of a given field generally present almost identical distributions of cen-
ters of action. It is expected that the heterogeneous correlations tend to be
weaker than the homogeneous ones. Differences in the shapes of the patterns
on the homogeneous and heterogeneous maps for the same field, if significant,
can sometimes provide information about the nature of the cause/effect links
between the fields. Examples of correlation maps can be found in Barnett
and Preisendorfer (1987); Wallace et al. (1992); Frankignoul et al. (1996); and
Venegas et al. (1997).

2.4 Canonical Correlation Analysis (CCA)

The Canonical Correlation Analysis (CCA) technique attempts to find a linear
relationship between fields S and P by maximizing the correlation coefficient
between them, instead of maximizing the squared covariance as in the SVD
technique discussed in section 2.3. The CCA isolates the linear combination of
data of field S and the linear combination of data of field P that have maximum
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correlation coefficient. This pair of time series is more strongly correlated than
the principal components of the leading pair of patterns obtained from the
SVD analysis of section 2.3, but explains a smaller fraction of the covariance
between the two fields.

We start as usual by preparing the two simultaneously observed fields S
and P in the way shown in section 2.1.1 and by constructing data matrices S
and P of dimension M, x N and M, x N, respectively, as in equation (2.4). The
next step is to form three covariance matrices: Rgg = S * St is the covariance
matrix of field S computed as in equation (2.6), Rpp = P*P" is the covariance
matrix of field P computed as in equation (2.6), and Rgp = S*PT is the cross-
covariance matrix between fields S and P computed as in equation (2.32). We
then form matrices Qs and Qp as combinations of the three such as:

Qs = Rgi+*Rsp+Rpp*Rlp (2.39)

Qpr = Rpp*Rlp *xRgd * Rgp (2.40)

where R™1 is defined as the inverse of the square matrix R. Matrix Qg is of
dimension M; x M;, and matrix Qp is of dimension M, x M,,.

Then we solve the eigenproblem on each of these two rather complicated-
looking matrices using equation (2.8).

Qs *IIg =1Ig x A (2.41)

Qp +IIp =IIp x A (2.42)

The two matrices Qg and Qp share the same non-zero eigenvalues in matrix
A. For each matrix we obtain a set of eigenvectors called “adjoint patterns”:
1% and I1%, where k = 1...K indicates the mode, as usual. These adjoint
patterns are found in the columns of matrices IIg and IIp, of dimension M, X
M, and M, x M,, respectively. Then, the spatial “Canonical Correlation
Patterns”, (CCP), E% and E% are the columns of matrices Es and Ep, derived
from the adjoint patterns as:

ES = RSS*HS (243)

EP = RPP*HP (244)
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The temporal “Canonical Correlation Coefficients”, (CCC), A% and A%,
k = 1...K, are the columns of matrices As and Ap, also derived from the
adjoint patterns such as:

As = ST*HS (245)

Ap = PixIIp (2.46)

The CCC are constrained to be temporally uncorrelated. However, the CCP
are not necessarily orthogonal in space. According to von Storch (1999), the
CCC satisfy the following requirements:

1. The correlations between A% and A%, between AL, and A% and between
AL and A% are zero for all | # k, where [, k indicate the mode.

2. The correlation between A} and A} is maximum and equal to the largest
eigenvalue of matrices Qg and Qp.

3. The correlation between A% and A% is maximum under the constraints
in 1) and 2) and equal to the second largest eigenvalue of matrices Qg
and QP-

4. The correlations between the higher indexed pairs of coefficients satisfy
similar constraints, that is, they are maximum while being independent
of all previously determined coefficients.

The spatial dimensions M, and M, of fields S and P are in general different.
As we said, matrix Qg is M; x M, and matrix Qp is M, x M,. If one of the two
dimensions M, or M, is much bigger than the other, it is recommended to solve
the eigenproblem only on the smallest of the two matrices Qg or Qp. As such,
if IT% is an eigenvector of Qg with a non-zero eigenvalue, then Rpp * RTSP * I1%
is an eigenvector of Qp with the same eigenvalue.

Some authors strongly recommend to compress the data prior to a CCA
(Barnett and Preisendorfer, 1987; Bretherton et al., 1992). This is done
through a conventional EOF analysis. The two fields are pre-filtered by retain-
ing only the projection of each field onto a subset of its leading EOF patterns
before applying CCA. The motivation for this compression is to minimize the
danger of misinterpreting the random details of the noise variability within the
sample as true correlations. In particular, when the spatial dimension of the
fields M, and M, is large compared to the number of samples NV, it is probable
that spuriously high correlations appear due to the many contributions of the
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badly sampled noise. The CCA method may emphasize this sample correla-
tions in detriment of the true signal correlations. The noise reduction achieved
by pre-filtering the data through conventional EOF renders the resulting CCA
modes more stable with respect to sample variability. Another advantage of
the data compression through EOF is the reduction in the spatial degrees of
freedom of the fields (the spatial dimensions M, and M,) which results in the
reduction of the size of matrices Qs and Qp. However, it is important to
keep in mind that the results may depend on the a priori EOF truncation of
the data, so the sensitivity to this should be investigated. Note that the SVD
analysis of coupled field described in section 2.3 does not require any a priori
compression of the data.

A last note of caution: like in any kind of correlation-based analysis, the
identification of a high correlation does not necessarily prove that the two time
series are connected through a cause-effect relationship. It may as well be that
a third (unknown) variable is controlling the behaviour of the two time series
analyzed. As with the preceding techniques, one must thus be cautious when
invoking a CCA result to explain relationships between variables. Further
reading and applications of CCA can be found in Barnett and Preisendorfer
(1987); Wallace et al. (1992); Bretherton et al. (1992); Zorita et al. (1992);
Werner and von Storch (1993); Cherry (1996); von Storch (1999); and von
Storch and Zwiers (1999).



Chapter 3

Patterns in Time:
Time Series Analysis

3.1 The Multi-Taper Method (MTM)

In contrast to the techniques described in the last chapter, the Multi-Taper
Method (MTM) of spectral analysis is a univariate approach, that is, a time
series analysis method used for the description of a single time series. Time
series analysis methods aim to examine a temporal sequence of data (a time
series) in terms of its frequency content. They provide insight on the different
types of signals that are blended together and “hidden” inside a noisy time
series. In other words, the common goal of most time series analysis is to
separate the deterministic periodic oscillations in the data from random and
aperiodic fluctuations associated with the background noise (that is, unwanted
geophysical variability) or with instrumental errors.

A variety of spectral analysis techniques have been widely employed in
the analysis of geophysical processes (see, for example, Brillinger, 1981, and
the references therein). However, more sophisticated methods have recently
been developed which are more faithful in their underlying assumptions to
the irregular oscillatory behaviour expected of climatic signals. Among such
methods is the MTM approach of spectral analysis, which makes use of multiple
orthogonal data tapers to describe structures in time series that are modulated
in frequency and amplitude. More importantly, this method provides a spectral
estimate with an optimal trade-off between spectral resolution and variance.

Traditionally, it has been a standard procedure to multiply a time series
by a data taper (also called data window) before performing a discrete Fourier
transform (DFT), in order to reduce spectral leakage (that is, to minimize the
bias in the spectral estimate due to leakage of power from a given frequency
to its neighbour frequencies (refer to Percival and Walden, 1993, for details
on tapering). The product a(t)F(t) is formed for each time step ¢, where

95
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F(t), t =1...N,is azero-mean time series and a(t), t = 1... N, is a sequence
of real-valued constants called a data taper or data window. The goal of the
taper is to “force” the time series to go to 0 at both ends. The spectral window
associated with a taper (that is, the representation of the taper in the frequency
domain) has much smaller side-lobes than the Fejér’s kernel. This results in a
better (less biased) estimate of the spectrum (see Percival and Walden, 1993,
for further details). However, spectral estimates obtained from a tapered series
have relatively large variance. This is so because the data at both ends of the
time series is discarded by the taper (since the taper goes to 0 as it approaches
the ends) and thereby a considerable amount of statistical information is lost
during the tapering procedure. Hence, as long as only one single data taper is
used, there will be a trade-off between the resistance to spectral leakage and
the variance of the spectral estimate.

