Multivariate analysis
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Redundant information H

Large datasets

Stochastic character of processes

Signal vs noise

99 * 12 = 1188 maps

Main aim:
to separate climate signal from the background climate variability (noise) and
to identify physical processes responsible for the generation of the signal

Analysis examples

Identification of climate modes (NAO)

Climate zones definition (on different scales)

Methods in climatology

IT. Multivariate analysis

Statistical downscalling (regional climate vs large-scale atmospheric
circulation.

Multivariate analysis Principal Component Analysis (PCA)

Abiltiy to represent spatio-temporal data in a compresed way

Four main goals of MA in climate research:

to recognize the patterns of climate vartiability

to identify physical processes and use them to construct CM
to validate climate models with observations

to use signals for predictions :
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Multivariate analysis examples

Multivariate analysis examples
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PC, =aTM, +a,TM, +8,TM; +8,TM, +a,TM; +a;TM,,
PC, =bTM, +b,TM, +b,TM, +b,TM, + b, TM, +b,TM,

Cislo | Vlastni Procenta Kumulov. Zatéze
PC &isla rozptylu procenta TM1 TM2 TM3 TM4 TM5 T™7
1 2262,96 75,62 7562 0243 0181 0,346 0230 0,728 0,454
2 68234 22,80 9842 0115 0050 0229 -0936 -0012 0,237
3 33,80 1,13 9955 0553 0323 0513 0201 -0531 -0,064]
4 7,79 0,26 99,81 -0,264 -0141 -0037 0168 -0432 0,833
5 4,54 0,15 9996 0,712 -0,102 -0,668 -0,034 0,000 0,186
6 121 0,04 100,00 -0212 0911 -0,343 -0,044 -0,022 0,069

eigenvalue = vlastni &islo
eigenvector = vlastni vektor

z3té7 = loading




Multivariate analysis examples
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SLP patterns of winter windsorms

+ 98 cases of winter windstorms from
the 20th century

~ H,\, i . Analysis Method (PCA) for 37
/ < o 12t grided values describing MSLP floods (1881-2000) of the
/ f% patterns during windstorms winter synoptic type on the
e/ 7500 | - objective classification using principal river Vitava in Prague
‘) 7o & ) qf;ﬂ components analysis (brackets - explained variance
Type 3 (13.0) 0'5\ 3 o d T\ in %)

Multivariate analysis examples
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Component scores of the first
component of the SLP field on
days D-5 to D calculated by
the Principal Component

Multivariate analysis examples
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Fluctuations of MAM drought indices (Z-index, SPEI-1) for the Czech Lands in the 1805-2012 period.

May, mean SLP 1961-1990

mean SLP in 31 dry Mays since 1850

SLP at extremely dry Mays defined in the 1850-2010 period and SLP differences in extremely dry
months compared to MSLP of the 1961-1990 reference period; black points mark statistically significant
(a=0.05) SLP decrease/incerese w.r.t the 1961-1990 reference period

Multivariate analysis examples
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Three the most similar monthly means acording to pcl used for interpretation of
EOF_1 mode.
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Multivariate analysis examples

Patterns in Space: EOF analysis

(Empirical Orthogonal Functions)
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Principal Component

EOF (Eigen Vector)

Eigen Value




Patterns in Space: EOF analysis
(Empirical Orthogonal Functions)

DATA: Instantaneous samples (maps) of geophysical fields (air
temperature) defined in a number of points (stations or grid-points)
recorded over period of time

EOF (PCA - Principal Component Analysis) - technique for compressing
the variability in the data set

+ Introduced by Edward Lorenz in 1956
+ Widely applied in climatology and oceanography

+ Goal: compact description of the spatial and temporal variability of data
series in terms of orthogonal functions - statistical ,modes™

*+ Most of variability is in the first few orthogonal functions whose
patterns MAY BE be linked to possible dy ical hani

EOF - data preparation

A set of N maps at times + = 1 N
Each map contains measurements of the field ¢ at locations m= 1.M
We have M time series ¢, (7), each of length N

+ We assume that N > M (number of time steps is larger than the number
of locations

Annual (seasonal) cycle is necessary to remove BEFORE EOF analysis -
subtract climatological cycle from the field ¢,,(1).

EOF - data preparation

Data standardization:
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where ji,,, is the record mean:
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EOF - data preparation

We construct M x N data matrix F with M rows (locations m) nad the N
columns (times t):

Time —
A1) FE) . RW)
B 5(: 5(NV
ro | B() B2 ... B(N) lLocation
Py(1) Fu(2) ... Fu(N)

Two approaches for EOFs computing

+ Covariance matrix d position to eig: and eigenvectors (rozklad
kovarianéni matice na vlastni &isla a vlastni vektory)

- Singular Value Decomposition of the data matrix (singuldrni rozklad
matice)

Vlastni Cisla a vlastni vektory matice

« Existuji pro Etvercové matice, které 5
neobsahuji linedrné zdvislé proménné

* Vlastni &isla informuji o variabilité

vy&erpané vytvdrenymi faktorovymi osami

Vlastni &islo predstavuje rozptyl ,nové"

proménné definované v souradném systém 2

vlastnich vektord

Vlastni vektory definuji smér novych

faktorovych os v prostoru plivodnich o T @ e 0 w0 T o

proménnych

Vlastni vektory jsou navzdjem ortogondlni

- t]. nezdvislé - tedy kazdy nese unikdtni

informaci

Vlastni vektory mohou byt rliznym

zplisobem standardizovany a jejich

interpretace se li$i podle pouzité

standardizace




Geometric interpretation of eigenvalues
and eigenvectors

An nxnmatrix A multiplied by nx 1 vector x results in another nx1
vector y=Ax. Thus A can be considered as a transformation matrix.

