Methods in climatology

II. Multivariate analysis

Multivariate analysis

• Large datasets

Main aim:

- Redundant information
- Stochastic character of processes
 Signal vs noise

- to separate climate signal from the background climate variability (noise) and
- to identify physical processes responsible for the generation of the signal

Analysis examples

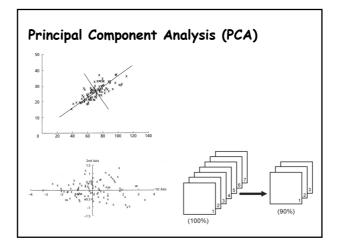
- Identification of climate modes (NAO)
- Climate zones definition (on different scales)
- Statistical downscalling (regional climate vs large-scale atmospheric circulation.

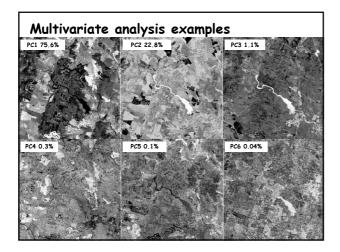
Multivariate analysis

• Abiltiy to represent spatio-temporal data in a compresed way

Four main goals of MA in climate research:

- to recognize the patterns of climate vartiability
- $\cdot\;$ to identify physical processes and use them to construct CM
- \cdot to validate climate models with observations
- · to use signals for predictions



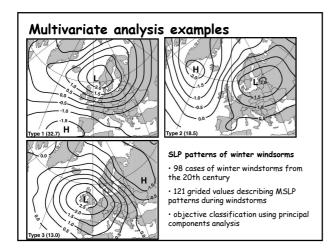


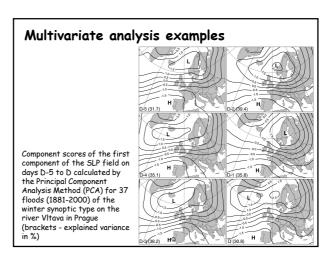
Multivariate analysis examples

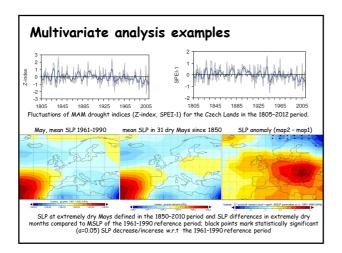
 $PC_{1} = a_{1}TM_{1} + a_{2}TM_{2} + a_{3}TM_{3} + a_{4}TM_{4} + a_{5}TM_{5} + a_{6}TM_{7}$ $PC_{2} = b_{1}TM_{1} + b_{2}TM_{2} + b_{3}TM_{3} + b_{4}TM_{4} + b_{5}TM_{5} + b_{6}TM_{7}$

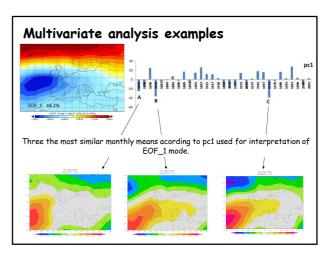
Číslo	Vlastní	Procenta	Kumulov.	Zátěže					
PC	čísla	rozptylu	procenta	TM 1	TM 2	TM 3	TM4	TM 5	TM 7
1	2262,96	75,62	75,62	0,243	0,181	0,346	0,230	0,728	0,454
2	682,34	22,80	98,42	0,115	0,050	0,229	-0,936	-0,012	0,237
3	33,80	1,13	99,55	0,553	0,323	0,513	0,201	-0,531	-0,064
4	7,79	0,26	99,81	-0,264	-0,141	-0,037	0,168	-0,432	0,833
5	4,54	0,15	99,96	0,712	-0,102	-0,668	-0,034	0,000	0,186
6	1,21	0,04	100,00	-0,212	0,911	-0,343	-0,044	-0,022	0,069

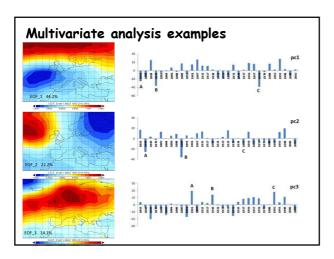
eigenvalue = vlastní číslo eigenvector = vlastní vektor zátěž = loading