To avoid this problem inherent in the tapering procedure, Thomson (1982)
introduced the Multi-Taper Method of spectral analysis, in which the data are
multiplied by not only one, but several leakage-resistant tapers. This results in
several (S) tapered time series, as(t)F(t), s =1...S, from one original data
record F(t). The tapers are orthogonal, so each of them samples the time se-
ries in a different manner while optimizing resistance to spectral leakage. The
statistical information discarded by the first taper is partially recovered by the
second taper, the information discarded by the first two tapers is partially re-
trieved by the third, and so on. Only a few low-order tapers may be employed,
as the spectral leakage increases with increasing order and the high-order ta-
pers allow an unacceptable level of leakage. Taking Fourier Transforms of each
of the S tapered time series, S estimates of the spectrum, Y;(f), are pro-
duced. The tapers a; are called “eigentapers” since their construction involves
an eigendecomposition (see below). Similarly, the spectra Y;(f) are commonly
called “eigenspectra”. As will be shown below, the multi-taper spectral esti-
mate is then formed as a weighted sum of the eigenspectra. Therefore, it is
smoother than that obtained by using only one taper. The multi-taper spec-
trum has less variance than single-taper spectral estimates and at the same
time is resistant to spectral leakage since the individual eigentapers are de-
signed to be so.

A particularly useful family of orthogonal tapers with good leakage prop-
erties are the Discrete Prolate Spheroidal Sequences (DPSS), also known as
Slepian tapers (Slepian, 1978; Thomson, 1982). The DPSS are obtained from
the following N x N eigenproblem:

Aa, = N\ a, (3.1)

where a, is a vector of length N containing the sth eigentaper and matrix
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A has the form A, = 2AtW sin(27W(n — m)At) (Percival and Walden,
1993). The eigenvalue \; measures the resistance to spectral leakage of the
corresponding eigentaper a,. Eigentapers with A; ~ 1 can be used to construct
spectral estimates that are resistant to spectral leakage. The “time-frequency
bandwidth parameter” p = NW defines a particular family of Slepian tapers as
sequences of length IV that have the largest possible concentration of the energy
in the frequency interval [—W, +W], where W = pfg, and fr = (NAt)™! is
the Rayleigh frequency of the time series (At is the sampling interval). This
means that most of the energy in their spectral windows (that is, the Fourier
Transform of the eigentapers themselves) is concentrated in the central lobe
defined by the interval [—-W, +W], and hence the side lobes are small. This
characteristic of the spectral window reflects the resistance to spectral leakage
of the taper. According to Park et al. (1987), only the first S = 2p—1 tapers are
usefully resistant to spectral leakage. Figures 3.1 and 3.2 provide an example
of a family of Slepian tapers and their respective tapered time series, spectral
windows and spectral estimates (modified from Percival and Walden, 1993).

The choice of the parameter p (and hence S) represents a trade-off between
spectral resolution and the variance of the spectral estimate. If we make W
large (which implies large p), the number of tapers with good leakage properties
increases, hence we can make S large and thus reduce the variance of the
spectrum. On the other hand, the resolution of the spectrum decreases as W
increases. Therefore, if we make W too large we can inadvertently smear out
fine features in the spectrum. In the context of climate studies of roughly
century duration, the choice p = NW = 2 and hence S = 3 provides a good
compromise between the resolution appropriate to resolve climatic signals, and
the variance of the spectral estimate (Mann and Park, 1994, 1996).

For a given time series F'(t), we thus determine a set of S orthogonal
Slepian data tapers a,(t) and their S associated tapered Fourier transforms or
eigenspectra Y;(f),s=1...85, as:

N

Yo(f) = X as(t) F(t) 7 /02 (3.2)

t=1

where F'(t),t = 1...N is the time series, a,(t) is the sth member in a family
of orthogonal Slepian tapers, with s = 1...S5, and At is the sampling inter-
val (monthly, seasonal, annual, etc). Only spectral fluctuations at frequencies
greater than the Rayleigh frequency fr = (NA#)™! can be resolved. The fre-
quency resolution of the spectrum is given by 2p fr. For example, considering a
record of 100 years of monthly data (that is N = 1200 and At = 1/12 = 0.083
to obtain units in years) and using a bandwidth parameter p = 2, the fre-
quency resolution of the spectrum is 2 x 2/(1200 x 0.083) = 0.04 cycles/year,
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Figure 3.1: First column: Discrete Prolate Spheroidal Sequence (DPSS) data tapers as(t) for
s=0,1,2,3. Second column: The products as(t)F(t) of the tapers and the time series F'(t).
Third column: Spectral windows corresponding to the tapers as(t). Fourth column: eigen-
spectra Y;(f) corresponding to the tapered time series as(t)F'(t). Adapted from Percival
and Walden (1993).
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Figure 3.2: Same as in Figure 3.1 for taper orders s = 4,5,6,7. Adapted from Percival and
Walden (1993).
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which allows to resolve decadal from interdecadal signals.

The multi-taper spectral estimate can provide a description of an irreg-
ular oscillatory signal centered at a any particular frequency f, since it can
describe a variety of amplitude and phase modulations using a suitable linear
combination of the S independent eigenspectra. For example, the independent
eigenspectra can be combined through a weighted average as follows:

Eva - ESS:]. /\5 ‘YS(f)'Q
Y(f) B ZSS:I /\s

(3.3)

where the eigenvalues A; come from the decomposition in equation (3.1). The
linear combination of eigenspectra given by Y (f) provides a power spectrum
with optimal trade-off properties between spectral resolution and variance
(Thomson, 1982; Park et al., 1987). Figure 3.3 shows examples of multi-taper
spectral estimates Y (f) obtained as linear combinations of different numbers
of eigenspectra (modified from Percival and Walden, 1993).

Further details on the tapering procedure and the MTM approach for spec-
tral analysis can be found in Thomson (1982); Park et al. (1987); and Percival
and Walden (1993). Some climate applications of the MTM technique are
found in Kuo et al. (1990); Park and Maasch (1993); Mann and Park (1993);
and Thomson (1995). A Toolkit to perform MTM spectral analysis is provided
by the SSA-MTM Group at http://www.atmos.ucla.edu/tcd/ssa.

3.2 Singular Spectrum Analysis (SSA)

Singular Spectrum Analysis (SSA) is a variation of the classical EOF decom-
position, but the application of the mathematics is substantially different. In
the EOF analysis described in section 2.1, the field F' to be studied consists
of measurements obtained at a given time, that is, the coordinates of F' repre-
sent ”simultaneous” observations at different locations in space. Therefore, by
solving the eigenproblem on the covariance matrix of F', we try to capture the
dominant spatial patterns. The SSA expansion is an EOF expansion in which
the field F' contains values at the same location but at different time lags. The
leading eigenvectors of the corresponding covariance matrix represent thus the
leading time patterns of field F'. SSA is a time series analysis technique, in the
sense that a single signal (a time series) is analyzed, and it aims to identify
recurrent patterns in time.

Let’s start with a single time series F'(t), for t = 1... N, which may be
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Figure 3.3: Multi-taper spectral estimates Y (f) formed by linear combinations of S eigen-
spectra (right column) and their respective spectral windows (left column), for S =1...8.
The thin vertical lines on the spectral windows indicate the frequency W. Adapted from
Percival and Walden (1993).
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standarized using equation (2.1) (although this is not strictly necessary in the
SSA method). We construct a data matrix F that contains the "lagged” time
series F'(t+1A), where [ = 0... L are the lags and A is the time increment (the
”size” of the lag). Note that the lags start counting at = 0, which means that
the original (zero-lag) time series F'(t) is included in our definition F'(¢ + [A).
Some authors, however, do not include the zero-lag time series in matrix F but
this difference is irrelevant to the results. Taking A =1 to make the notation
simpler, data matrix F is:

FQ) F@) ... F(N-L)
F(2) F@B) ... F(N-L+1)
F=|F@3) F@4) ... F(N-L+?2) (3.4)

F(L+1) F(I42) ... F(N)

Matrix F has dimension I+1 x N—L. We then construct the “lagged” covariance
matrix Rpr from data matrix F using equation (2.5):

Rpp = F + F! (3.5)

The lagged covariance matrix Rpp has dimension L+1 x L+1 and contains
covariances (F'(t+1) F(t+!)) between the time series F'(t+1[) at all possible
combinations of lags [ = 0...L:

(F( F())  (FQ)F(2) ... (F(1) F(L+1))
(F) FQ1))  (FQ)F(?2) ... (F(2) F(L+1)) (3.6)

(F(I41) F(1)) (F(I41) F2)) ... (F(I+1) F(I+1)

The covariance matrix Rgr is called the Toeplitz Matrix, since is has constant
diagonals. Its principal diagonal contains the variance of F', the second diag-
onal contains the lag + 1 covariance of F', the third diagonal contains the lag
+ 2 covariance of F', and so on.

