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Methods in climatology

II. Multivariate analysis

Multivariate analysis
• Large datasets

• Redundant information

• Stochastic character of processes

• Signal vs noise

Analysis examples

• Identification of climate modes (NAO)

• Climate zones definition (on different scales)

• Statistical downscalling (regional climate vs large-scale atmospheric 
circulation.

Main aim: 

• to separate climate signal from the background climate variability (noise) and 

• to identify physical processes responsible for the generation of the signal

Multivariate analysis

• Abiltiy to represent spatio-temporal data in a compresed way 

Four main goals of MA in climate research:

• to recognize the patterns of climate vartiability

• to identify physical processes and use them to construct CM

• to validate climate models with observations

• to use signals for predictions 

Principal Component Analysis (PCA)

Multivariate analysis examples
PC1 75.6% PC2 22.8% PC3 1.1%

PC4 0.3% PC5 0.1% PC6 0.04%

Multivariate analysis examples

Číslo Vlastní Procenta Kumulov.
PC čísla rozptylu procenta TM1 TM2 TM3 TM4 TM5 TM7

1 2262,96 75,62 75,62 0,243 0,181 0,346 0,230 0,728 0,454
2 682,34 22,80 98,42 0,115 0,050 0,229 -0,936 -0,012 0,237
3 33,80 1,13 99,55 0,553 0,323 0,513 0,201 -0,531 -0,064
4 7,79 0,26 99,81 -0,264 -0,141 -0,037 0,168 -0,432 0,833
5 4,54 0,15 99,96 0,712 -0,102 -0,668 -0,034 0,000 0,186
6 1,21 0,04 100,00 -0,212 0,911 -0,343 -0,044 -0,022 0,069

Zátěže

7655443322111 TMaTMaTMaTMaTMaTMaPC +++++=

7655443322112 TMbTMbTMbTMbTMbTMbPC +++++=
…

eigenvalue = vlastní číslo

eigenvector = vlastní vektor

zátěž = loading
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Multivariate analysis examples

SLP patterns of winter windsorms

• 98 cases of winter windstorms from 
the 20th century

• 121 grided values describing MSLP 
patterns during windstorms

• objective classification using principal 
components analysis

Multivariate analysis examples

Component scores of the first 
component of the SLP field on 
days D-5 to D calculated by 
the Principal Component 
Analysis Method (PCA) for 37 
floods (1881-2000) of the 
winter synoptic type on the 
river Vltava in Prague 
(brackets - explained variance 
in %)

Multivariate analysis examples

May, mean SLP 1961–1990 mean SLP in 31 dry Mays since 1850 SLP anomaly (map2 – map1)

SLP at extremely dry Mays defined in the 1850–2010 period and SLP differences in extremely dry 
months compared to MSLP of the 1961–1990 reference period; black points mark statistically significant 

(α=0.05) SLP decrease/incerese w.r.t  the 1961–1990 reference period

Fluctuations of MAM drought indices (Z-index, SPEI-1) for the Czech Lands in the 1805–2012 period.

Multivariate analysis examples

Three the most similar monthly means acording to pc1 used for interpretation of 
EOF_1 mode. 

Multivariate analysis examples Patterns in Space: EOF analysis 
(Empirical Orthogonal Functions)

EOF

F (x,y,t)
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Patterns in Space: EOF analysis 
(Empirical Orthogonal Functions)

• DATA: Instantaneous samples (maps) of geophysical fields (air 
temperature) defined in a number of points (stations or grid-points) 
recorded over period of time

• EOF (PCA – Principal Component Analysis) – technique for compressing 
the variability in the data set

• Introduced by Edward Lorenz in 1956

• Widely applied in climatology and oceanography

• Goal: compact description of the spatial and temporal variability of data 
series in terms of orthogonal functions – statistical „modes“

• Most of variability is in the first few orthogonal functions whose 
patterns MAY BE be linked to possible dynamical mechanisms

EOF – data preparation

• A set of N maps at times t = 1 …N

• Each map contains measurements of the field ψ at locations m= 1…M

• We have M time series ψm(t), each of length N 

• We assume that N > M (number of time steps is larger than the number 
of locations

• Annual (seasonal) cycle is necessary to remove BEFORE EOF analysis –
subtract climatological cycle from the field ψm(t). 

EOF – data preparation
• Data standardization:

EOF – data preparation

We construct M x N data matrix F with M rows (locations m) nad the N 
columns (times t):

Two approaches for EOFs computing

• Covariance matrix decomposition to eigenvalues and eigenvectors (rozklad 
kovarianční matice na vlastní čísla a vlastní vektory)

• Singular Value Decomposition of the data matrix (singulární rozklad 
matice)

Vlastní čísla a vlastní vektory matice

• Existují pro čtvercové matice, které 
neobsahují lineárně závislé proměnné

• Vlastní čísla informují o variabilitě 
vyčerpané vytvářenými faktorovými osami

• Vlastní číslo představuje rozptyl „nové“ 
proměnné definované v souřadném systému 
vlastních vektorů   

• Vlastní vektory definují směr nových 
faktorových os v prostoru původních 
proměnných

• Vlastní vektory jsou navzájem ortogonální 
– tj. nezávislé – tedy každý nese unikátní 
informaci

• Vlastní vektory mohou být různým 
způsobem standardizovány a jejich 
interpretace se liší podle použité 
standardizace

e1
e2
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Geometric interpretation of eigenvalues 
and eigenvectors 

An n×n matrix A multiplied by n×1 vector x results in another n×1 
vector y=Ax. Thus A can be considered as a transformation matrix. 

In general, a matrix acts on a vector by changing both its magnitude 
and its direction. However, a matrix may act on certain vectors by 
changing only their magnitude, and leaving their direction unchanged (or 
possibly reversing it). These vectors are the eigenvectors of the 
matrix. 