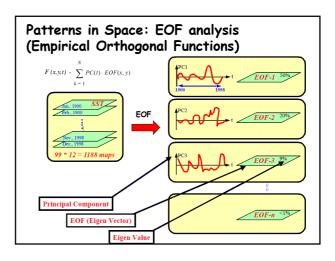












Patterns in Space: EOF analysis (Empirical Orthogonal Functions)

- DATA: Instantaneous samples (maps) of geophysical fields (air temperature) defined in a number of points (stations or grid-points) recorded over period of time
- EOF (PCA Principal Component Analysis) technique for compressing the variability in the data set
- Introduced by Edward Lorenz in 1956
- Widely applied in climatology and oceanography
- Goal: compact description of the spatial and temporal variability of data series in terms of orthogonal functions – statistical "modes"
- Most of variability is in the first few orthogonal functions whose patterns MAY BE be linked to possible dynamical mechanisms

EOF - data preparation

- A set of N maps at times t = 1 ...N
- · Each map contains measurements of the field ψ at locations m=1...M
- · We have M time series $\psi_m(t)$, each of length N
- We assume that N > M (number of time steps is larger than the number of locations
- Annual (seasonal) cycle is necessary to remove BEFORE EOF analysis subtract climatological cycle from the field $\psi_m(t)$.

EOF - data preparation

• Data standardization:

$$F_m(t) = \frac{\psi_m(t) - \mu_m}{\sigma_m}$$

where μ_m is the record mean:

$$\mu_m = \frac{1}{N} \sum_{t=1}^N \psi_m(t)$$

and σ_m is the record standard deviation:

$$\sigma_m = \left[\frac{1}{N-1} \sum_{t=1}^{N} \psi_m^2(t) \right]^{1/2}$$

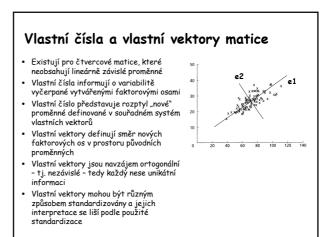
EOF - data preparation

We construct $M \times N$ data matrix F with M rows (locations m) nad the N columns (times t):

$$\mathbf{F} = \begin{bmatrix} F_{1}(1) & F_{1}(2) & \dots & F_{1}(N) \\ F_{2}(1) & F_{2}(2) & \dots & F_{2}(N) \\ \dots & \dots & \dots & \dots \\ F_{M}(1) & F_{M}(2) & \dots & F_{M}(N) \end{bmatrix} \downarrow \text{Location}$$

Two approaches for EOFs computing

- Covariance matrix decomposition to eigenvalues and eigenvectors (rozklad kovarianční matice na vlastní čísla a vlastní vektory)
- Singular Value Decomposition of the data matrix (singulární rozklad matice)

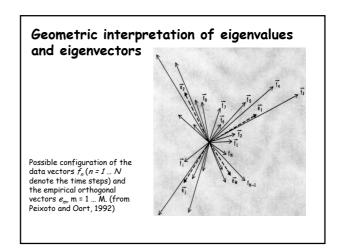


Geometric interpretation of eigenvalues and eigenvectors

An n×n matrix **A** multiplied by $n \times 1$ vector **x** results in another $n \times 1$ vector **y=Ax**. Thus **A** can be considered as a transformation matrix.

In general, a matrix acts on a vector by changing both its magnitude and its direction. However, a matrix may act on certain vectors by changing only their magnitude, and leaving their direction unchanged (or possibly reversing it). These vectors are the **eigenvectors** of the matrix.

A matrix acts on an eigenvector by multiplying its magnitude by a factor, which is positive if its direction is unchanged and negative if its direction is reversed. This factor is the **eigenvalue** associated with that eigenvector.