As in traditional (spatial) EOF analysis, we now solve the eigenproblem on
matrix Rpr using equation (2.8):
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As usual, A is the L+1 x L+1 diagonal matrix containing the eigenvalues
A, of Rpp as shown in matrix (2.9) and matrix E contains the eigenvectors
of Rpp. As in section 2.1.2, only the largest K eigenvalues are non zero, and
so the effective dimension of E is L+1 x K. In contrast with spatial EOF,
the eigenvectors in matrix E are now time patterns, and are usually called
Time-EOFs or T-EOFs. Each eigenvector EF is a lagged sequence of length
L+1, where | =0...L are the lags, and £k = 1... K are the modes:

El E? ... EK
El E? ... EX

E=| E! E? ... EX (3.8)
El E2 ... EK

The principal components A*(t) associated with these T-EOFs are called
Time-PCs or T-PCs. They are calculated as usual by projecting the eigenvec-
tors EF onto the original time series F'(¢ + () as in equations (2.11)- (2.12):

A = E'xF (3.9)
AR(t) = i Ef F(t+1) (3.10)

Matrix A is K x N—L, so that each T-PC (contained in the rows of A) has
length N—L as the lagged time series in F. The T-PCs can be interpreted as
moving averages of the original time series, the averages being weighted by the
coordinates of the T-EOFs. The T-PCs are therefore filtered versions of the
original time series F'(t+1[). This has important spectral implications, as for
example, that the sum of the spectra of the K T-PCs is equal to the spectrum
of the original time series F'. For further spectral characteristics of the T-PCs
see Vautard et al. (1992).

In contrast with standard spectral analysis, in which the basis functions
are given a priori as the sines and cosines of the Fourier expansion, in SSA
they are determined from the data themselves to form an orthogonal basis
that is optimal in the statistical sense. In SSA analysis, any oscillatory be-
havior present in the original time series stands out as a pair of nearly equal
eigenvalues in matrix A. Their associated T-EOFs and T-PCs have similar
time scale of oscillation and are nearly in quadrature, that is, out of phase by
approximately 7/2. These oscillatory modes may be detected as pairs of con-
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secutive similar eigenvalues (Ag, Apy1), consecutive T-EOFs (EF, EF™') and
T-PCs (A*(t), A¥T1(t)). Because of this property, the SSA method is partic-
ularly helpful in isolating anharmonic oscillations with fluctuating amplitudes
from noisy data. Several objective criteria have been developed by Vautard
et al. (1992) in order to extract these oscillatory pairs. Furthermore, the as-
sociated T-PCs provide information on phase and amplitude. The quadrature
relationship allows us to represent the state of the oscillation as a complex
number from which the phase ¢(¢) and the amplitude p(¢) can be determined
from the knowledge of the T-PCs:

ZEt) = AF(t) +i A¥(t) = p(t) e P® (3.11)

The portion of the variability in the original time series F' that is associated
to a given oscillation captured by a pair of modes can thus be isolated by
restricting the SSA expansion to the T-EOFs and T-PCs corresponding to that
pair of modes. That is, we can reconstruct the original time series using only
the two SSA components of interest. The Reconstructed Components (RCs)
which carry the contributions of the pair of modes k£ and k+1 to the variance
of the original data can be computed as a special case of equation (2.14):

RCP*Mt) = EF AR(t) + EFY AF+(1) (3.12)

The RCs are additive and their complete sum (for all modes k =1... K) gives
back the original time series F'.

The choice of the “embedding dimension” m* = L * A, where L is the
number of lags and A is the size of the lag, is crucial in the SSA method. The
measure m* is equivalent to the width of a moving window passed through
the time series. It must be chosen according to the timescale under study,
but its value is restricted by the temporal dimension of the data (that is, the
length of the time series, N). A rule of thumb is that SSA can usefully analyze
only those quasi-oscillatory structures with periods in the range {m*/5, m*},
where m* = N/3 (Vautard et al., 1992). Consequently, there are rather severe
restrictions on the range of frequency bands over which the temporal structure
of a time series can be reconstructed. For instance, to recover an interdecadal
signal (of approximately 20 years period) in a time series of 100 years of annual
data (V = 100), we may choose m* = 30 years, according to the rule given
above. However, this window width does not allow a reliable decomposition of
oscillatory signals with dominant periods of less than 6 years (m*/5). Hence,
such a value of m* is not well suited for the study of the ENSO signal, for
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example. As such, the choice of the measure m* has a subjective component,
since it also depends on the timescale of interest of the analysis, while be-
ing restricted by the rule given above. We will extend the discussion on the
characteristics of the measure m* at the end of section 4.1. A multivariate
version of the SSA, called Multichannel SSA or MSSA, is described in sec-
tion 4.4. For further details on the SSA method and applications see Vautard
et al. (1992); Keppenne and Ghil (1992); Dettinger et al. (1995); Allen and
Smith (1996); Emery and Thomson (1998); Vautard (1999); and von Storch
and Zwiers (1999). A Toolkit to perform SSA is provided by the SSA-MTM
Group at http://www.atmos.ucla.edu/tcd /ssa.

3.3 Wavelet Analysis (WA)

The Wavelet Analysis (WA) is a time series analysis method that has in-
creasingly been applied in geophysics during the last couple of decades. It is
becoming a common tool for analyzing temporal variations of power within
a time series. By transforming a time series from the time space into the
time-frequency space, WA is able to determine both the dominant timescales
of variability and how they vary with time. WA has several attractive advan-
tages over the traditional Fourier Analysis, especially when dealing with time
series with time-varying amplitudes. In contrast to the Fourier Transform, that
generates values of amplitude and phase averaged over the entire time series
for each frequency component or harmonic, the Wavelet Transform provides a
localized, “instantaneous” estimate of the amplitude and phase for each spec-
tral component of the series. This gives WA an advantage in the analysis of
non-stationary data in which the amplitude and phase of the harmonic com-
ponents may change rapidly in time or space. While the Fourier Transform
of the non-stationary time series would smear out any detailed information
on the changing features, the WA keeps track of the evolution of the signal
characteristics throughout the time series.

WA is based on the convolution of a time series F'(¢) with a set of functions
Gap(t) with parameters a and b, derived from a “mother wavelet” or “analyzing
wavelet” G(t), where:

Gult) = 25 G <ﬂ> (3.13)

a

The real scalar b is called the “translation” parameter and corresponds to the
central point of the wavelet in the time series. The real and positive scalar
a is the “scale dilation” parameter and determines the width of the wavelet.
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The factor 1/a'/? normalizes the wavelets so that they have unit energy and
hence are comparable for all scales a. Any set of functions of this form which
satisfy the conditions outlined below are called “wavelets”. The convolution
of the time series F'(t), t = 1... N, with the set of wavelets G(t) for different
parameters ¢ and b, defines the Wavelet Transform (WT):

T(b,a) = # 3 G (t_b> F(t) (3.14)

where the asterisk denotes complex conjugation and parameters a and b are
allowed to vary continuously. The translation parameter b corresponds to time
in the case of a time series (or position in the case of spatial series). The
dilation parameter a corresponds to scale length or temporal period (inverse
of frequency). By varying the scale a and translating along the localized time
b we can construct a two-dimensional picture showing the amplitude of any
feature in the time series as a function of the scale and also how this am-
plitude varies with time. Thus, WA expands a one-dimensional time series
into a two-dimensional (a, b)-parameter space, with time b and scale a as new
independent variables. The Fourier Transform maps a one-dimensional series
into a one-dimensional spectrum (that is, transforms from time to frequency
domain). The Wavelet Transform maps a one-dimensional series into a two-
dimensional image that displays the evolution of the relative amplitude of the
different scales (frequencies) with time (that is, transforms from time to time-
frequency domain). The WT of equation (3.14) can be thought of as a sort of
mathematical microscope, with magnification 1/a, position b and optics given
by the choice of the specific wavelet G(¢) (Shen et al., 1994). Whereas Fourier
Analysis provides an average amplitude over the entire time series, WA yields
a measure of the localized amplitudes a as the wavelet moves through the time
series with increasing values of b. Although wavelets have a definite scale, they
typically do not bear any resemblance to the sines and cosines of the Fourier
decomposition. Nevertheless, a correspondence between wavelength and scale
a can sometimes be found.

According to Meyers et al. (1993), the function G(t) must satisfy the fol-
lowing properties in order to be a mother wavelet:

1. Tts amplitude |G(¢)| must tend rapidly to zero as time t — oc. This
requirement is responsible for the local nature of wavelet analysis, since
the transformed values T'(b,a) are generated only by the signal inside
the “cone of influence” (COI) centered at ¢ = b. In practice, the radius
of the COI is the point ¢ = 7. beyond which the wavelets Gg(t) no
longer have significant values (their values are close to zero). Usually, 7.
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is proportional to the scale a, which results in the cone-like structure of
the WT.