A matrix acts on an eigenvector by multiplying its magnitude by a 
factor, which is positive if its direction is unchanged and negative if its 
direction is reversed. This factor is the eigenvalue associated with 
that eigenvector.

Geometric interpretation of eigenvalues 
and eigenvectors 

Possible configuration of the 
data vectors fn (n = 1 … N 
denote the time steps) and 
the empirical orthogonal 
vectors em, m = 1 … M. (from 
Peixoto and Oort, 1992)

EOF – The Covariance Matrix Approach

Data matrix F is used to derive spatial covariance matrix RFF of the field Fm(t)
by multiplying F by its transpose Ft:

i,j = 1 .. M

RFF is square (M x M) and symetric

EOF – The Covariance Matrix Approach

We solve the eigenproblem:

• the eigenvalues are sorted in decreasing order

• all eigenvalues are greater or equal to zero

• typically only first K eigenvalues are non-zero, K ≤ min(N,M)

• thus only K EOF modes can be determined

EOF – The Covariance Matrix Approach

We solve the eigenproblem:

• each non-zero eigenvalue λk in matrix Λ is associated with a column 
eigenvector Ek in matrix E. 

• only K eigenvectors are used in decomposition

• K are modes of EOF decomposition

EOF – The Covariance Matrix Approach

The eigenvector matrix E has the property that E * Et = Et * E = I, 
where I is Identity matrix.

This means that the eigenvectors are uncorrelated over space –
they are orthogonal to one another

Each eigenvector Ek represents the spatial EOF pattern of mode k

The spatial EOF patterns – Loadings
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EOF – The Covariance Matrix Approach

where Et is K x M, F is M x N, A is K x N

Rows in A are time series of length N – Principal Components (Time 
coefficients, Scores)  

EOF – The Covariance Matrix Approach
Each eigenvalue λk is proportional to the percentage of the variance of the field 
F that is accounted for by the mode k : 

The original field F can be totally reconstructed by multiplying each EOF pattern 
Ek by its corresponding principal component Ak and adding the products over all K 
modes: 

where F is M x N, E is M x K, A is K x N

EOF – The Covariance Matrix Approach
The goal of the EOF decomposition is reconstruction of compressed and less 
noisy version of the original field F

This is done by truncating the decomposition ni 2.14 eq. using only first H modes  
with H <  K 

The H first modes account for the largest fraction of the field variance:

This leads to a significant reduction of the amount of data while retaining most 
of the variance of the field F.

The choice of H may be rather subjective

The first or the few first EOF modes sometimes represent meaningful physical 
processes

The Singular Value Decomposition Approach

• one-step method to compute all components of eigenvalue problem

• Results are computationally more stable and robust

SVD is performed directly on the data matrix F with M rows (spatial points) 
and N columns (samples in time)

SVD is based on the concept that any M x N matrix can be written as the 
product of three matrices:

U is M x M matrix 

Vt is transpose of the N x N matrix V

Г is M x N matrix with zero elements outside the diagonal and positive or 
zero elements on the diagonal

Scalars γk on the diagonal are called singular values. They are placed in 
decreasing order and they are proportional to eigenvalues λk  λk = γk

2

There is a maximum of K ≤ min(N,M) non-zero singular values which defines 
the maximum number of EOF modes that we can determine.

The Singular Value Decomposition Approach

The columns in U matrix are orthogonal and are called left singular vectors of F

They are identical to the eigenvectors E and they are the EOF patterns 
associated with each singular value. There is only K useful left singular vectors

The rows in Vt matrix are orthogonal and are called right singular vectors of F

They are proportional to the principal components  A obtained from equations 
2.11 and 2.12 and the constant of proportionality are the singular values γk such 
that:

Matrix A contains the principal coefficients of data matrix F and effective 
size of A is K x N 

The Singular Value Decomposition Approach

Using equation (2.19) we can reconstruct field F adding all K modes of the 
decomposition:

Note the similarity between (2.22) and (2.14) where: U = E and A = γVt
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Number of important modes
• Data compression is more important than physical interpretation

• We try to separate signal from noise

• Several methods:

• Scree plot
• Guttman criterion 
• Eigenvalues > 1
• Modes with eigenvalue that is higher than mean of all eigenvlaues
• Modes that explain more that 70 – 90 % of total variability

Rotated EOFs

• physical interpretation is more important than data compression

• Due to orthogonality 

• Orthogonal or obligue rotation

• Rules of „simple structure“

Notes on EOFs interpretation

• Some EOFs not necessarily correspond to real physical behavior of 
dynamical modes

• A clue to the interpretation of EOF modes may be found in the principal 
component.

• Their temporal variability may be similar to some known processes

• The physical interpretation is limited due to spatial orthogonality  of the 
EOF patterns

• Real world processes do not have orthogonal patterns or may not be 
represented with uncorrelated indices

• Traditional EOFs can detect standing oscillations, however signal may be 
propagating in space

Notes on EOFs interpretation
• The EOF patterns depend on the size of the study area

• Variable with uniform distribution of variance and with the spatial scale 
comparable (or larger) to spatial domain produce monopole EOF 1 (the same 
sign in all points)

• The need to be orthogonal to the first EOF creates a second EOF with 
dipole pattern

• Thus the size of the domain should be greater than the typical spatial scale 
of field analyzed

Units of presentation
• Units of field F are carried by the PCs while the EOFs are dimensionless

• It is common to re-normalize results (e.g. EOFs carry units of F and PCs 
have variance of 1)

• Re-normalization is SW-specific – see e.g. Climate explorer application

• EOFs can be presented as a correlation maps – correlations between 
principal component and the values of the field  F at each location.

EOF analysis example

Main mode of SST vatiability in Central Pacific