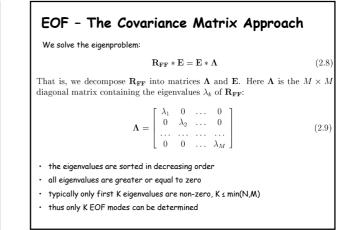
EOF – **The Covariance Matrix Approach** Data matrix **F** is used to derive spatial covariance matrix **R**_{FF} of the field $F_m(t)$ by multiplying **F** by its transpose **F**: $\mathbf{R}_{FF} = \mathbf{F} * \mathbf{F}^{\dagger} \qquad (2.5)$ Expanding the product of matrices: $\begin{bmatrix} \langle F_1 F_1 \rangle & \langle F_1 F_2 \rangle & \dots & \langle F_1 F_M \rangle \end{bmatrix}$

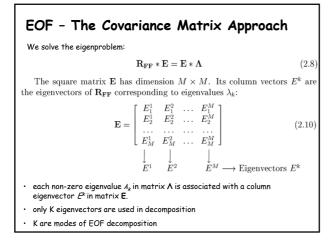
$$\mathbf{R_{FF}} = \begin{bmatrix} \langle F_2 F_1 \rangle & \langle F_2 F_2 \rangle & \dots & \langle F_2 F_M \rangle \\ \langle F_M F_1 \rangle & \langle F_M F_2 \rangle & \dots & \dots \\ \langle F_M F_1 \rangle & \langle F_M F_2 \rangle & \dots & \langle F_M F_M \rangle \end{bmatrix}$$
(2.6)

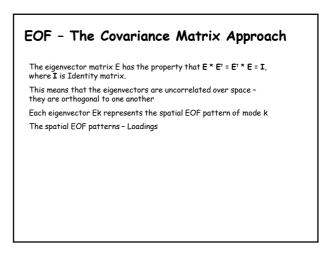
where $\langle F_iF_j\rangle$ is the covariance between time series F_i and F_j (F at locations i and j) defined as:

$$\langle F_i F_j \rangle = \langle F_j F_i \rangle = \frac{1}{N-1} \sum_{t=1}^N F_i(t) F_j(t)$$
(2.7)

i, j = 1 ... MR_{FF} is square (M × M) and symetric







EOF - The Covariance Matrix Approach

The time evolution of the kth EOF (that is, how pattern E^k evolves with time) is given by the time series $A^k(t)$, which is obtained by projecting the original data series $F_m(t)$ onto eigenvector E^k and summing over all locations m: м

$$A^{k}(t) = \sum_{m=1}^{M} E_{m}^{k} F_{m}(t)$$
(2.1)

where $m = 1 \dots M$ counts the locations, $t = 1 \dots N$ counts the time steps and $k=1\ldots K$ counts the EOF modes. In matrix notation, matrix ${\bf A}$ is obtained by multiplying matrices \mathbf{E}^{\dagger} and \mathbf{F} :

$$\mathbf{A} = \mathbf{E}^{\dagger} * \mathbf{F} \tag{2.12}$$

where E^{\dagger} is $K \times M$, F is $M \times N$, A is $K \times N$ Rows in A are time series of length N - Principal Components (Time coefficients, Scores)

EOF - The Covariance Matrix Approach

Each eigenvalue A_k is proportional to the percentage of the variance of the field F that is accounted for by the mode k:

% Variance Mode k =
$$\frac{\lambda_k}{\sum_{i=1}^K \lambda_i} * 100$$
 (2.13)

The original field F can be totally reconstructed by multiplying each EOF pattern E^k by its corresponding principal component A^k and adding the products over all Kmodes:

 $\mathbf{F}=\mathbf{E}\ast\mathbf{A}$

$$F_m(t) = \sum_{k=1}^{m} E_m^k A^k(t)$$
 (2.14)

where F is M × N. E is M × K. A is K × N

In matrix notation:

EOF - The Covariance Matrix Approach

The goal of the EOF decomposition is reconstruction of ${\rm compressed}$ and ${\rm less}$ ${\rm noisy}$ version of the original field F

This is done by truncating the decomposition ni 2.14 eq. using only first H modes with H < K

The H first modes account for the largest fraction of the field variance:

$$\hat{F}_m(t) = \sum_{k=1}^{H} E_m^k A^k(t)$$
 (2.16)

This leads to a significant reduction of the amount of data while retaining most of the variance of the field F