2. Wavelet G(t) must have zero mean (known as the “admissibility condi-
tion”). This ensures that the WT can be inverted, that is, the original
signal F'(t) can be recovered from the wavelet coefficients through the
inverse transform:

F(t) = é >3 T(b’ZQ) Gab (3.15)
where
1 < lewf
5= zfj 7 (3.16)

Here G( f) is the Fourier Transform of G(¢). For 1/C' to remain finite, it
must be G(0) = 0.

3. Wavelets are often regular functions, so that G(f < 0) = 0. This elimi-
nates the confusion between measurements at f > 0and f < 0, which
simplifies the interpretation of the transform. Wavelets are described in
terms of positive frequencies only (“progressive” wavelets).

4. Higher-order moments (variance, skewness, etc) should vanish to allow
the investigation of higher-order moments in the data. This requirement
can be relaxed, according to the application.

The appropriate choice of the form of the wavelet G(¢) depends on the
goal of the study. It is clear that the description of a true physical signal
should not depend on the choice of the wavelets. However, the best results
are obtained when using wavelets that bear some resemblance in form to the
signal. Therefore, if we know the characteristics of the signal being sought, we
should choose a wavelet that has a similar pattern. Then, large values of the
amplitude of the transform 7'(b, a) will indicate where the time series F'(t) has
the desired form (a form similar to the wavelet). One of the most commonly
used wavelets in geophysics is the Morlet Wavelet:
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Gt) = e 72 ¢t (3.17)

It consists of a plane wave €'’ of frequency ¢ = f (or wavenumber ¢ = k
in the spatial domain), which is modulated in time by a Gaussian envelope of
unit width e */2. A variation of this wavelet, applicable to a signal with two

dominant frequencies ¢; and ¢ is:

Gt) = e—t7/2 gicat gicst (3.18)

A wavelet applicable to short segments of data with linearly increasing fre-
quency is:

G(t) = e/ et 72 (3.19)

Other types of wavelets include the “Mexican Hat”, which is the second deriva-
tive of the Gaussian function, the simpler Haar Wavelet, which is based on a
box function, and the series of Daubechies wavelets of different orders (see
Daubechies, 1992; Torrence and Compo, 1998, for further descriptions).

A characteristic of the wavelets is that they can be stretched and translated
with flexible resolution in both frequency and time. The flexible time-frequency
windows are adaptive to the entire time-frequency domain. The latter narrows
when focusing on high-frequency signals and broadens when searching for low-
frequency signals. This “zoom-in” property is a unique characteristic of the
wavelets, that allows for the localization of very short-lived, high-frequency
signals in time, such as abrupt changes, while still resolving the low-frequency
variability with reasonable accuracy.

There are some considerations about the choice of continuous or discrete
values of parameters a¢ and b. For example, a continuous wavelet transform
(using “continuous” wavelets) can yield redundant information since small
changes in a or b are often insignificant. It is more efficient to choose dis-
crete values of ¢ and b such that the functions Gg(t) constitute an orthogonal
basis (using discrete or “orthogonal” wavelets). The transform at any value of
a and b can be found a posteriori through a suitable interpolation.

There exist several methods for implementing a Wavelet Analysis. The
simplest algorithm is the direct numerical integration of a discretisized form of
equation (3.14). Knowing F'(t) and G(t), we can compute the WT at discrete
points in the time-frequency domain. The problem with this technique is
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that it is extremely time consuming. An alternative method is to use the
convolution theorem to obtain the WT in the frequency domain, using the
Fourier Transforms of G(¢) and F(t) as:

T(b,a) = # S G*(af) E(f) & (3.20)
f

where G(af) and F(f) are the Fourier transforms of G(t/a) and F(t), respec-
tively, and the asterisk indicates complex conjugation. We can now compute
the inverse Fourier transform of this expression to obtain the Wavelet Trans-
form T'(b,a) in the time-frequency domain (parameters a,b domain). To use
this technique, G(f) must be known analytically and the time series F'(t) must
be pre-processed to avoid errors at the end points (“ringing”) derived from the
Fourier algorithms. For example, if F'(¢) is aperiodic, equation (3.20) will
introduce an artificial periodicity in the W'T. Different methods for dealing
with this problem are discussed in detail in Emery and Thomson (1998) and
Meyers et al. (1993). The most advisable approach is to taper or buffer the
original time series F'(t) with added data points that smoothly tend to zero
at the beginning and end of the series. The region of the WT corresponding
to these artificial data points is afterwards discarded from the analysis. If this
buffering is not performed, the WT will show severe distortions near the ends
of the series.

A practical procedure to perform a Wavelet Analysis can be summarized
as follows. To reduce the discussed end problems, we should extend the time
series F'(t) by adding a trigonometric taper of the form 1 — sin ¢, as a “tail”
that goes to zero at the beginning and end of the series (see Meyers et al., 1993;
Emery and Thomson, 1998, for details). The final number of data points in
the series should be a power of 2, that is N = 2™ where m is an integer, to
facilitate the Fast Fourier Transformation. Then, we remove the record mean
of the tapered time series and compute its Fourier Transform F(f). We should
also compute the Fourier Transform of the wavelet G(t) at specific scales a, and
obtain G(af). Then, we calculate the Wavelet Transform as in equation (3.20),
by convolving the product G*(af)F(f) in Fourier space. Finally, we take the
inverse Fourier Transform of the result to obtain 7'(b, a) as a function of time b
and scale a. Since the wavelet function G(t) is complex, the resulting Wavelet
Transform T'(b, a) is also complex. As such, it can be written as the sum of
a real part R{7T'(b,a)} and an imaginary part S{7T(b,a)}, or as a combination
of an amplitude |T'(b,a)| and a phase arctan ( S{7'(b,a)} / R{T'(b,a)} ). In
addition, we can define the “wavelet power spectrum” as |T'(b,a)[>. We can
thus present the WT by plotting the wavelet power spectrum as a function
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of time b in the linear x-axis and scale @ in the logarithmic y-axis. To make
it easier to compare different wavelet power spectra, we can normalize their
values as |T'(b,a)|” /o?, where o is the variance of F(t). The normalization
1/o gives a measure of the power relative to white noise, since o is the expec-
tation value of the WT of a white noise process for all values of ¢ and b. For
extended descriptions of Wavelet Analysis and applications see Meyers et al.
(1993); Gamage and Blumen (1993); Liu (1994); Weng and Lau (1994); Lau
and Weng (1995); Gu and Philander (1997); Wang and Wang (1996); Torrence
and Compo (1998); and Emery and Thomson (1998). Further information on
WA can be also found in http://www.amara.com/current/wavelet.html.



Chapter 4

Patterns in Space and Time:
Signal Propagation

4.1 Extended Empirical Orthogonal
Functions (EEOF)

Conventional EOF analysis, as we have demonstrated in section 2.1, is very
successful in compressing the complicated variability of the original data set
into the fewest possible number of modes while retaining most of the total
variance. However, it can only represent variations in time that are in phase
or out of phase along a data array, that is, standing oscillations. It cannot
represent features that have variable phase relationships, such as propagating
waves or moving structures. This is a strong limitation since many geophysical
phenomena result from the interaction between traveling waves of different
spatial scales and different frequencies.

In order to detect propagating phenomena in multivariate data sets, EOF
analysis has been modified in different ways. One of the most popular vari-
ations is the Extended EOF analysis (EEOF), introduced in a geophysical
context by Weare and Nasstrom (1982). In EEOF, a single EOF can represent
propagating features since the technique determines the eigenvectors of the
lagged covariance matrix which is derived from the observations sampled at a
limited number of successive time steps or lags. Since this approach becomes
excessively expensive in computer time as the number of lags is increased, it is
only useful to resolve propagating phenomena over a limited time span. In a
way, we could regard the EEOF method as a multivariate version of the SSA
procedure described in section 3.2.

The EEOF method identifies the dominant spatial and temporal struc-
ture of lagged sequences of covariances. Such a procedure is able to capture
time-evolving patterns in the data since phase information is retained in the

71
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decomposition. The approach is useful to recover oscillatory patterns existing
in the data, but requires some a priori knowledge of the dominant timescales
in the data or a particular interest on a specific timescale, since it needs a
subjective choice of the number of lags used and their size, as is explained
below.

In traditional EOF analysis, the data matrix F contains field values mea-
sured at different spatial locations simultaneously (at a given time). In EEOF
analysis, however, the data matrix F contains field values measured at differ-
ent locations and at different time lags. EEOF analysis aims to investigate
the spatial and temporal covariability of a field with itself for a number of
locations and for a number of time steps into the future or into the past.