In general, a matrix acts on a vector by changing both its magnitude
and its direction. However, a matrix may act on certain vectors by
changing only their magnitude, and leaving their direction unchanged (or
possibly reversing it). These vectors are the eigenvectors of the
matrix.

A matrix acts on an eigenvector by multiplying its magnitude by a
factor, which is positive if its direction is unchanged and negative if its
direction is reversed. This factor is the eigenvalue associated with
that eigenvector.

Geometric interpretation of eigenvalues
and eigenvectors

Possible configuration of the
data vectors £, (n=1..N
denote the time steps) and
the empirical orthogonal
vectors e, m =1 .. M. (from
Peixoto and Oort, 1992)

EOF - The Covariance Matrix Approach

Data matrix F is used to derive spatial covariance matrix Ree of the field £, (1)
by multiplying F by its transpose F*:

Rpp = F « F' (2.5)
Expanding the product of matrices:
(PR (FIF) ... (FiFy)
Rpp = (BFR) (RF) ... (BFy) (2.6)
(FuF) (FuF) ... (FuFur)

where (F;Fj) is the covariance between time series F; and Fj (F at locations i
and j) defined as:

(EF) = (FF) =

1 & _
N_o1 Fi(t) F7(t) (2.7)

ij=1.M
R is square (M x M) and symetric

EOF - The Covariance Matrix Approach
We solve the eigenproblem:
Rrp+E=Ex A (2.8)

That is, we decompose Rpp into matrices A and E. Here A is the M x M
diagonal matrix containing the eigenvalues \; of Rpp:

AN O ... 0
A=] 0 M 0 (2.9)
00 ... Ay

+ the eigenvalues are sorted in decreasing order
+ all eigenvalues are greater or equal to zero

typically only first K eigenvalues are non-zero, K < min(N,M)
+ thus only K EOF modes can be determined

EOF - The Covariance Matrix Approach
We solve the eigenproblem:
RFF*E:E*A (28)

The square matrix E has dimension M x M. Its column vectors E* are
rresponding to eigenvalues Ag:

the eigenvectors of Rpp co

5 g

g=| B2 B - B (2.10)
Ey Ei ... EN
E'  E® EM — Eigenvectors E*

+ each non-zero eigenvalue A in matrix A is associated with a column
eigenvector £ in matrix E.

+ only K eigenvectors are used in decomposition

K are modes of EOF decomposition

EOF - The Covariance Matrix Approach

The eigenvector matrix E has the property that E* E*=E**E =1,
where I is Identity matrix.

This means that the eigenvectors are uncorrelated over space -
they are orthogonal to one another

Each eigenvector Ek represents the spatial EOF pattern of mode k
The spatial EOF patterns - Loadings




EOF - The Covariance Matrix Approach

The time evolution of the kth EOF (that is, how pattern E* evolves with
time) is given by the time series A*(¢), which is obtained by projecting the
original data series F},(t) onto eigenvector E¥ and summing over all locations|
m: M
A = 3 B Falt) (2.11)

m=1

where m =1...M counts the locations, t = 1... N counts the time steps an
k=1...K counts the EOF modes. In matrix notation, matrix A is obtaine
by multiplying matrices Ef and F:

A=E'«F (2.12)

where Etis Kx M,Fis MxN, AisKxN

Rows in A are time series of length N - Principal Components (Time
coefficients, Scores)

EOF - The Covariance Matrix Approach

Each eigenvalue 4 is proportional to the percentage of the variance of the field
F that is accounted for by the mode 4:

Ak

% Variance Mode k = —7
0 variance ode Zf‘:l Al

100 (2.13)

The original field F can be totally reconstructed by multiplying each EOF pattern
£* by its corresponding principal component A* and adding the products over all K
modes:

K
Fu(t) = > EN A*1) (2.14)
k=1
In matrix notation:
F=ExA (2.15)

where Fis M xN,Eis Mx K, AisKxN

EOF - The Covariance Matrix Approach

The goal of the EOF decomposition is reconstruction of compressed and less
noisy version of the original field F

This is done by truncating the decomposition ni 2.14 eq. using only first H modes
withH< K

The H first modes account for the largest fraction of the field variance:
. "
Fo(t) = 3 By A1) (2.16)
k=1

This leads to a significant reduction of the amount of data while retaining most
of the variance of the field F.