The choice of H may be rather subjective

The first or the few first EOF modes sometimes represent meaningful physical processes

The Singular Value Decomposition Approach

- one-step method to compute all components of eigenvalue problem
- · Results are computationally more stable and robust

SVD is performed directly on the data matrix **F** with **M** rows (spatial points) and N columns (samples in time)

SVD is based on the concept that any $M \times N$ matrix can be written as the product of three matrices: $\mathbf{F} = \mathbf{U} \ast \mathbf{\Gamma} \ast \mathbf{V}^{\dagger}$

U is M x M matrix \mathbf{V}^{t} is transpose of the N x N matrix \mathbf{V}

 Γ is M x N matrix with zero elements outside the diagonal and positive or zero elements on the diagonal

Scalars γ_k on the diagonal are called singular values. They are placed in decreasing order and they are proportional to eigenvalues $\lambda_k \lambda_k = \gamma_k^2$

There is a maximum of K≤ min(N,M) non-zero singular values which defines the maximum number of EOF modes that we can determine.

The Singular Value Decomposition Approach $\mathbf{F} = \mathbf{U} \ast \boldsymbol{\Gamma} \ast \mathbf{V}^{\dagger}$

19

The columns in U matrix are orthogonal and are called left singular vectors of F They are identical to the eigenvectors ${\bf E}$ and they are the EOF patterns associated with each singular value. There is only K useful left singular vectors

The rows in $V^{\scriptscriptstyle \dagger}$ matrix are orthogonal and are called right singular vectors of FThey are proportional to the principal components A obtained from equations 2.11 and 2.12 and the constant of proportionality are the singular values y_k such

$$\mathbf{A} = \mathbf{\Gamma} * \mathbf{V}^{\dagger}$$
(2.20)
$$A^{k}(t) = \gamma_{k} V^{\dagger k}(t)$$
(2.21)

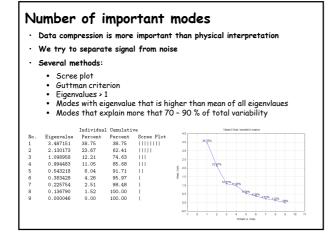
Matrix ${f A}$ contains the principal coefficients of data matrix ${f F}$ and effective size of A is K x N

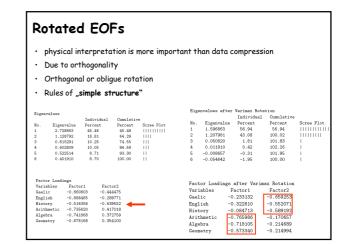
The Singular Value Decomposition Approach

Using equation (2.19) we can reconstruct field ${\sf F}$ adding all ${\sf K}$ modes of the decomposition:

$$F_m(t) = \sum_{k=1}^{n} U_m^k \gamma_k V^{\dagger k}(t)$$
 (2.22)

Note the similarity between (2.22) and (2.14) where: U = E and A = \mathcal{W}^{\dagger}





Notes on EOFs interpretation

- Some EOFs not necessarily correspond to real physical behavior of dynamical modes
- A clue to the interpretation of EOF modes may be found in the principal component.
- \cdot Their temporal variability may be similar to some known processes
- The physical interpretation is limited due to spatial orthogonality of the EOF patterns
- Real world processes do not have orthogonal patterns or may not be represented with uncorrelated indices
- Traditional EOFs can detect standing oscillations, however signal may be propagating in space

Notes on EOFs interpretation

- The EOF patterns depend on the size of the study area
- Variable with uniform distribution of variance and with the spatial scale comparable (or larger) to spatial domain produce monopole EOF 1 (the same sign in all points)
- The need to be orthogonal to the first EOF creates a second EOF with dipole pattern
- Thus the size of the domain should be greater than the typical spatial scale of field analyzed

Units of presentation

- Units of field F are carried by the PCs while the EOFs are dimensionless
- It is common to re-normalize results (e.g. EOFs carry units of F and PCs have variance of 1)
- + Re-normalization is SW-specific see e.g. Climate explorer application
- EOFs can be presented as a correlation maps correlations between principal component and the values of the field F at each location.