The procedure to construct the data matrix F in EEOF bears some sim-
ilarity with that in SSA (section 3.2) in that it uses lagged versions of field
F(t), and with that in Combined EOF (section 2.2) in that it concatenates
two or more fields in one data matrix. However, instead of combining different
fields, here we combine field F,,(t) with “lagged” versions of itself at different
time lags [ = 1...L. That is, we combine F,,(t) with F,,(t+1*A), F,, (t+2+A),
ooy Fp(t+LxA), where A is the time increment (the “size” of the lag). For
simplicity, we consider A = 1 in the following. Data matrix F is thus con-
structed by concatenating the original field F,,,(¢) and the lagged fields F,,, (t+])
for all locationsm =1... M, timestepst =1...N—L, and lagsl=1...L as
follows:

CR() R ... F(N-L) T
B()  R(2) ... B(N-L)
Fu(l)  Fu(2) ... Fa(N-L)
R RGB) ... F(N—I4)
2 BB ... B(N-I+)
P=1ru@  Fu®) .. Fu(N—L+) (4.)
F(L+1) F(I42) ... F(N)
Fy(I+) F(I+2) ... Fy(N)
| Fyll) Fu(l42) .. Fu(N)

Data matrix F has dimension (L+1)*M x N—L. Some authors do not include
the zero-lag (original) version of F}, in this matrix, which results in a matrix
F of dimension L * M x N—L. The “lagged” covariance matrix Rgp is then
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computed in the usual way from matrix F, using equation (2.5):

Matrix Rpr is now a huge (L+1)*M X (L+1)xM matrix whose elements are the
covariances between all possible combinations of field F' at different locations
m and at different lags [. That is, the elements of the lagged covariance matrix
are the simultaneous covariances (Fj(t), F;(t)) (as in traditional EOF) and also
the lagged covariances (F;(t+!), Fj(t+!0)), where ¢, j span all locations 1... M,
and [ spans all the lags 1... L. It is easy to see that the size of the covariance
matrix increases dramatically with the number of lags used. Therefore, the
application of EEOF analysis needs to be limited to a small number of lags in
order to make the computations possible.

We now solve the eigenproblem on the lagged covariance matrix Rgp as
usual using equation (2.8):

where all matrices have dimension (L+1)%M x (L+1)%M. Eigenvalues Ay in
matrix A are sorted in decreasing order and are associated with eigenvectors
E*, in the columns of matrix E, where k indicates the mode. As in section 2.1,
only the first K < min{(L+1)xM, N—L} eigenvalues are non zero and thus the
effective dimension of matrix A is K x K and that of matrix E is (L+1)xM x K.
The length of each eigenvector EF, is now (L+1)xM (number of lags X number
of locations), hence the combined subindex Im. Each eigenvector Ef. consists
of a sequence of L 4+ 1 EOF patterns for lags [ = 0... L, one after the other,

as follows:
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B E? ... EK
> I
B, EBf .. E%
E12 E12 .« s @ E12
I I Ny
EL. B2, .. EK (4.4)
E%1 Egl E%Iil
EL2 EL2 .« s @ EL2
_EEM E%M .« s @ Ei(M_

That means that an EOF pattern in EEOF analysis is no longer a single
map of dimension M as in traditional EOF, but it is instead a sequence of
L + 1 lagged maps (each of dimension M). A sequential observation of these
consecutive spatial patterns provides information about possible propagating
features associated with each mode.

Principal components Af(¢) for mode k and lag [ are obtained by projecting
the EOF pattern Ef for a given mode k and lag [ onto the original time series
in F lagged at the same lag [, that is F,,,(t + () (the portion of matrix (4.1) for
lag 1). Using equation (2.11):

AW = % B, Fult+) (45)

Each principal component Af has length N—L, which is the length of any of
the original time series F,,,(t+). Therefore, mode k of the EEOF decomposition
consists of a sequence of L +1 EOFs E¥, a sequence of principal components
AF and an eigenvalue proportional to the variance accounted for by the mode
(as in equation (2.13)).

As discussed in section 3.2, the choice of the ”embedding dimension” m*,
that is, the number of lags L and their time increment A, is crucial and rather
subjective. It depends on the number of data points in the time series and
the frequency range under study (see section 3.2). If the embedding dimension
is too small compared to the period of oscillation of interest, the sequence



FREQ. DOMAIN EMPIRICAL ORTHOGONAL FUNCTIONS 75

of spatial patterns spans only a small portion of a complete oscillation. Any
propagation of features relevant to the mode of interest results too “slow” to be
clearly distinguished from one map to the next and the information obtained
from such an analysis is rather incomplete. On the other extreme, if the lags
are too long compared to the period of oscillation of interest, the sequence of
spatial patterns may “miss” the signal under study, since its timescale may be
smaller than the interval between two maps. The choice of the number of lags
and their size is closely related to the concept of spectral resolution.

As an illustrative example of this choice, let’s imagine that we want to
isolate the ENSO phenomenon using lagged time series of monthly sea surface
temperature in the Equatorial Pacific. We know a priori that the timescale of
the ENSO signal is about 3-5 years, so this is the period of interest of our study.
Then, if we choose to perform an EEOF analysis with, for instance, 3 lags of
1 month each (L=3, A=1 month), the sequence of spatial EOF patterns will
cover 3 months, which only spans a very small fraction of an average ENSO
oscillation. Any propagation of structures related to ENSO becomes difficult
to assess in such a small fraction of a cycle. On the other extreme, we may
choose to use 3 lags of 5 years each (L =3, A =5 % 12 months), in which
case the sequence of spatial patterns will span 15 years and cannot detect the
3-5-yr oscillations that will be hidden by the coarse resolution of the sequence.
A reasonable choice of L and A for this study would be for instance to use 8
lags of 6 months each (L=8, A=6 months). This provides enough temporal
resolution between maps to detect propagation of the ENSO signal and a view
of one complete average cycle: m* = LxA=8 % 6=48 months (4 years).

The EEOF method is mathematically equivalent to the Multichannel Sin-
gular Spectrum Analysis (MSSA) method discussed in section 4.4. In practice,
however, the two techniques slightly differ in their domain of application. In
general MSSA deals with more temporal than spatial degrees of freedom (that
is, more lags than locations or L > M), whereas in EEOF the data ma-
trix contains only a few lags and a large number of spatial locations (that is,
L < M). See section 4.4 for details on MSSA. Additional reading and ap-
plications of the EEOF method can be found in Weare and Nasstrom (1982);
Lau and Chan (1986); Graham et al. (1987); Preisendorfer (1988); White and
Peterson (1996); Allen and Robertson (1996); Tourre and White (1997); and
Peterson and White (1998).

4.2 Frequency-Domain Empirical
Orthogonal Function (FDEOF)

A complex generalization of EOF analysis for the study of propagating phe-
nomena is the Frequency-Domain EOF (FDEOF), also known as Complex
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Harmonic EOF, developed in a meteorological context by Wallace and Dick-
inson (1972). The technique involves computing complex eigenvectors from
spectral matrices and is the most general of the available methods for an-
alyzing propagating structures. However, due to the extremely general and
all-embracing nature of the approach, the application of FDEOF analysis on
climate problems becomes troublesome. For example, if the energy of an EOF
mode is spread over a wide range of frequencies, that is, when the climatic
fluctuations occur at irregular intervals, then many maps (one for each spec-
tral estimate) are needed to document one single phenomenon. Therefore, the
application of FDEOF in climate research is limited and the use of alternative
methods, such as the Complex EOF analysis described in the next section,
may be preferred. The FDEOF technique is briefly outlined here for complete-
ness. Further details can be found in Wallace and Dickinson (1972); Brillinger
(1981); and Preisendorfer (1988).