The choice of H may be rather subjective

The first or the few first EOF modes sometimes represent meaningful physical
processes

The Singular Value Decomposition Approach

+ one-step method to compute all components of eigenvalue problem
Results are computationally more stable and robust
SVD is performed directly on the data matrix F with M rows (spatial points)
and N columns (samples in time)

SVD is based on the concept that any M x N matrix can be written as the
product of three matrices:

F=UxT«V! (2.19)
U is M x M matrix
Vtis transpose of the N x N matrix V

I is M x N matrix with zero elements outside the diagonal and positive or
zero elements on the diagonal

Scalars y, on the diagonal are called singular values. They are placed in
decreasing order and they are proportional to eigenvalues A, A = y2

There is a maximum of K < min(N,M) non-zero singular values which defines
the maximum number of EOF modes that we can determine.

The Singular Value Decomposition Approach

F=UxT«V! (2.19)
The columns in U matrix are orthogonal and are called /eft singular vectors of F

They are identical to the eigenvectors E and they are the EOF patterns
associated with each singular value. There is only K useful /eft singular vectors

The rows in V* matrix are orthogonal and are called right singular vectors of F

They are proportional to the principal components A obtained from equations
2.11 and 2.12 and the constant of proportionality are the singular values y, such
that:

A v (2.20)
ARty = 3 V() (2.21)

Matrix A contains the principal coefficients of data matrix F and effective
sizeof AisKxN

The Singular Value Decomposition Approach

Using equation (2.19) we can reconstruct field F adding all K modes of the
decomposition:

o
)
)

K
Fa(t) = 32 Upowe V(D) (2.2:
k=1

Note the similarity between (2.22) and (2.14) where: U = E and A = W*




Number of important modes
Data compression is more important than physical interpretation
We try to separate signal from noise
Several methods:

Scree plot

Guttman criterion

Eigenvalues > 1

Modes with eigenvalue that is higher than mean of all eigenviaues
Modes that explain more that 70 - 90 % of total variability

Vs isa kot masce

Individual Cumulative

No. Eigenvalue Percent Percemt Scree Plot T
1 3.487151  38.75 38.75 I o .

2 2.130173  23.67 62.41 11111 E \

3 1.008958  12.21 74.63 111 \

4 0.994483  11.05 85.68 Il nye

5 0.543218  6.04 o171 || \

6 0.383428  4.26 95.97 | \

7 0.225754  2.51 98.48 | o Petugen

8 0.136790  1.52  100.00 | . R

9 0.000046  0.00  100.00 | X Ttig

Rotated EOFs

+ physical interpretation is more important than data compression
+ Due to orthogonality

+ Orthogonal or obligue rotation

* Rules of ,simple structure™

Eigenvalues after Varinax Rotation

Eigenvalues Individeel  Cumalat Individual Cumilative

Yo Bigmalue  Poreest  Porcams  Seres Plov Wo. Bigemvalue Percemt  Percemt  Scree Plov
1 2.728683 45.48 45.48 I 1 1.596863 56.94 56.94 LLARRRRRNANN)
2 T892 188t PSS 2 1.207081 43.08 100.02 i

3 0.615291 10.25 74.56 i 3 0.050820 1.81 101.83 I

4 0.602809  10.05 8159 Il 4 o.011910 0.42 102.26 l

5 0.522514 8.71 %330 I 5 -0.008657 -0.31 101.95 1

6 0.401010 6.70 100.00 11 6 -0.054642 -1.95 100.00 |

Factor Loadings
e Factor Loadings after Varimax Rotation

Variables  Factorl Factor2

Gaelic -0.660803 -0.444475 Variables Factorl

English -0.688465 -0.289771 Gaelic -0.233132

History 0.516356  -0.63955) qummmnm English -0.322810

Arithnetic  -0.735620 0.417018 History

Mgebra  -0.741868 0.372759

Geometry -0.678168 0.354100 Arithnetic -0.170657
Algebra -0.214689
Geometry -0.214994

Notes on EOFs interpretation

+ Some EOFs not necessarily correspond to real physical behavior of
dynamical modes

A clue to the interpretation of EOF modes may be found in the principal
component.

Their temporal variability may be similar to some known processes

The physical interpretation is limited due to spatial orthogonality of the
EOF patterns

Real world processes do not have orthogonal patterns or may not be
represented with uncorrelated indices

Traditional EOFs can detect standing oscillations, however sighal may be
propagating in space

Notes on EOFs interpretation

+ The EOF patterns depend on the size of the study area

Variable with uniform distribution of variance and with the spatial scale
comparable (or larger) to spatial domain produce monopole EOF 1 (the same
sign in all points)

The need to be orthogonal to the first EOF creates a second EOF with
dipole pattern

Thus the size of the domain should be greater than the typical spatial scale
of field analyzed

Units of presentation

+ Units of field F are carried by the PCs while the EOFs are dimensionless

It is common to re-normalize results (e.g. EOFs carry units of F and PCs
have variance of 1)

Re-normalization is SW-specific - see e.g. Climate explorer application

+ EOFs can be presented as a correlation maps - correlations between
principal component and the values of the field F at each location.

EOF analysis example

Main mode of SST vatiability in Central Pacific

eofl Jun—Aug averaged HadSST3110 SSTa / s.d. anomalies
1980:1999
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