Time series F,,,(t) for locations m = 1...M are first transformed from
the time domain into the frequency domain using Discrete Fourier Transform
(DFT). The spectral estimates of each F,(t) are called Y, (f):

Yolf) = 3 Falt) e /t5 (46)

t=1

where f are the frequencies and A is the sampling interval. A matrix Y is
thus constructed with the complex values of the spectral estimates Y, (f) of
the time series, for all the calculated values of the frequency f = fi...f,
where f,, is the Nyquist frequency (that is, the highest detectable frequency
determined by the sampling interval A between the data points). Each row
of complex matrix Y contains the values of the spectral estimate of F;, for
all frequencies at a given location m. Each column contains the values of the
spectral estimate for all locations at a given frequency f:

Yi(f1) Yi(fe) ... Yi(fa)
Y — Yo(fr) Yo(fo) .. YQ(fn) (4.7)

Vielf) Yarh) - Varlfu)

An eigenvalue decomposition is now performed on matrix Y. This may be
done using any of the two approaches described in section 2.1, that is, con-
structing a covariance matrix and decomposing it into eigenvectors and eigen-
values, or using the singular value decomposition. Here we choose to use the
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singular value decomposition approach (section 2.1.4). Using equation (2.19)
on matrix Y we obtain:

Y = UxTx VI (4.8)

Y(f) = U, e V() (4.9)

M =

k=1

Singular vectors U are the complex spatial patterns (EOFs), which now con-
tain amplitude and phase information. Singular vectors V1*(f) are the analo-
gous of the principal components, but they are now in the frequency domain.
That is, they are combinations of pure harmonic components that describe
the relatively smooth time evolution of the kth spatial pattern. The singular
values, as usual, determine the fraction of the variance explained by the mode.
Since phase information is maintained in this procedure, both standing and
travelling oscillatory signals in the data can be described. As we mentioned
above, however, the FDEOF technique has important limitations, especially
when the data presents irregular or modulated oscillations. Some of the limita-
tions are largely overcome by the use of the Complex or Hilbert EOF method
described next.

4.3 Complex or Hilbert Empirical
Orthogonal Functions (CEOF)

An attractive alternative to the traditional FDEOF is the Complex EOF anal-
ysis (CEOF), also called Hilbert EOF analysis. This approach has gained
popularity since it avoids the problems associated with conventional FDEOF
and it is of simpler application. Complex time series are “artificially” formed
using the original time series and their Hilbert transforms. Then, complex
eigenvectors are determined from the cross-covariance or cross-correlation ma-
trix derived from the complex time series. The CEOF analysis allows for an
efficient detection of propagating features, especially when their variance is
spread over a number of frequencies, as is very often the case in climate data.

Let’s consider the original field ¢,,(t) as in section 2.1.1 (before mean re-
moval and normalization), where m = 1... M are the locationsandt =1... N
are the time steps. The M time series are then “made complex” by adding
their Hilbert transforms QASm(t) as an artificial imaginary component, namely:
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Dy (t) = dm(t) +i Gn(t) (4.10)

Let the Fourier representation of ¢,,(t) be:

Om(t) = ; (W) coswt + by, (w) sinwt (4.11)
Then, the Hilbert transform ¢, (¢) of field ¢y, (¢) is:

bm(t) = ; b (w) sinwt — a,(w) coswt (4.12)

The Hilbert transform ¢, (t) provides information about the rate of change of
the time series at each time ¢. It is also called “quadrature function” since it
is easy to see from the definitions that ¢,,(t) represents ¢,,(¢) phase-shifted by
7/2. The Hilbert transform thus represents a filtering operation upon ¢,,(t) in
which the amplitude of each spectral component is unchanged but the phase
of each spectral component is advanced by 7/2. For further details on the
Hilbert transform see, for example, Horel (1984).

The “complexified” observations ®,,(t) are then transformed to standarized
time series F,(t) by removing the temporal mean and dividing by the stan-
dard deviation at each spatial position m as in equation (2.1) (note that the
standarization should be done for the real and the imaginary parts separately).

We now organize the complex observations F,,,(t) into a M x N data matrix
F as in equation (2.4):

F(1) F(2) ... F(N)
p=| B RO B (1.13)
Fa(1) Fa(2) ... Fu(N)

We then compute the complex covariance (strictly correlation) matrix Rpp of
the complex field F,,,(¢) in the usual way:
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where the asterisk denotes complex conjugation (the equivalent of the trans-
pose for complex matrices). The complex matrix Rgp has dimension M x M
and is a complex version of matrix (2.6). We thus perform a decomposition of
the complex covariance matrix Rgg using equation (2.8):

This results in a M x M matrix A with real eigenvalues \; and a M x M matrix
E with complex eigenvectors E¥ , where m = 1... M are the spatial locations
and k£ = 1... K represent the modes. As usual, only the first K eigenvalues
are non zero so that the effective dimension of A is K x K and that of E
is M x K. As in standard EOF analysis, the kth complex EOF mode has a
fraction of the total field variance associated with it, which is proportional to
the eigenvalue )y in the way given by equation (2.13).

The eigenvectors EF are the spatial EOF patterns as in traditional EOF
analysis (see equation (2.10)), but in this case they are complex, that is, they
consist of a real and an imaginary part. As such, they can be expressed in
terms of a spatial amplitude B and a spatial phase ©F :

EF = B ¢ion (4.16)

Principal components are also constructed as in traditional EOF analy-
sis, by projecting the spatial EOFs onto the original data set, as in equa-
tions (2.11)- (2.12). The resulting time series A*(¢) are also complex, that is,
they consist of a temporal amplitude C*(¢) and a temporal phase ¥ (¢):

AR(t) = CF(t) 'O (4.17)

The four mentioned measures (spatial amplitude BEF  spatial phase ©F

temporal amplitude C*(¢) and temporal phase ¥¥(t)) constitute a general de-
scription of possible moving features in the original field F,,(¢) and can be
determined from the eigendecomposition without any assumption on the form
of F,,(t). Since these features are defined in the space/time domain, their in-
terpretation does not suffer in the presence of cyclo-stationary signals. In fact,
they give a clear description of periodicities, if they are present in the data.
The spatial amplitude BE shows the spatial distribution of variability asso-
ciated with each eigenmode and may be interpreted as the EOF pattern in
standard EOF analysis. It is defined as:
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Bt = (Ef B (4.18)

The spatial phase ©F shows the relative phase of the fluctuations among the
various spatial locations where F' is defined. This measure, for which an arbi-
trary initial value must be selected, varies continuously between 0° and 360°.
As such, it is no longer restricted to the two possible values it can take in
standard EOF analysis (0° or 180°). The spatial phase OF, is defined as:

@k

m

— arctan @ gg) (4.19)

The temporal amplitude C*(t) provides a measure of the temporal variability
in the magnitude of the structure of the mode and may be interpreted as the
PC in standard EOF analysis. It is obtained from:

CH(t) = (Ab (1) AFw)"” (4.20)

The temporal phase ¥¥(t) describes the temporal variation of the phase asso-
ciated with periodicities in field F. It is defined as:

U*(t) = arctan <%) (4.21)

For a given mode k, the evolution of the phase W*(¢) with time reveals in-
formation about the existence of quasi-periodicities in the field. In fact, if
U* () increases monotonically from 0° to 360° over any 360° interval, it can
be inferred that a certain cyclicity exists in the data (see Venegas et al., 1998;
Tourre et al., 1999b, for examples of U(t)).

As in traditional EOF analysis, a compressed and less noisy version of the
complex field F,,(t) can be reconstructed as the sum of the contributions of
the leading H empirical orthogonal functions (H < K):

Falt) = 30 BE 4%(0) (1.22)
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The reconstructed version of the real field of observations ¢, (t) is thus recov-
ered by taking the real part of equation (4.22).

If the fluctuations in field F' are suitably simple, the four measures described
here are considerably easy to interpret. However, as the complexity of the
field increases beyond several propagating irregular structures, fluctuating at
irregular intervals, the interpretations are in general no longer easy. In such a
case, the effectiveness of the CEOF decomposition may be enhanced by pre-
filtering the data series before performing the analysis, that is, by concentrating
the attention on a specific frequency band. However, this implies a subjective
choice of a timescale of focus. This choice may be made based on the specific
objective of the study or on a prior spectral analysis on the data. Examples
of pre-filtering of the data in combination with CEOF analysis can be found
in Venegas et al. (1998) and Tourre et al. (1999b).

A more intuitive way of presenting the results from a CEOF analysis, in-
stead of the presentation of the four measures described above, involves the
reconstruction of the original field based on only one mode of the decomposi-
tion (usually the first). Using equation (4.22) with H = 1 and taking the real
part only, a series of N maps of the reconstructed signal can be computed,
one for each time ¢. We can thus make composites (averages) of these maps at
those times ¢ that correspond to specific values of the temporal phase ¥(¢). A
reasonable choice would be to average maps at times ¢ for which ¥ = 0°, 90°,
180°, 270° and 360° (that is, 5 time steps spanning one complete cycle). By
doing this, we obtain a sequence of 5 composites (averaged spatial patterns)
which we can consider as instantaneous “pictures” or “snapshots” of the signal
of interest at different phases of one cycle (note that, in fact, the composite for
¥ = 360° is redundant since it is identical to that for ¥ = 0°). This sequence of
consecutive snapshots provides information on the time evolution of the signal
associated with the reconstructed mode during one “typical” oscillation. A
careful inspection of such a sequence of maps allows for the detection of prop-
agating structures simply by following the evolution of the structures through
the consecutive pictures.

As an extension of this method, a Combined CEOF analysis may also
be performed with the purpose of investigating the joint variability of two
covarying fields. In this case, the definition of the original field ¢,,(t) is changed
so as to include the time series of the two normalized fields in the manner
described in section 2.2 (matrix (2.28)). Examples of the usage of the CEOF
method can be found in Rasmusson et al. (1981); Barnett (1983); Horel (1984);
Latif and Barnett (1994); Lanzante (1996); Venegas et al. (1998); White et al.
(1998); Mysak and Venegas (1998); Enfield and Mestas-Nunez (1999); Tourre
et al. (1999b); von Storch and Zwiers (1999); and White and Cayan (2000).
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4.4 Multichannel Singular Spectrum
Analysis (MSSA)

Multichannel Singular Spectrum Analysis (MSSA) is a generalization of the
SSA method when both space and lag vary in the data matrix F. As such,
MSSA is simply the multivariate version of SSA. Performing MSSA is like
performing SSA simultaneously for a number of time series. The name “Mul-
tichannel” comes from the introduction of more than one time series in the
analysis.

MSSA is mathematically equivalent to the Extended EOF (EEOF) method
described in section 4.1. In practice, these two techniques only differ in their
domain of application. In general, MSSA deals with more temporal degrees
of freedom (lags) than spatial ones, hence it is particularly focused on the
time coordinate, allowing the development of interesting spectral properties.
In EEOF analysis, however, the data matrix F contains only a few lags and
a large number of spatial locations. Both methods seek the dominant space-
time patterns of the analyzed signals, taking into account both their temporal
and spatial correlations. In MSSA, the data matrix contains both space and
time information. The eigenvectors obtained from the decomposition of the
covariance matrix Rpr are now sequences of spatial patterns and are called
Space-Time-EOFs (ST-EOFs) in analogy with the T-EOFs in the univariate
SSA. Similarly, the principal components in MSSA are commonly called Space-
Time-PCs (ST-PCs)

Like in EEOF analysis, the MSSA approach encounters severe dimensional
limitations when analyzing large data sets. The introduction of multiple “chan-
nels” (spatial locations) in the estimation of the covariance matrix requires the
decomposition of a matrix in the time, spatial and lag domains. For time series
of length N measured at M spatial points or channels, and using L lags, the
method requires the decomposition of a huge (L+1)*M x N — L covariance
matrix (see section 4.1 for details). To avoid this problem, the multivariate
data set may be decomposed into a lower-dimensional data set by means of
a conventional EOF analysis, prior to the application of the MSSA. By doing
this, however, we are introducing some of the limitations of the classical EOF
analysis discussed in section 2.1.5. In this sense, the usefulness of the MSSA
is limited to data sets with relatively small spatial extension.

Since the MSSA procedure is identical to that of Extended EOF analysis,
a complete and detailed description can be found in section 4.1. For further
details on the MSSA technique, see for example Keppenne and Ghil (1993);
Plaut and Vautard (1994); Allen and Robertson (1996); Moron et al. (1998);
von Storch and Zwiers (1999); and Vautard (1999).
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4.5 Multi Taper Method - Singular Value De-
composition (MTM-SVD)

The Multi Taper Method - Singular Value Decomposition (MTM-SVD) ap-
proach is a multivariate frequency-domain decomposition technique developed
by Mann and Park (1994, 1996, 1999). The MTM-SVD method seeks to iden-
tify statistically significant narrow-band oscillations (which may be modulated
in phase and amplitude) that are correlated among a large number of time se-
ries (locations). It exploits the Multi Taper Method (MTM) of spectral anal-
ysis, which we have described in section 3.1, in combination with the singular
value decomposition approach described in section 2.1.4.

Standarized time series of field F},(t) are first computed using equation (2.1),
where ¢ = 1... N span the time steps and m = 1...M span the spatial loca-
tions. Each time series is first transformed from the time to the spectral do-
main by using the univariate MTM approach described in section 3.1. Briefly
recalling the MTM procedure, for each of the M time series we calculate S
independent eigenspectra Y;*(f) by multiplying the time series by a family of
S Slepian tapers, like in equation (3.2). Appropriate values of p and S are
chosen as in the univariate case (see section 3.1 for details). However, instead
of averaging the S eigenspectra together for each time series, as we did in
section 3.1, the MTM-SVD approach seeks to retain the independent statisti-
cal information provided by each of the S eigenspectra by finding an optimal
linear combination of them. This optimal linear combination is such that it
maximizes the variance (over all locations) explained by the dominant signal
in each frequency band of the decomposition.

We first organize the values of the S eigenspectra Y;*(f) for the M time
series and for each frequency f into a matrix Y(f) of dimension M x S. Note
that matrix Y (f) is a function of frequency f, which means that we construct
one matrix Y (f) for each frequency f of the Fourier decomposition of the
eigenspectra Y2 (f). That implies the construction of as many matrices Y (f)
as frequencies f are included in the interval [0, f,], where f,, is the Nyquist fre-
quency (the highest detectable frequency determined by the sampling interval
A between data points). For example, matrix Y(f,) for a given frequency f,
has the following form:

lei(fo) le(fo) lez(fo)
Y(fo): YQ(fO) Y2(f0) YQ(fO) (4.23)

Vi) Ya(h) ... YE()
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We then perform a complex singular value decomposition on each matrizc
Y (f,) and obtain several sets of matrices U(f,), I'(f,) and VT(f,) as in equa-
tion (2.19), such that:

Y(fo) = U(.fo) * F(fo) * er(fo) (424)

Matrix I'(f,) is M x S and contains the singular values (f,) in the diagonal.
As in section 2.1.4, there are only K < min(M,S) non-zero singular values,
which defines the maximum number of SVD modes we can determine, so that
the effective dimension of matrix I'(f,) is K x K.

The columns of the M x M matrix U(f,) are the left singular vectors of
Y (f,). There are only K useful singular vectors associated with the K non-
zero singular values, hence the effective dimension of matrix U(f,) is M x K.
The K orthogonal M-vectors UF represent the spatial EOF patterns, as in
section 2.1.4, except that now their values are complex.

The rows of the S x S matrix V(f,) are the right singular vectors of Y (f,).
The effective dimension of VI(f,) is K x S. The K orthogonal S-vectors V*
represent the “spectral EOFs”, which we will call “principal modulations”
of the frequency-domain decomposition, in analogy with the principal com-
ponents of the time-domain decomposition. Each principal modulation V
describes the linear combination of projections of the S Slepian tapers that
is imposed by the amplitude and phase modulation of the oscillatory signal
associated with the kth mode. Using equation (2.22), each matrix Y (f,) may
be reconstructed as:

K

Yo lfo) = > UL(fo) m(fo) VE(fo) (4.25)

k=1

The main distinction between the MTM-SVD method and the Frequency-
domain EOF (FDEOF, see section 4.2) is that the MTM-SVD technique per-
forms a local frequency-domain decomposition of S statistically independent
eigenspectra, whereas the FDEOF analysis performs a global frequency-domain
decomposition over all spectral estimates. The MTM-SVD decomposition is
performed locally in the frequency domain. The term locally is interpreted here
as meaning “inside a limited frequency interval centered around frequency f,”.
It is clear that one singular value decomposition is performed around each re-
solvable frequency, that is, on each matrix Y (f) for all f=1... f,.

The K singular values 7(f) scale the amplitude of each mode in this local
decomposition and are proportional to the fraction of the variance explained
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locally (that is, within a narrow frequency band around frequency f) by the
kth mode. The fraction of the local variance explained by the first (the largest)
singular value, or “local fractional variance”:

2
First Mode Local Fractional Variance (LFV) = % (4.26)
Y1 Ve (f)

The LFV provides a signal detection parameter that is local in the frequency
domain. Using equation 4.26, the LF'V accounted for by the first mode can be
plotted as a function of frequency, which results in a spectrum-like plot which
we call “LFV spectrum”. The frequency resolution of the LF'V spectrum varies
between + fr and +pfr, where fg is the Rayleigh frequency and p is the band-
width parameter (see section 3.1 for their definitions). That is, the frequency
resolution cannot be narrower than the Rayleigh frequency nor greater than
the bandwidth corresponding to a uniform average of the S eigenspectra (see
Mann and Park, 1999, for further details). Similarly, only variability with pe-
riods shorter than (pfr) ' = NA/p can be confidently distinguished from a
secular variation (a trend).

The LFV spectrum provides a powerful parameter for signal detection in
the frequency domain, since it shows the fraction of variance explained by
the dominant oscillation in each frequency band, as a function of frequency.
Typically, only the LFV spectrum of the first singular value is used as a signal
detection parameter. A peak in the LFV spectrum at a given frequency is
indicative of a potentially significant spatiotemporal signal in the dataset, that
oscillates at that frequency.

Significance levels in the LF'V spectrum are determined through a boot-
strapping procedure (Efron, 1990; Mann and Park, 1996). The N maps of the
original field F' are permuted in time while keeping their spatial structure in-
tact. One thousand permutations of field F' are thus generated, which destroys
the temporal, but not the spatial, structure of the data field F'. The entire
MTM-SVD procedure is performed on each of the “randomized” versions of
field F' and a new LFV spectrum is computed each time. This ensemble of one
thousand LFV spectra computed from the re-sampled time series constitutes
an estimate of the null distribution of the LF'V parameter for spatially corre-
lated coloured noise in the absence of signal. This null distribution is in fact
independent of frequency and indistinguishable from that of white noise series
with the same underlying spatial correlation. Empirical significance levels are
thus obtained by taking the 50%, 90%, 95% and 99% percentiles of this null
distribution. For further details on the significance estimation see Mann and
Park (1999).

We thus use the LFV spectrum of the first mode with its significance levels
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as a parameter for signal detection. By having a look at the LF'V spectrum,
we determine that, for example, the specific frequency f, shows statistically
significant power (a significant peak in the spectrum). Then, we would like
to reconstruct the spatial and temporal patterns of the signal associated with
the first mode of the decomposition at frequency f,. To do this, we use the
complex vectors U}(f,) and V](f,), that is, the spatial and spectral EOFs,
respectively, obtained from equation (4.25).

The complex vector UL (f,) of length M is the spatial EOF corresponding
to the first mode of the decomposition at f,. It represents the spatial pattern
of the signal at frequency f, and contains information about the relative phase
and amplitude of the signal at all locations m of the multivariate data set.
It is the complex equivalent to the first-mode spatial pattern in a traditional
EOF decomposition. Rescaling the values of U} (f,) to account for the stan-
darization performed on the initial data, we can recover the spatial pattern of
the first mode signal with the right units as:

Bl = () 0w UL(f) (4.27)

where oy, is the standard deviation calculated as in equation (2.3). The factor
d(f,) = 2 for frequencies f, > pfr, to account for contributions from spectral
information at f, and —f,. For 0 < f, < pfr (the secular band), we take
8(fo) = 1. The complex values in E} describe the evolution of the EOF
spatial pattern over an oscillation of frequency f,. They may be represented in
vectorial form, with the magnitude of the vector indicating relative amplitude
and the angle indicating relative phase among the locations m. Examples of
the complex spatial pattern E! can be found in Mann and Park (1994) and
Tourre et al. (1999a).

The complex vector V.!(f,) of length S is the spectral EOF corresponding
to the first mode of the decomposition at f,. From this vector we will derive
the temporal pattern of the signal at frequency f,. The temporal pattern of the
signal, A'(t), can be represented as having a dominant oscillation at frequency
fo that suffers amplitude and phase variations on a timescale longer than the
oscillation period 1/ f,, as follows:

Alt) = R{a(t) e 2t} (4.28)

where the variable amplitude «(t) represents the slowly varying envelope of
the oscillatory signal. The signal in the time domain A(t¢) and the envelope
R{a(t)} are formally identical for modes referenced to frequency f, = 0, that
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is, the secular modes of variability or trends. The slowly varying envelope «(t)
at frequency f, can be obtained by “inverting” the complex vector V.(f,).
This procedure is similar to the complex demodulation, a technique to deter-
mine how the signal characteristics at a specific frequency f, change with time
throughout the duration of the time series.

It can be shown that the slowly varying envelope or amplitude «(t) of
any oscillatory signal of the form of equation (4.28) centered at frequency f,
can be estimated from a set of eigenspectra Y;(f,), s = 1...S5 (Park, 1992;
Park and Maasch, 1993). In the multivariate case of the MTM-SVD approach,
the envelope «(t) of the time domain signal can be reconstructed from the
components of the spectral EOF V!(f,). This reconstruction is not unique and
requires additional constraints. The simplest reconstruction is a MTM version
of the complex demodulation, that is, a linear combination of the Slepian
tapers as(t), s=1...S and t = 1... N (Park, 1992; Park and Maasch, 1993):

S

alt) = 2 X Vifo) as(t) (4.29)

s=1

where V'(f,) is the sth component of the spectral EOF of the first mode
and A are the eigenvalues associated with the S Slepian eigentapers (from
equation 3.1). Eigenvalues A\, measure the spectral leakage resistance of the
eigentapers a;. Eigentapers with A\; ~ 1 can be used to construct spectral
estimates that are resistant to spectral leakage. This reconstruction of a(t)
tends to minimize the size of the envelope and as such, it makes «(t) to ap-
proach zero at the ends of the time series. Such an inversion is clearly not
appropriate for signals in the secular band (trends). An alternative inversion
for that case minimizes the first derivative of «(t), that makes the envelope to
approach zero slope at the ends of the time series. Such an inversion is more
appropriate when there are trends in the time series but it is poorly suited
for the description of other features such as rapid changes near the beginning
or the end of the series. A third possibility is to minimize the roughness of
the envelope using the second derivative of «(t), which constrains neither the
mean nor the slope at the ends of the series. A more general data-adaptive
means of signal reconstruction in the time domain was suggested by Mann and
Park (1996), in which the mean-square multivariate misfit with the raw data
is minimized over all possible combinations of the 3 mentioned constraints.
This approach removes the subjectivity inherent in the “a priori” choice of
the quantity to minimize. For further details about the time-domain signal
reconstruction refer to Park (1992); Park and Maasch (1993); and Mann and
Park (1999).
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We have now obtained the spatial pattern E} (equation (4.27)) and the
temporal pattern A'(¢) (equation (4.28)) of the signal associated with the
first mode. They were derived from the spatial EOF (U}) and the spectral
EOF (V') of the decomposition at frequency f,. We can thus reconstruct the
spatiotemporal signal F! () (where the super-index 1 indicates that it is the
reconstruction of the signal associated with the first mode) for all times and
locations as the product of these spatial and temporal patterns as in traditional
EOF (equation (2.14)):

Fl(t) = E. A'(t) (4.30)

Replacing E} and A'(t) by their expressions in equations (4.27) and (4.28),
respectively, we get:

Fy(t) = 6(fo) R{om Up(fo) o'(t) e'?mFt} (4.31)

This reconstruction of the signal associated with the first mode of the decom-
position at frequency f, can be used to describe the oscillatory pattern in
a more intuitive way than the presentation of the spatial and temporal pat-
terns separately. The time-varying amplitude and phase information is more
physically provided by presenting a sequence of real-valued patterns (maps)
of the signal corresponding to several phases ¥(t) = 27 f,t of a cycle. Then,
for example, a sequence of spatial patterns (maps) of the reconstructed sig-
nal can be shown for those times t for which ¥(¢) = 0°,90°,180°,270° and
360°, which covers a complete oscillation. Maps for ¥(¢) = 0 and ¥(¢) = 360
are identical. Such a sequence of maps describes the evolution of the sig-
nal during an average or “typical” cycle of period 1/f,. Further reading
and applications of the MTM-SVD method can be found in Mann and Park
(1994, 1996); Rajagopalan et al. (1998); Mann and Park (1999); Tourre et al.
(1999a); Venegas and Mysak (2000); and Delworth and Mann (2000). Fortran
codes to perform an MTM-SVD analysis are provided by Michael Mann at
http://www.people.Virginia.edu/ mem6u/mtmsvd.html.

The MTM-SVD technique can also be extended for its application to cou-
pled fields, that is, to more than one field at a time, in order to study the
covariability between variables, in the same way as the Combined EOF de-
scribed in section 2.2. The time series of the two (or more) variables are
transformed into the frequency domain using the same S eigentapers, and the
resulting eigenspectra of the two fields are concatenated to form matrix Y.
The columns of matrix Y now include the locations of the first field and the
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locations of the second field after one another. In this case, it is recommended
to weight the eigenspectra of the two fields in matrix Y. The weights are set
to be inversely proportional to the number of locations for each field in order
to ensure that both data sets are given equal overall weight in the analysis.
Similarly to traditional Combined EOF, the spatial eigenvectors now contain
a map for each of the two variables, concatenated after one another.
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